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ABSTRACT: The Finite-Difference Time-Domain (FDTD) algorithm is a well 

established tool for modelling transient electromagnetic phenomena. Using a spatially 

staggered grid, the algorithm alternately advances the electric and magnetic fields, 

according to Faraday's and Ampere's laws. These simulations often contain millions of 

grid cells and run for thousands of time-steps, requiring highly efficient grid update 

algorithms and high-performance hardware. Here we report on the implementation of 

the FDTD algorithm on the application accelerator of a Cray XD1. The FPGA is 

programmed using the Impulse C tool suite. These tools translate C code into VHDL and 

therefore enable the domain scientist to develop FPGA-enhanced applications. Different 

optimization strategies, ranging from algorithmic changes to exploitation of the high 

degree of parallelism on the FPGA, will be presented. 
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1. Introduction 

Transient electromagnetic problems are often too 
complicated to be treated analytically and numerical 
simulations are required. Examples of such problems are 
electromagnetic wave propagation in complex geometries 
or scattering of waves off dielectric objects. The finite-

difference time-domain (FDTD) algorithm [1] is a well 
established technique for treating these problems 
efficiently. In addition to pure electromagnetic 

propagation problems, the FDTD algorithm is at the heart 

of more complex algorithms, including e.g. the particle-in-
cell (PIC) algorithm for the kinetic simulation of plasmas.  
A result of such a model, computed with the 

electromagnetic particle-in-cell code VORPAL [2] is 
shown in Figure 1: A particle bunch propagating in a 
cavity creates a wake-field in the cavity. This code uses 

the FDTD algorithm to compute the evolution of the 

electromagnetic field.  
 
Finite-difference time-domain discretizes the electric and 

magnetic field in the computational domain on a 
rectangular mesh and updates each cell via finite 

differences. Each cell of the computational grid can be 
updated independently of each other and this large amount 
of parallelism makes it an ideal candidate to be computed 
on distributed memory systems. However, the update 
operation per grid cell is complex enough that they may 
benefit from additional acceleration, e.g. via the 
application accelerator FPGAs on the Cray XD1.  

 
Modelling FDTD using FPGAs has been investigated for 
several years. However, these systems are usually 

restricted to custom built hardware or require hardware 
engineers to program them. The advent of ready-made 
clusters with hardware acceleration put FPGA computing 

within reach of computational physicists without access to 
custom built hardware.  

 
A second major recent development is the availability of 

C-to-gates translators which enable non-experts in 
hardware engineering to take advantage, or at least 
explore, FPGA computing.  

 
In this paper, we describe the different optimizations of an 

FDTD implementation on the application accelerator of 
the Cray XD1 using ImpulseC [3]. In the next paragraph, 
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we will introduce the FDTD algorithm, and the ImpulseC 
environment. Then we will describe the initial algorithmic 
optimizations. We will then present different optimization 
strategies of the FDTD algorithm on the FPGA. We will 
summarize the work and draw conclusions.  
 

2. The FDTD algorithm 

 
The FDTD algorithm computes the update of the 
electromagnetic field based on Ampere’s and Faraday’s 
law, 
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This operation has to be performed for the entire 
computational domain. In order to obtain second order 

accuracy, the E and B fields are staggered in space and 
time on a so-called Yee Grid. The algorithm is well 
understood and an extensive literature on it has been 

published. For an introduction, see [1].  

3. FPGA programming 

Programming of FPGAs used to require knowledge of 

hardware definition languages and was therefore limited 

to hardware engineers or scientists with hardware design 
knowledge. While this is still the case nowadays if 
maximum performance should be obtained from FPGAs, 

the growing number of tools for C-to-gates translation 
makes the power of these chips accessible to more 

software oriented scientists and engineers.  

 

For this project, we used the ImpulseC systems, developed 

by Impulse Accelerated Technologies. In ImpulseC, an 

application is composed of multiple processes which 

communicate among each other via streams, shared 
memories or signals. ImpulseC is based on standard C 

language, extended by an application programming 

interface (API) for the communication primitives and 

directives (pragmas) for fine-tuning the translation.  Each 

ImpulseC process is essentially a C function. Special 

functions then allow the programmer to place these 

functions either on the host CPU or on the FPGA. The 

ImpulseC compiler then generates the appropriate code 

and interfaces expressed in hardware definition language. 

 

While the ImpulseC code is portable between different 

systems, the ImpulseC compiler needs to generate system 

specific code via so called platform support packages. 
One of these support packages targets the Cray XD1.  

