

CUG 2006 Proceedings 1 of 7

Optimizing Application Performance on Cray Systems with
PGI Compilers and Tools

Douglas Miles, Brent Leback and David Norton
The Portland Group (PGI)

ABSTRACT: PGI Fortran, C and C++ compilers and tools are available on most
Cray XT3 and Cray XD1 systems. Optimizing performance of the AMD Opteron
processors in these systems often depends on maximizing SSE vectorization, ensuring
alignment of vectors, and minimizing the number of cycles the processors are stalled
waiting on data from main memory. The PGI compilers support a number of directives
and options that allow the programmer to control and guide optimizations including
vectorization, parallelization, function inlining, memory prefetching, interprocedural
optimization, and others. In this paper we provide detailed examples of the use of several
of these features as a means for extracting maximum single-node performance from Cray
systems using PGI compilers and tools.

KEYWORDS: Compiler, Fortran, C, C++, XT3, XD1, AMD Opteron, Optimization,
Vectorization, Parallelization

1. Introduction
The Portland Group, Inc (PGI) develops and supports

Fortran, C and C++ compilers for AMD Opteron
(AMD64) processor-based CRAY XT3 and CRAY XD1
systems. These compilers generate highly optimized
code for AMD64 processors, and are interoperable with
the TotalView debugger and CrayPat performance
analysis tools from Cray. We focus here on the
optimization capabilities of the PGI compilers, and in
particular on options and directives available to improve
performance of PGI-compiled applications.

The PGI compilers implement several high-level

optimizations including loop unrolling, loop
vectorization, data prefetching, alternate code generation,
interprocedural analysis and optimization, function
inlining, loop parallelization and profile-feedback. In
general, optimization involves using transformations and
code replacements that are independent of the particular
target, as well as transformations that take advantage of
the AMD64 architecture, instruction set and registers.

Examples of target-independent transformations

include loop interchange to maximize stride 1 accesses,

loop unrolling to mitigate the cost of branch penalties,
interprocedural constant propagation to enable various
other optimizations, and function inlining to minimize
overhead inherent in procedure calls. Examples of target-
dependent transformations include vectorization to enable
generation of AMD64 packed streaming SIMD
extensions (SSE) instructions, data prefetching to mitigate
the effects of memory latency, and instruction selection
and scheduling to maximize efficiency of the AMD64
microarchitecture.

In the sections that follow, we will discuss the

various categories of optimizations, and how the
application programmer can affect or improve how and
when these optimizations are performed.

2. SSE Vectorization
Vectorization is perhaps the single most important

compiler optimization for AMD64 processors. It is used
to identify and transform loops to take advantage of
packed SSE instructions, which process 128 bits of data
per instruction – either two 64-bit operands or four 32-bit
operands. SSE vectorization can result in speed-ups of
over a factor of two on loops that operate on 32-bit data,
and large percentage speed-ups on loops that operate on

CUG 2006 Proceedings 2 of 7

64-bit data. For floating-point computationally intensive
loop-based applications, it is not uncommon to see 20 % -
30% speed-ups of the entire application on an AMD64
processor if most or all of the time-consuming loops can
be vectorized.

To enable vectorization with any of the PGI

compilers, use the –fastsse compiler option:

% pgf95 –fastsse -Minfo vadd.f
loop:
 18, Generating vector sse code for inner loop
 Generated 3 prefetch instructions for
 this loop

Note the use of –Minfo, which causes the compiler

to emit messages detailing how loops are optimized. The
name of the function being compiled is listed followed by
a colon. The line numbers of optimized loops and any
relevant messages are emitted slightly indented under the
function name. This makes it easy to correlate
optimizations with the loops in your original Fortran, C or
C++ source code. During the the optimization phase, it is
a good idea to use –Minfo for all of your compilations.

If you identify a time-intensive loop in your

application, examine the –Minfo output to determine if
the loop is vectorized. If not, try using –Mneginfo.
Consider the following C code fragment:

void func4(float *u1, float *u2, float *u3, ...
...
for (i=-NE+1,p1=u2-ny,p2=u2+ny; i<nx+NE-1; i++)
 u3[i] += c1z*(p1[i] + p2[i]);
for (i=-NE+1; i<nx+NE-1; i++) {
 float vdt = v[i]*dt;
 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
}

Compiled with pgcc –fastsse –Minfo –Mneginfo, the

following messages are emitted:

221, Loop unrolled 4 times
221, Loop not vectorized due to data dependency
223, Loop not vectorized due to data dependency

