

CUG 2006 Proceedings 1 of 4

FPGA-accelerated Finite-Difference Time-Domain Simulation on

the Cray XD1 using Impulse C

Peter Messmer, David Smithe, Paul Schoessow, Tech-X

Corporation, and Ralph Bodenner, Impulse Accelerated

Technologies

ABSTRACT: The Finite-Difference Time-Domain (FDTD) algorithm is a well

established tool for modelling transient electromagnetic phenomena. Using a spatially

staggered grid, the algorithm alternately advances the electric and magnetic fields,

according to Faraday's and Ampere's laws. These simulations often contain millions of

grid cells and run for thousands of time-steps, requiring highly efficient grid update

algorithms and high-performance hardware. Here we report on the implementation of

the FDTD algorithm on the application accelerator of a Cray XD1. The FPGA is

programmed using the Impulse C tool suite. These tools translate C code into VHDL and

therefore enable the domain scientist to develop FPGA-enhanced applications. Different

optimization strategies, ranging from algorithmic changes to exploitation of the high

degree of parallelism on the FPGA, will be presented.

KEYWORDS: XD1, FDTD, FPGA, ImpulseC

1. Introduction

Transient electromagnetic problems are often too
complicated to be treated analytically and numerical
simulations are required. Examples of such problems are
electromagnetic wave propagation in complex geometries
or scattering of waves off dielectric objects. The finite-

difference time-domain (FDTD) algorithm [1] is a well
established technique for treating these problems
efficiently. In addition to pure electromagnetic

propagation problems, the FDTD algorithm is at the heart

of more complex algorithms, including e.g. the particle-in-
cell (PIC) algorithm for the kinetic simulation of plasmas.
A result of such a model, computed with the

electromagnetic particle-in-cell code VORPAL [2] is
shown in Figure 1: A particle bunch propagating in a
cavity creates a wake-field in the cavity. This code uses

the FDTD algorithm to compute the evolution of the

electromagnetic field.

Finite-difference time-domain discretizes the electric and

magnetic field in the computational domain on a
rectangular mesh and updates each cell via finite

differences. Each cell of the computational grid can be
updated independently of each other and this large amount
of parallelism makes it an ideal candidate to be computed
on distributed memory systems. However, the update
operation per grid cell is complex enough that they may
benefit from additional acceleration, e.g. via the
application accelerator FPGAs on the Cray XD1.

Modelling FDTD using FPGAs has been investigated for
several years. However, these systems are usually

restricted to custom built hardware or require hardware
engineers to program them. The advent of ready-made
clusters with hardware acceleration put FPGA computing

within reach of computational physicists without access to
custom built hardware.

A second major recent development is the availability of

C-to-gates translators which enable non-experts in
hardware engineering to take advantage, or at least
explore, FPGA computing.

In this paper, we describe the different optimizations of an

FDTD implementation on the application accelerator of
the Cray XD1 using ImpulseC [3]. In the next paragraph,

CUG 2006 Proceedings 2 of 4

we will introduce the FDTD algorithm, and the ImpulseC
environment. Then we will describe the initial algorithmic
optimizations. We will then present different optimization
strategies of the FDTD algorithm on the FPGA. We will
summarize the work and draw conclusions.

2. The FDTD algorithm

The FDTD algorithm computes the update of the
electromagnetic field based on Ampere’s and Faraday’s
law,

Bc
dt

dE
×∇=

2
 and E

dt

dB
×−∇=

using finite differences. For the single component of the E
field, this reduces to

Ez

t+1
 = Ez

t
 + ((Bx

y+1
 – Bx

y
) / dy – (By

x+1
 –By

x
)/dx) dt/c

2

This operation has to be performed for the entire
computational domain. In order to obtain second order

accuracy, the E and B fields are staggered in space and
time on a so-called Yee Grid. The algorithm is well
understood and an extensive literature on it has been

published. For an introduction, see [1].

3. FPGA programming

Programming of FPGAs used to require knowledge of

hardware definition languages and was therefore limited

to hardware engineers or scientists with hardware design
knowledge. While this is still the case nowadays if
maximum performance should be obtained from FPGAs,

the growing number of tools for C-to-gates translation
makes the power of these chips accessible to more

software oriented scientists and engineers.

For this project, we used the ImpulseC systems, developed

by Impulse Accelerated Technologies. In ImpulseC, an

application is composed of multiple processes which

communicate among each other via streams, shared
memories or signals. ImpulseC is based on standard C

language, extended by an application programming

interface (API) for the communication primitives and

directives (pragmas) for fine-tuning the translation. Each

ImpulseC process is essentially a C function. Special

functions then allow the programmer to place these

functions either on the host CPU or on the FPGA. The

ImpulseC compiler then generates the appropriate code

and interfaces expressed in hardware definition language.

