
FPGA accelerated FDTD Simulation
on the Cray XD1 using Impulse C

CUG 2006, Lugano, Switzerland
May 9, 2006

Peter Messmer*, David Smithe, Paul Schoessow

Tech-X Corporation

messmer@txcorp.com

Ralph Bodenner

Impulse Accelerated Technologies

Tech-X Corporation2

Outline

• The algorithm

– FDTD and its applications

• The tools used

– XD1 system overview, FPGA

– Impulse C

• Porting FDTD to FPGA

– Pure software based optimizations

– Initial port to Impulse C/FPGA

– Further optimizations

• Summary and Conclusion

Tech-X Corporation3

Complex electromagnetic phenomena require
simulations

www.txcorp.com/products/VORPAL

Particle beam in a cavity, simulated by

the Plasma Simulation Framework

VORPAL. At the heart of this code sits

an implementation of the FDTD

algorithm.

Tech-X Corporation4

Time-dependent solution of

Maxwell’s equations
• Initial condition:

– Solution to Poisson’s equation known:

– No magnetic monopoles:

• Evolve dynamic Maxwell’s equations in time:

• Current satisfies continuity equation:

For this project: no charges/currents!

JB
E

−×∇=
∂

∂

t

E
B

×∇−=
∂

∂
2

1

ct

ρ−=∇E

0=∇B

t∂

∂
−=⋅∇

ρ
J

Tech-X Corporation5

FDTD / Yee Grid

• Discretization of Maxwell’s equations

– Finite differences for curl and time derivative, e.g.

Bz(t+1) = Bz(t) + dt ((Ex(y+1) – Ex) / dy – (Ey(x+1) – Ey) / dx)

• Yee grid
– Arrangement of EM field components

– Spatially centred finite differences

• Second order in space

• Leap-frog of Ampere/Faraday
• Second order in time

Ex Ex

Ex

Ey Ey

Bz

Tech-X Corporation6

FPGAs have potential to accelerate FDTD

• Large simulations require >109 cells per processor and
thousands of time-steps

• Straight forward CPU based implementation:

~ 5.106 3D cell updates / second

⇒ need to accelerate cell updates

• High degree of parallelism in FDTD

– Cell half-updates independent of each other

• Various groups: FDTD on FPGA with custom made pipelines

– E.g. Culley et al. U. Cincinnati

• Today: High-level tools available for non-FPGA experts

– FDTD simple enough to experiment with FPGAs and new tools

• Have access to an FPGA enhanced system

– Cray XD1

Tech-X Corporation7

Cray XD1 System

• Cluster of XD1 chassis
– 2 XD1 chassis

• 12 nodes total

• 2 x 2.2 GHz Dual core

AMD Opterons

– 1 Chassis equipped with Application Accelerator
• User programmable FPGA

– Field-programmable Gate Array, ‘configurable matrix of logic’
– ‘Programmable matrix of logic hardware’
– Xilinx Vitrex-II Pro FPGA

• Act as a configurable (co-)processor

• FPGA runs at 200MHz (!)
– Have to exploit parallelism to compete with 2.2 GHz Opteron.

– “Need more than factor 10 in parallelism”

Tech-X Corporation8

FPGA programming using Impulse C

• C-to-hardware/HDL translator

– Programming model: Application = set of processes

– Processes communicate via streams, shared memories or

signals

– Processes located on either FPGA or CPU

• Impulse C dialect

– API for streams, shared memory and signals

– Functions for specifying location of processes (CPU or FPGA)

– Directives for tuning (pipelines, loop unrolling, timing)

Tech-X Corporation9

FPGA programming using Impulse C (cont.)

• Support for Cray XD1

– Impulse C communication primitives on top of RapidArray
Transport IP

– Generates all necessary hardware and software interfaces

– Generates makefiles and Xilinx ISE / XST project files

• Current limitations

– XD1 support currently in beta stage

• Only streams supported, no shared memory

– Only limited support for floating-point IP

• At time of project start not available for Cray XD1

• For more information: www.impulsec.com

Pellerin and Thibault, Practical FPGA Programming in C, Prentice Hall, 2005.

Tech-X Corporation10

The long road from source code to an

FPGA enabled application

Create/port source using ImpulseC
– Both for hardware and software processes
– Simulate in pure software

Create VHDL or Verilog from C code
– Simulate the VHDL code

Export application
– VHDL, interfaces, source for software processes
– makefiles/project files

Translate VHDL into a bitstream
– Compile VHDL
– Place&Route

Transfer bitstream and software process source to XD1

Append header to bitstream using Cray tools

Build CPU application

Execute CPU application
– Impulse C wrapper loads bitstream to FPGA

Tech-X Corporation11

Initial optimization: Rescaling

• At start of project, ImpulseC limited to fix-point arithmetic

– Floating point support currently being implemented

• Rescaling of variables

– E -> E dx, B-> B dx/dt

– Avoids most divisions and multiplications

– Only integers needed for variables

• Update is reduced to

Ez += (Bx[y+1] – Bx – By[x+1] – By) / cdx

… similar for Ex, Ey, Bx, By, Bz

• Benchmark problem: 400 x 200 x 1 cells, 100 timesteps

• Pure software implementation: 0.22s (> 38 G Cells/s)

Tech-X Corporation12

Software implementation of FDTD algorithm

Loop over 3D grid

Index computation

Curl computation

for(int z = 0; z < nz; z++)

for(int y = 0; y < ny; y++)

for(int x = 0; x < nx; x++){

int ind = x + y * nx + z * nx * ny;

int ind_px = (x + 1) % nx + y * nx + z * nx * ny;

int ind_py = x + ((y + 1) % ny) * nx + z * nx * ny;

int ind_pz = x + y*nx + ((z + 1) % nz) * nx * ny;

ex[ind] += (bz[ind_py] - bz[ind] - by[ind_pz] + by[ind]) / cdx4;

ey[ind] += (bx[ind_pz] - bx[ind] - bz[ind_px] + bz[ind]) / cdx4;

ez[ind] += (by[ind_px] - by[ind] - bx[ind_py] + bx[ind]) / cdx4;

}

… and similar for the B-field update.