The first loop at line 221 is unrolled but not

vectorized. The second loop is not optimized at all.
Why not? The compiler cannot determine that the
memory regions pointed to by u1, u2 and u3 do not
overlap. However, the programmer may know that these
pointer-based arrays do not overlap. If so, the –Msafeptr
option can provide a hint to the compiler to disambiguate
the pointers passed in as arguments:

221, Generated vector sse code for inner loop
 Generated 3 prefetch instructions for
 this loop
223, Unrolled inner loop 4 times

The first loop is now vectorized. Note that
–Msafeptr specifies all pointer-based arrays in a file are
safe for optimization. See the PGI User’s Guide for a
detailed description of how to restrict optimization to
certain types of pointers, or to give hints to the compiler
at the loop level by inserting safeptr pragmas into your
source code. In practice, pointers which cannot be
statically disambiguated by a compiler are the single most
limiting factor in vectorization of C and C++ applications.

Note that the second loop is still not vectorized. In

the ANSI C language, by default all constants like the 2.
in the second loop, are default double. The mixed
precision computations in this loop prevent vectorization.
If the loop is re-compiled adding the –Mfcon option,
which instructs the compiler to treat constants as default
float, we see the following:

221, Generated vector sse code for inner loop
 Generated 3 prefetch instructions for this
 loop
223, Generated vector sse code for inner loop
 Generated 4 prefetch instructions for
 this loop

 Both loops are now vectorized. This example is

based on a real end-user code fragment sent in with a
technical support inquiry to the PGI applications group.
In this case, vectorization resulted in a speed-up of nearly
3X for the most compute-intensive function in the user’s
application.

There are many common barriers to vectorization.

Loops with function calls are not vectorized; try
–Mipa=inline or –Minline to inline the function. Loops
with a large number of statements might fail the internal
heuristic for profitability of vectorization; try overriding
the heuristic using –Mvect=nosizelimit (time your code
to make sure it’s faster!). The loop may have too few
iterations for vectorization to be profitable; in this case
you might want to unroll the loop completely using a
directive or pragma to eliminate the loop altogether.

The most common barrier to maximum efficiency of

vectorized loops is unaligned data accesses. Loops
vectorized using SSE instructions are more efficient when
processing vectors aligned to a cache-line boundary. You
can force unconstrained data objects of size 16 bytes or
greater to be cache-aligned by compiling with the
–Mcache_align switch, which is always default with
–fastsse. An unconstrained data object is a data object
that is not a common block member and not a member of
an aggregate data structure. In order for stack-based local
variables to be properly aligned, the main program or
function must be compiled with –Mcache_align, so it’s
important to always compile your main program with
–fastsse even if it does not contain vectorizable loops. It
is important to note that the –Mcache_align switch has no

CUG 2006 Proceedings 3 of 7

effect on the alignment of Fortran allocatable or
automatic arrays, and that if you have arrays that are
constrained, for example vectors that are members of
Fortran common blocks, you must specifically pad your
data structures to ensure proper cache alignment;
–Mcache_align causes only the beginning address of each
common block to be cache-aligned. Even when adhering
to all of these guidelines, it is of course common for real
codes to operate on vectors that begin somewhere in the
middle of a data structure, which means the head of the
vector may start on an unaligned data address. In these
cases, you either must rely on the compiler to maximize
alignment through iteration peeling and alternate code
generation, or take significant measures to restructure
your code in a way that guarantees vectors are aligned in
important loops.

By using the information emitted from the –Minfo

and –Mneginfo messages, studying loops in your code,
and investing a little time to understand the available
compiler options that affect vectorization, you can often
achieve significant speed-ups in your overall application
with a relatively small time investment.

3. Interprocedural Analysis (IPA)
Another important capability of the PGI compilers is

interprocedural analysis and optimization (IPA), enabled
using –Mipa. The –Mipa option must be used at both
compile time and link time to enable interprocedural
optimization. Optimizations performed by IPA include
interprocedural constant propagation, argument removal,
pointer disambiguation, alignment detection, alignment
propagation, global variable modification and reference
detection, F90 shape propagation, function inlining,
vestigial function removal, and library optimization. In
addition, information gathered through IPA enables more
aggressive and precise optimization by other phases of the
compiler, including the global optimizer, vectorizer,
parallelizer, loop unroller and code generator.

