Simulating Alzheimer's on the XD1

Jan H. Meinke and Ulrich H.E. Hansmann John von Neumann Institute for Computing (NIC) Jülich, Germany

Alzheimer's Disease

Ronald Reagan, 1911–2004

Charles Bronson, 1921–2003

Prion Diseases

BSE

George Balanchine, 1904–1983 vCJD

Proteins

- Molecular work horses of our bodies
 - Catalyst (enzymes)
 - Transport (red blood cells)
 - Immune system (white blood cells)
- Form determines function

Proteins – Sequence

- 20 different amino acids
- Sequence encoded in DNA
- Sequence determines shape (single domain)
- Written down using 1- or 3-letter abbreviation

Alanine (Ala, A)

Phenylalanine (Phe, F)

Arginine (Arg, R)

Proteins – Secondary Structure

- Helix
- Sheets
- Turns
- Coil

Proteins – Tertiary Structure

- Arrangement of secondary structure element into well defined 3d structure
- Functional unit
- Multiple domains
 possible

Protein Folding

- Sequence uniquely determines shape
- Thousands of degrees of freedom
- Random sampling not feasible →Leventhal paradox
- Funnel picture

Simulating Proteins

- Representation
- Force fields
 - Describe interactions within protein
 - Describe interactions between proteins
- Methods
 - MD
 - MC
 - others

Force Fields

- Attractive terms + repulsive terms→rough energy landscape
- Many different parameterizations
 - Amber
 - Charmm
 - ECEPP
 - Gromacs

Schug, A. et al. J. Chem. Phys., 122(2005), 194711

Monte Carlo and SMMP

- Internal degrees of freedom (dihedral angles)
- Fixed bond lengths
- Random sampling of configurations

http://apple.sysbio.info/~mjhsieh/sstour/

Parallel Tempering

- Simulate the same system at different temperatures
- Exchange configurations between temperatures according to Metropolis criterion

Scaling of Parallel Tempering

- n replicas produce n times the amount of data
- Exchange of configurations accelerates equilibration

Some Implementation Details

- Exchanging temperatures vs. exchanging configurations
- Replica exchange done on Master node

Scaling on the XD1

- Speed on a single node
 - time for an energy calculation vs. system size
 - time for a sweep vs.
 system size
- Parallel scaling

Scaling on IBM BlueGene/L

- Speed on a single node
 - time for an energy calculation
 - time for a sweep 7 times longer than XD1
- Nearly linear up to 1024 processors

Alzheimer's β-amyloid

- 42 Amino acids long
- Misfolds
- Misfolded structures aggregate
- Aggregates form fibrils
- Fibrils form plaques
- Neurotoxic

Studying Aggregation in Silico

- Alzheimer's β-amyloyd is already a large protein for all-atom simulations
- Simulating multiple proteins of that size is beyond our computational abilities
- Study aggregation of fragment

Alzheimer's β-amyloyd₁₆₋₂₂

- Experimental evidence for importance of $A\beta_{_{16\text{-}22}}$ in aggregation
- $A\beta_{16-22}$ aggregates by itself
- Previous simulations showed aggregation with simpler force field.

Single molecule behavior

Aggregation

Thu Mar 16 15:41:37 2006

Energies

- Interaction drives aggregation
- Collapse despite solvent term

Organization of aggregate

- Start as random aggregates
- Sheet formation
- Parallel vs. anti-parallel

Summary

- Parallel tempering scales very well
- Energy calculation may profit from FPGA
- Successful first steps
- Still a long way to go