4.  Hardware 

For this project we were using Cray Inc.’s XD1 system 
pacific. The system consists of 2 XD1 chassis with a total 
of 12 nodes. Each node consists of 2 dual core AMD 
Opteron 275 processors, acting as four individual CPUs. 
The clock speed per CPU is 2.2 GHz.  

 
One chassis of this system is equipped with Application 
Accelerators, fully user programmable Field-
Programmable Gate Arrays (FPGA). On the particular 
system used for this project, the application accelerator is 
a Xilinx Vitrex-II Pro FPGA, XC2VP50-7. The clock 
speed of each FPGA is user selectable, with a maximum 
speed of 200 MHz.  This relatively low clock rate of the 
FPGA requires that the main advantage of the FPGA is 
exploited in order to beat the Opteron processor, running 
at a 10 times higher clock rate.  
 

5. Algorithm optimizations 

Before trying to accelerate the application with 
sophisticated hardware, we were looking into accelerating 

the algorithm itself. By choosing the right units of B and E 
and assuming uniform grid spacing, one can eliminate the 
need for divisions and multiplications in the update 

altogether. The update described in the previous section 
then becomes 
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The advantage of these units is that the field values can be 
expressed simply as integer numbers rather than floating-

point numbers.    
 

Figure 1: Electromagnetic field in a superconducting 
cavity, computed with the FDTD code VORPAL. 



 

CUG 2006 Proceedings 3 of 4 

 

The overall algorithm can be expressed in pseudo code as 

follows: 
 
for t = 0, nsteps {     // time stepping loop 

   for x, y, z in domain { // E field update  

      compute index of all contributing 
      elements, e.g. 
        Ez

t
.  Bx
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y
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      compute curl, e.g. 
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   }    
 

   for x, y, z in domain { // B field update  

      compute index of all contributing elements 
      compute curl, e.g. 
        Bz
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 - ( Ex
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   } 
} 

 

For all the subsequent experiments, we used a benchmark 

problem of 400 x 200 x 1 cells, running for 100 time-

steps. The pure software implementation ran on this 
system in about 0.2s.  

6.  Tool chain 

In order to utilize the application accelerator, the FPGA 
has to be configured with the appropriate logic. This 
configuration is programmed via a configuration file (bit-
stream). In order to generate the bit-stream from an 
ImpulseC source file, a variety of tools have to be run. In 
this section, we briefly describe this process:  
 
Once the algorithm has been expressed in ImpulseC, it can 
be translated into a hardware definition language, in this 
case VHDL, using the ImpulseC compiler CoDeveloper. 
This compiler generates all the interfaces necessary to 
connect the user generated logic to the logic provided by 
Cray. E.g. the Rapid Array Transport is used to transmit 
data between the host CPU and the FPGA. In addition, the 
ImpulseC compiler generates project files for the tools 
subsequently used.  
 

This hardware-definition code is then synthesized, placed 
and routed and finally converted into a bit-stream using 
the ISE/XST toolchain from Xilinx [4]. The project files 

generated by CoDeveloper make this step almost a black 
box. However, this process is very time consuming and, 
depending on the complexity of the logic, can take hours 

to complete. 
  

Once the bit-stream and the software is built, it can be 
ported to the XD1 system. ImpulseC generates a Makefile, 

making the build process for the software processes also a 
black box.  
 

Before the FPGA accelerated application can be executed, 
the bit-stream has to be prepared by pre-pending Cray 

proprietary header information. This is accomplished with 

a utility program fcu, which takes the FPGA device 

number and the clock speed and creates this header. 

  

The fcu utility also offers additional functionality, like 

resetting the application accelerator or loading a bit-
stream. However, the ImpulseC program generated host 

application takes care of all these steps.  

 

7. Porting to FPGA 

The first step of porting the FDTD algorithm to an FPGA 

was mainly to get acquainted with the overall system and 

not really designed for performance. We chose to move 

the computation of the curl operator from a pure software 

implementation to the FPGA. We therefore created an 

FPGA process which reads 9 values from an input stream 

(Ex, Ey, Ez, Bx, Bx,y+1, By, By,x+1, Bz, Bz,x+1) 
computes the curl and returns the updated three 
components (Ex, Ey, Ez) to the host CPU. Both the time-
stepping loop as well as the loop over the entire 
computational domain are still executed on the host CPU.  
 
While the implementation was working as expected, it 
turned out that it took about 250 s to execute. Putting both 
the curl B and curl E computations onto the FPGA 
resulted even in 450s overall execution time. This is more 
than 3 orders of magnitude slower than the pure software 
implementation.  

8. Optimizations 

One of the main advantages of high-level development of 
FPGA codes is that it enables simple experiments with 
different splitting between hardware and software 
processes.  In the following, sections we describe some 
experiments we performed in order to reduce the time on 
the FPGA.  