The WUPWISE benchmark provides an example of

the type of optimizations performed and enabled by IPA.
WUPWISE is a small benchmark, about 2200 lines of
FORTRAN 77. It is intended to be representative of
computations performed by Quantum ChromoDynamics
applications. The following table shows the performance
of WUPWISE on an AMD64 processor using 3 different
combinations of PGI compiler options:

PGF95 Compiler Options

Execution
Time in
Seconds

–fastsse 156.49
–fastsse –Mipa=fast 121.65
–fastsse –Mipa=fast,inline 91.72

The large performance improvement obtained by

adding –Mipa=fast is enabled by interprocedural
constant propagation. WUPWISE spends a great deal of
time performing matrix multiplication on very small 4x3
matrices of type COMPLEX*16. Without IPA enabled, the
compiler has no way to determine the size of these
matrices, and vectorizes the loops involved in these
computations. The overhead of vectorization outweighs
the benefits in this case. With IPA enabled, the sizes of
these matrices are determined at compile time and
propagated throughout the program. As a result, the
compiler chooses to completely unroll the matrix
multiplication loops, eliminating the loops altogether
rather than vectorizing them.

The additional performance improvement obtained

with –Mipa=fast,inline is achieved by inlining the matrix
multiplication subroutine calls and all function calls
within them. The result is highly optimized straightline
code with no branches or loops required to perform the
4x3 matrix multiplications.

The speed-ups achieved here are obviously very

good, and display the potential gains from using IPA.
However, in our experience the performance gains for
Fortran are more modest, usually averaging 5% - 10% on
most codes. For C and C++ applications, automatic
pointer disambiguation and the importance of function
inlining often lead to more dramatic average speed-ups
using IPA.

There are two IPA opimizations that are not

performed as part of –Mipa=fast, and which can be very
useful. –Mipa=safe:<name> declares that the named
function or all functions in the named library are safe. A
safe procedure does not call back into the known
procedures and does not change any known global
variables. Without –Mipa=safe, any unknown procedures
called by or from a given procedure will inhibit IPA
optimization of that procedure. In particular, it can be
useful to declare certain pre-compiled libraries as safe to
ensure they do not inhibit IPA optimization.
–Mipa=safeall declares that all unknown procedures are
safe; obviously this option must be used with caution.

The second useful option is –Mipa=libopt, which

allows IPA optimization of routines from pre-compiled
static binary libraries. If such a library is created by
compiling some or all of the functions in the library with
IPA enabled, the IPA information is preserved as part of
the object file included in the library. If –Mipa=libopt is
specified when linking an application that uses the
library, the PGI compilers will include functions from the
library in the list of candidates for IPA optimization and
will potentially recompile them from an intermediate

CUG 2006 Proceedings 4 of 7

representation preserved in the object file. This allows
optimizations such as constant propagation into pre-
compiled binary libraries, which as we’ve seen previously
can be very effective. If the –Mipa=libinline option is
specified, the PGI compilers will attempt to inline
functions from pre-compiled static binary libraries built
using IPA.

4. Function Inlining
The WUPWISE example in section 3,

Interprocedural Analysis, showed the speed-ups that can
occur with IPA-driven function inlining. In addition, the
–Minline option can be used to specify precisely which
routines, or classes of routines, should be inlined (or not).
Following is the synopsis of the –Minline option:

-Minline[=lib:<name> | <func> | except:<func> |
 name:<func> | size:<n> |levels:<n>]

where the sub-options are defined as follows:

lib:<inlib> Inline extracted functions
 from inlib

<func> Inline function func

except:<func> Do not inline function func

name:<func> Inline function func

size:<n> Inline only functions smaller
 than n statements

levels:<n> Inline n levels of functions

In the description above, inlib is an inline library

created using the –Mextract option, described in detail in
the PGI User’s Guide. Using the other sub-options, it is
possible to specify that certain functions should be
inlined, exclude certain functions from being inlined,
limit inlining to functions smaller than a specified size
determined (approximately) by statement count, or limit
inlining to a specified number of levels of function call
depth. The default, if no sub-options are specified, is to
inline all eligible functions up to 3 levels deep.

Note that there are several restrictions on the type of

functions that are eligible for inlining, including Fortran
main or BLOCK DATA programs, Fortran subprograms
with FORMAT statements, or programs with multiple
entries. In addition, Fortran functions or subroutines are
not inlined into statement functions, or if common block
mismatches occur between caller and callee, or if
argument mismatches occur, or if a name clash between a
function and a local variable occurs.

Restrictions on inlining of C and C++ functions

include functions containing switch statements, functions
which reference a static variable whose definition is
nested within the function, and functions which accept a

variable number of arguments. Certain C and C++
functions can only be inlined into the file that contains
their definition: static functions, functions which call a
static function, and functions which reference a static
variable.