While the ImpulseC code is portable between different

systems, the ImpulseC compiler needs to generate system

specific code via so called platform support packages.
One of these support packages targets the Cray XD1.

4. Hardware

For this project we were using Cray Inc.’s XD1 system
pacific. The system consists of 2 XD1 chassis with a total
of 12 nodes. Each node consists of 2 dual core AMD
Opteron 275 processors, acting as four individual CPUs.
The clock speed per CPU is 2.2 GHz.

One chassis of this system is equipped with Application
Accelerators, fully user programmable Field-
Programmable Gate Arrays (FPGA). On the particular
system used for this project, the application accelerator is
a Xilinx Vitrex-II Pro FPGA, XC2VP50-7. The clock
speed of each FPGA is user selectable, with a maximum
speed of 200 MHz. This relatively low clock rate of the
FPGA requires that the main advantage of the FPGA is
exploited in order to beat the Opteron processor, running
at a 10 times higher clock rate.

5. Algorithm optimizations

Before trying to accelerate the application with
sophisticated hardware, we were looking into accelerating

the algorithm itself. By choosing the right units of B and E
and assuming uniform grid spacing, one can eliminate the
need for divisions and multiplications in the update

altogether. The update described in the previous section
then becomes

Ez
t+1

 = Ez
t
 - (Bx

y+1
 – Bx

y
 – By

x+1
 + By

x
)

The advantage of these units is that the field values can be
expressed simply as integer numbers rather than floating-

point numbers.

Figure 1: Electromagnetic field in a superconducting
cavity, computed with the FDTD code VORPAL.

CUG 2006 Proceedings 3 of 4

The overall algorithm can be expressed in pseudo code as

follows:

for t = 0, nsteps { // time stepping loop

 for x, y, z in domain { // E field update

 compute index of all contributing
 elements, e.g.
 Ez

t
. Bx

y+1
, Bx

y
 , By

x+1
, By

x

 compute curl, e.g.
 Ez

t+1
 = Ez

t
 - (Bx

y+1
 – Bx

y
 – By

x+1
 + By

x
)

 }

 for x, y, z in domain { // B field update

 compute index of all contributing elements
 compute curl, e.g.
 Bz

t+1
 = Bz

t
 - (Ex

y
 – Ex

y-1
 – Ey

x
 + Ey

x-1
)

 }
}

For all the subsequent experiments, we used a benchmark

problem of 400 x 200 x 1 cells, running for 100 time-

steps. The pure software implementation ran on this
system in about 0.2s.

6. Tool chain

In order to utilize the application accelerator, the FPGA
has to be configured with the appropriate logic. This
configuration is programmed via a configuration file (bit-
stream). In order to generate the bit-stream from an
ImpulseC source file, a variety of tools have to be run. In
this section, we briefly describe this process:

Once the algorithm has been expressed in ImpulseC, it can
be translated into a hardware definition language, in this
case VHDL, using the ImpulseC compiler CoDeveloper.
This compiler generates all the interfaces necessary to
connect the user generated logic to the logic provided by
Cray. E.g. the Rapid Array Transport is used to transmit
data between the host CPU and the FPGA. In addition, the
ImpulseC compiler generates project files for the tools
subsequently used.

This hardware-definition code is then synthesized, placed
and routed and finally converted into a bit-stream using
the ISE/XST toolchain from Xilinx [4]. The project files

generated by CoDeveloper make this step almost a black
box. However, this process is very time consuming and,
depending on the complexity of the logic, can take hours

to complete.

Once the bit-stream and the software is built, it can be
ported to the XD1 system. ImpulseC generates a Makefile,

making the build process for the software processes also a
black box.

Before the FPGA accelerated application can be executed,
the bit-stream has to be prepared by pre-pending Cray

proprietary header information. This is accomplished with

a utility program fcu, which takes the FPGA device

number and the clock speed and creates this header.

The fcu utility also offers additional functionality, like

resetting the application accelerator or loading a bit-
stream. However, the ImpulseC program generated host

application takes care of all these steps.

7. Porting to FPGA

The first step of porting the FDTD algorithm to an FPGA

was mainly to get acquainted with the overall system and

not really designed for performance. We chose to move

the computation of the curl operator from a pure software

implementation to the FPGA. We therefore created an

FPGA process which reads 9 values from an input stream

(Ex, Ey, Ez, Bx, Bx,y+1, By, By,x+1, Bz, Bz,x+1)
computes the curl and returns the updated three
components (Ex, Ey, Ez) to the host CPU. Both the time-
stepping loop as well as the loop over the entire
computational domain are still executed on the host CPU.