Tech-X Corporation13

Initial FPGA implementation:

Put curl computation onto FPGA

E field update

B field update

CPU FPGA

• Receive 9 data elements

• Compute curl

• Return 3 data elements

• Receive 9 data elements

• Compute curl

• Return 3 data elements

Curl E only : 283 s

Curl E and Curl B : 445 s

(FPGA running at 90 MHz)• Send 9 values

• Receive 3 values

Tech-X Corporation14

Some source code…

void CurlProcess(co_stream In, co_stream Out) {

co_int32 bx, bx2, by, by2, bz, bz2;

….

do {

co_stream_open(In, O_RDONLY, INT_TYPE(32));

co_stream_open(Out, O_WRONLY, INT_TYPE(32));

while(!co_stream_eos(In)) {

#pragma CO pipeline

co_stream_read(In, &bx, sizeof(co_int32)); bx2 = bx >> 2;

co_stream_read(In, &by, sizeof(co_int32)); by2 = by >> 2;

….

ex = bz_py2 - bz2 - by_pz2 + by2;

co_stream_write(Out, &ex, sizeof(co_int32));

….

}

co_stream_close(Out);

co_stream_close(In);

IF_SIM(break;) // Only run once during desktop simulation

} while (1);

}

Regular C function,

streams as parameters

Opening streams

Directives for tuning

Streams IO

Macros for simulation

Tech-X Corporation15

Curl on FPGA: Works, but..

• … low performance

• Possible causes

– Large amount of data transfer CPU <-> FPGA

• 32 bit transfers

– Very little computation on FPGA

• No pipelining, no unrolling, large sequential part

Curl on FPGA : 445 s

(CPU only: 0.2s)

Tech-X Corporation16

• Three components of curl can be computed in parallel

• Each component a separate, identical process

• Out += (In1 – In2 – In3 + In4)

• Pack 2 x 32 bit words into 64 bit word

Going parallel and optimizing streams

CPU
FPGA

• Receive 5 values

• Compute curl

• Return Result
3 curl processes : 243 s

(FPGA running at 140 MHz)

Tech-X Corporation17

Fighting the data transfer bottle neck

• Communication bottle neck too big!

– No computation, just data ping-pong: 241 s

– Plain Opteron implementation: < 0.2s!

• Avoid problem by putting entire application onto FPGA

• ‘Right way’ via shared memory, once it’s available

• Grid size limited to FPGA BRAM

FPGACPU

Start Process

Stop Process

FPGA only : 5.9 s

(FPGA running at 140 MHz)

Tech-X Corporation18

Full FDTD on FPGA

• Initial implementation : 5.9 s
• Pipelining of curl computation : 5.1 s
• Unrolling curl : 5.0s

• Only one memory access per clock cycle
– Splitting E, B array -> Ex, Ey, Ez, Bx, By, Bz array

• Array splitting : 4.7s

• Still factor 10 away from plain software implementation
• Currently main loop pipeline 10 cycles per result, 2 cycles per

curl

• Further array splitting (odd/even split)
• System level parallelism

Tech-X Corporation19

Exploiting System Level Parallelism

• Only about 8 % of FPGA real estate used

• Multiple FDTD pipelines in parallel

• Domain decomposition

FPGA
CPU

Start Process

Stop Process

Preliminary results:

1 pipeline : 4.7 s

2 pipelines : 2.3 s

4 pipelines : 1.0 s

(FPGA running at 140 MHz)

Tech-X Corporation20

Optimizations Summary

1

10

100

1000

10000
C

u
rl

 o
n

F
P

G
A

,
3

2
b

it
 t

ra
n

s
fe

r
C

u
rl

 o
n

F
P

G
A

,
6

4
b

it
 t

ra
n

s
fe

r
C

u
rl

 o
n

F
P

G
A

,
1

p
ro

c
e

s
s

M
a

in
 l

o
o

p
in

 H
W

M
a

in
 l

o
o

p
in

 H
W

,
1

p
ro

c
e

s
s

S
in

g
le

c
o

m
p

o
n

e
n

t
fi

e
ld

S
in

g
le

c
o

m
p

o
n

e
n

t
fi

e
ld

T
w

o
p

ip
e

li
n

e
s

F
o

u
r

p
ip

e
li

n
e

s

Optimization

T
im

e
 F

P
G

A
/C

P
U Main loop on CPU

Main loop on FPGA

Multiple pipelines

Tech-X Corporation21

Conclusion and Summary
• Optimized an FDTD implementation on AMD Opteron

• Ported it to FPGA

• Experimented with various optimizations

– Avoiding bus bottleneck, pipelining

– Multiple concurrent processes, Domain decomposition

• Not quite at the performance of a single CPU, but getting closer

– Potential is there!

• High-Level tools enable domain scientists to experiment with FPGA

• Cray XD1 system provides ideal platform for these experiments

• FPGA FDTD optimization

– Getting speedup by combining domain decomposition and pipeline optimization

We would like to thank David Strenski (Cray) and Roy White (Xilinx) for providing access
to various tools and resources. Access to the Cray XD1 system was provided through

the Cray Marketing Partner Network.