In general, it is easiest to use the completely

automatic and global cross-file inlining optimizations
performed by –Mipa=inline. However, for some
applications the –Minline option enables precisely
targeted function inlining which can be beneficial. In the
absence of using –Mipa=inline, it is recommended that
the option –Minline=levels:10 be used by default for best
performance of C++ programs.

5. Parallelization for Multi-core Processors
The PGI Fortran, C and C++ compilers all have

extensive capabilities in generation of parallel code for
multi-core processors. The –Mconcur option instructs
the compilers to parallelize loops automatically according
to default heuristics. The –mp option instructs the
compilers to interpret directives and pragmas and
parallelize applications according to the OpenMP 2.5
parallel programming standard. It is perfectly safe to add
OpenMP directives or pragmas and function calls to your
application and compile without –mp. The OpenMP
directives and pragmas will be ignored and the OpenMP
function calls resolved for serial execution. This allows
incremental parallelization of an application using
OpenMP without perturbing ongoing development or use
of the serial version. In addition, it is possible to use
–Mconcur and –mp together, leveraging both automatic
and user-directed parallelization.

Both –mp and –Mconcur must be used at both

compile time and link time to successfully build a parallel
executable. As with the optimizations discussed
previously, the –Minfo and –Mneginfo options can be
used to see which loops are parallelized (and how), and
which loops failed to parallelize (and why).

With –Mconcur, a loop is considered parallelizable if

it doesn't contain any cross-iteration data dependencies.
Cross-iteration dependencies from reductions and
expandable scalars are recognized and handled, enabling
more loops to be parallelized. In general, loops with calls
are not parallelized due to unknown side effects. Also,
loops with low trip counts are not parallelized since the
overhead in setting up and starting a parallel loop will
likely outweigh the potential benefits. In addition, the
default is to not parallelize innermost loops, since these
often by definition are vectorizable using SSE
instructions and it is seldom profitable to both vectorize
and parallelize the same loop, especially on multi-core
processors. Compiler switches and directives are

CUG 2006 Proceedings 5 of 7

available to let you override most of these restrictions on
auto-parallelization. The –Mconcur=cncall option, and
the associated directive/pragma, enable parallelization of
loops with procedure calls. The –Mconcur=innermost
option forces the compiler to parallelize innermost loops.

Auto-parallelization can provide significant

performance improvements on applications that are
dominated by computationally intensive loops with a lot
of data re-use. Consider the following loop from the
MGRID benchmark:

 DO 10 I3=2,N-1
 DO 10 I2=2,N-1
 DO 10 I1=2,N-1
10 R(I1,I2,I3)=V(I1,I2,I3)
 & -A(0)*(U(I1,I2,I3))
 & -A(1)*(U(I1-1,I2,I3)+U(I1+1,I2,I3)
 & +U(I1,I2-1,I3)+U(I1,I2+1,I3)
 & +U(I1,I2,I3-1)+U(I1,I2,I3+1))
 & -A(2)*(U(I1-1,I2-1,I3)+U(I1+1,I2-1,I3)
 & +U(I1-1,I2+1,I3)+U(I1+1,I2+1,I3)
 & +U(I1,I2-1,I3-1)+U(I1,I2+1,I3-1)
 & +U(I1,I2-1,I3+1)+U(I1,I2+1,I3+1)
 & +U(I1-1,I2,I3-1)+U(I1-1,I2,I3+1)
 & +U(I1+1,I2,I3-1)+U(I1+1,I2,I3+1))
 & -A(3)*(U(I1-1,I2-1,I3-1)+U(I1+1,I2-1,I3-1)
 & +U(I1-1,I2+1,I3-1)+U(I1+1,I2+1,I3-1)
 & +U(I1-1,I2-1,I3+1)+U(I1+1,I2-1,I3+1)
 & +U(I1-1,I2+1,I3+1)+U(I1+1,I2+1,I3+1))

This is a typical grid routine that performs a stencil

operation as it loops over a 3D space. Compiling the
function containing this loop nest using –Mconcur results
in the following:

resid:
 ...
 189, Parallel code for non-innermost loop
 activated if loop count >= 33; block
 distribution
 191, 4 loop-carried redundant expressions
 removed with 12 operations and 16
 arrays
 Generated vector sse code for inner loop
 Generated 8 prefetch instructions for
 this loop
 Generated vector sse code for inner loop
 Generated 8 prefetch instructions for
 this loop
 ...

There is a lot going on here, just for the outer loop.