While the implementation was working as expected, it
turned out that it took about 250 s to execute. Putting both
the curl B and curl E computations onto the FPGA
resulted even in 450s overall execution time. This is more
than 3 orders of magnitude slower than the pure software
implementation.

8. Optimizations

One of the main advantages of high-level development of
FPGA codes is that it enables simple experiments with
different splitting between hardware and software
processes. In the following, sections we describe some
experiments we performed in order to reduce the time on
the FPGA.

8.1 Concurrent processes for curl components

The main bottle neck of the implementation presented in
the previous section is the large amount of data that has to
be transferred between the host process and the FPGA.

Instead of sending individual numbers from the processor
to the FPAG, we now investigated the possibility to
compress two 32 bit integers into a 64 bit integer. In

addition, we split the computation of the curl operator into
three individual processes, each computing only one

component of the resulting vector

The overall time for the benchmark problem was reduced
from 450 s to 230 s. While it shows that larger data
transfers are important, it still is very far from the CPU

based implementation.

8.2 Avoid CPU-FPGA data transfer

CUG 2006 Proceedings 4 of 4

In order to avoid the problem of the data transfer between

the host CPU and the FPGA, ImpulseC supports shared

memories. However, this feature is currently under

development and was not supported at the beginning of

this project. We therefore had to find solutions to avoid
massive transfers of data between CPU and FPGA.

One obvious choice is to put the entire FDTD algorithm

onto the FPGA. While the limited size of the available

memory reduced the feasible problem sizes, these

experiments enabled to estimate the possible performance.

Running the entire FDTD algorithm on the FPGA resulted

for the benchmark problem in an overall execution time of

5s. Experiments with pipelining the inner most loop

reduced this time down to 4.7s.

8.3 Future optimizations
An optimization that was not completely finished at the
time of this writing is to exploit system level parallelism:
On distributed memory machines, FDTD is usually
parallelized via domain decomposition. The update of a
cell only depends on nearest neighbours, making the
communication relatively simple.

The test-problem for the FDTD algorithm on FPGA
required only about 8% of the available logic. We
therefore ran multiple FDTD processes concurrently, each
working on a separate sub-domain. While we did not yet
implement the communication between the domain
boundaries, the resulting speedup is encouraging.

9. Conclusion

Many problems in computational electrodynamics can
benefit from accelerated FDTD computation. One
possible approach to accelerate these computations is to
use reconfigurable coprocessors based on Field
Programmable Gate Arrays to accelerate these

computations. The Cray XD1 system is an ideal platform
to experiment with FPGA acceleration of algorithms.
High-level development tools, like ImpulseC, enables

domain scientists to experiment with different
optimization strategies and helps to get a feeling for the
power of the FPGAs.

We were investigating different optimizations of the

FDTD algorithm on the Cray XD1. In a first step, we
rescaled the units to avoid time-consuming floating-point

operations. In a next step, we split the computation
between the host CPU and the FPGA. However, the large
amount of data transferred between CPU and FPGA

resulted in poor performance. Next we put the entire
FDTD algorithm onto the FPGA. The performance was

about a factor of 20 slower than the pure software
implementation, corresponding roughly to the ratio in

clock speeds between the FPGA and the CPU. Using

multiple processing pipelines, each working on a part of

the computational domain, can help to overcome this

discrepancy.

Acknowledgments

The authors would like to thank David Strenski (Cray)

and Roy White (Xilinx) to provide access to the XD1 and

the XST tool-suite.

References

[1] A. Taflove, S. Hageness, Computational

Electrodynamics: The Finite-Difference Time-Domain

Method, 3
rd

 ed., Artech House, 2005.

[2] J. R. Cary, C. Nieter, VORPAL: A versatile plasma

simulation code, J. Comp. Phys., 196, 448, 2004.
[3] www.impulsec.com
[4] www.xilinx.com

About the Authors

Peter Messmer is research scientist at Tech-X Corp.,
Boulder, CO. His is working on computational plasma
physics and parallel computing support tools. He can be
reached at messmer@txcorp.com. David Smithe is Senior
Scientist at Tech-X Corp. and working in the field of
computational electrodynamics and plasma physics. He
can be reached at smithe@txcorp.com. Paul Schoessow
was Senior Scientist at Tech-X Corp. where he was
working on computational electrodynamics. He recently
has joined Euclid Tech Labs, where he is performing
similar research. He can be reached at pvs@ieee.org.
Tech-X’ mailing address is Tech-X Corp. 5621 Arapahoe
Ave., Suite A, Boulder, CO 80303, USA. Ralph Bodenner
is Senior Engineer at Impulse Accelerated technologies,
where he is working on the XD1 support package. He can
be reached at Ralph.bodenner@impulsec.com.