 
8.1 Concurrent processes for curl components 

The main bottle neck of the implementation presented in 
the previous section is the large amount of data that has to 
be transferred between the host process and the FPGA. 

Instead of sending individual numbers from the processor 
to the FPAG, we now investigated the possibility to 
compress two 32 bit integers into a 64 bit integer. In 

addition, we split the computation of the curl operator into 
three individual processes, each computing only one 

component of the resulting vector  
 

The overall time for the benchmark problem was reduced 
from 450 s to 230 s. While it shows that larger data 
transfers are important, it still is very far from the CPU 

based implementation.  
 

8.2 Avoid CPU-FPGA data transfer 
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In order to avoid the problem of the data transfer between 

the host CPU and the FPGA, ImpulseC supports shared 

memories. However, this feature is currently under 

development and was not supported at the beginning of 

this project. We therefore had to find solutions to avoid 
massive transfers of data between CPU and FPGA.  

 

One obvious choice is to put the entire FDTD algorithm 

onto the FPGA. While the limited size of the available 

memory reduced the feasible problem sizes, these 

experiments enabled to estimate the possible performance.  

 

Running the entire FDTD algorithm on the FPGA resulted 

for the benchmark problem in an overall execution time of 

5s. Experiments with pipelining the inner most loop 

reduced this time down to 4.7s.  

 

8.3 Future optimizations 
An optimization that was not completely finished at the 
time of this writing is to exploit system level parallelism: 
On distributed memory machines, FDTD is usually 
parallelized via domain decomposition. The update of a 
cell only depends on nearest neighbours, making the 
communication relatively simple.  
 
The test-problem for the FDTD algorithm on FPGA 
required only about 8% of the available logic. We 
therefore ran multiple FDTD processes concurrently, each 
working on a separate sub-domain. While we did not yet 
implement the communication between the domain 
boundaries, the resulting speedup is encouraging.  

9.  Conclusion 

Many problems in computational electrodynamics can 
benefit from accelerated FDTD computation. One 
possible approach to accelerate these computations is to 
use reconfigurable coprocessors based on Field 
Programmable Gate Arrays to accelerate these 

computations. The Cray XD1 system is an ideal platform 
to experiment with FPGA acceleration of algorithms. 
High-level development tools, like ImpulseC, enables 

domain scientists to experiment with different 
optimization strategies and helps to get a feeling for the 
power of the FPGAs.  

 
We were investigating different optimizations of the 

FDTD algorithm on the Cray XD1. In a first step, we 
rescaled the units to avoid time-consuming floating-point 

operations. In a next step, we split the computation 
between the host CPU and the FPGA. However, the large 
amount of data transferred between CPU and FPGA 

resulted in poor performance. Next we put the entire 
FDTD algorithm onto the FPGA. The performance was 

about a factor of 20 slower than the pure software 
implementation, corresponding roughly to the ratio in 

clock speeds between the FPGA and the CPU. Using 

multiple processing pipelines, each working on a part of 

the computational domain, can help to overcome this 

discrepancy.  

 

Acknowledgments 

The authors would like to thank David Strenski (Cray) 

and Roy White (Xilinx) to provide access to the XD1 and 

the XST tool-suite.  

 

References 

[1] A. Taflove, S. Hageness, Computational 

Electrodynamics: The Finite-Difference Time-Domain 

Method, 3
rd

 ed., Artech House, 2005. 

[2] J. R. Cary, C. Nieter, VORPAL: A versatile plasma 

simulation code, J. Comp. Phys., 196, 448, 2004. 
[3] www.impulsec.com 
[4] www.xilinx.com 
 

About the Authors 

Peter Messmer is research scientist at Tech-X Corp., 
Boulder, CO. His is working on computational plasma 
physics and parallel computing support tools. He can be 
reached at messmer@txcorp.com. David Smithe is Senior 
Scientist at Tech-X Corp. and working in the field of 
computational electrodynamics and plasma physics. He 
can be reached at smithe@txcorp.com. Paul Schoessow 
was Senior Scientist at Tech-X Corp. where he was 
working on computational electrodynamics. He recently 
has joined Euclid Tech Labs, where he is performing 
similar research. He can be reached at pvs@ieee.org. 
Tech-X’ mailing address is Tech-X Corp. 5621 Arapahoe 
Ave., Suite A, Boulder, CO 80303, USA. Ralph Bodenner 
is Senior Engineer at Impulse Accelerated technologies, 
where he is working on the XD1 support package. He can 
be reached at Ralph.bodenner@impulsec.com. 

 
 