First, note that the compiler parallelizes the outer loop
rather than one of the inner loops. The default heuristics
are designed to parallelize outermost loops and vectorize
innermost loops. Also, the compiler has generated
alternate versions of the outermost loop at line 189; a
serial version is executed if a dynamic check shows the
iteration count is less than 33, and the parallel version is
executed if the iteration count is greater than or equal to
33. This threshold for parallel execution (and a little bit
of runtime overhead) can be eliminated by compiling with
–Mconcur=noaltcode. The threshold can be set explicitly

on a loop-by-loop basis using directives or pragmas.
Finally, the outer loop iterations are allocated in block
fashion (rather than round-robin fashion) to the available
cores. By default, execution uses only one core; to
enable parallel execution, the NCPUS environment
variable must be set to the desired number of cores. In
future releases of the PGI compilers, it is likely that the
number of cores will be dynamically determined at
execution time, and multiple cores will be used by
default.

In the innermost loop, the compiler has performed

loop-carried redundancy elimination to reduce both the
number of operations and the number of memory
references. Both versions of the innermost loop (the
version in the serial outermost loop, and the version in the
parallelized outermost loop) are vectorized using SSE
instructions, and explicit prefetch instructions for 8
different array references are added for both versions.

With all of these transformations in place, the

MGRID benchmark shows an overall speed-up on a dual-
core AMD64 processor of about 40% (wall-clock time)
over the time required on a single core of the same
processor running a true serial version of the benchmark.
Unfortunately, MGRID is the exception rather than the
rule when it comes to current capabilities in auto-
parallelization for multi-core. It is more common with
current-generation PGI compilers to see 5% - 15% speed-
ups on parallelizable applications using –Mconcur.

In general, loops that are not memory bound, loops

or routines that benefit from larger on-chip cache, and
loops that are very compute intensive (call transcendental
functions, are dominated by floating-point operations,
etc) are good candidates for automatic parallelization.
You can sometimes improve the effectiveness of auto-
parallelization significantly by using it on a carefully
targeted set of loops or functions, rather than enabling it
globally. PGI is exploring optimizations to reduce
parallel startup overhead and broaden the class of loops
and code regions that can be parallelized automatically on
current and future generation multi-core processors.

OpenMP is widely used on SMP systems like the

Cray XD1 to enable parallel execution. As opposed to
automatic parallelization, which is intended to provide a
quick boost in performance on multi-core processors on
certain classes of applications, OpenMP enables very
sophisticated parallelization from the loop level up to and
including parallelization of an entire application. The
PGI Fortran, C and C++ compilers fully support OpenMP
2.5, as documented in detail in the PGI User’s Guide.
Rather than attempt to explain all of these capabilities
here, we leave it as an exercise to the reader to explore
both the PGI documentation and the OpenMP 2.5
standard for a more thorough understanding of how this

CUG 2006 Proceedings 6 of 7

programming model can be used on Cray XD1 systems
and future-generation Cray XT3 systems incorporating
multi-core processors.

6. Miscellaneous Optimizations
There are a number of miscellaneous PGI compiler

options and directives that can be useful in optimizing
applications. Some of these have a large impact on some
applications, and no (or even negative) impact on others.
We describe these only briefly here, with the expectation
that a concise list can serve as a launching point into more
detailed descriptions provided in the PGI User’s Guide.

The –Mfprelaxed option instructs the compiler to

perform 32-bit floating-point square root, reciprocal
square root, and divide operations using reduced-
precision approximations plus Newton’s iterations. This
optimization is performed by default by a number of x86
compilers. PGI has chosen not to enable it by default as
the error introduced versus full 32-bit precision
computations can be up to 4 units in the least precision
(ULPs) on some operations. However, we are aware of
one production oil and gas application that achieves an
overall speed-up of over 20% with acceptable precision
when this option is used. We have observed similar
speed-ups on certain industry-standard benchmark
applications.

If your application uses LAPACK, use the –lacml

link-time option to ensure you link the AMD Core Math
Library (ACML). The ACML includes hand-tuned
versions of most LAPACK kernels, ensuring near-optimal
performance on these commonly-used library calls. In
addition to LAPACK, the ACML includes a large and
growing body of routines targeted at applications that use
FFTs and other common compute intensive algorithms.

The PGI compilers automatically insert explicit

prefetch instructions in many vectorized loops. The
fetch-ahead distance, maximum number of prefetch
instructions per loop, and even the type of prefetch
instruction generated can all be controlled at the file level
using –Mprefetch. For example, –Mprefetch=d:8,n:4
instructs the compiler to set the fetch-ahead distance to 8
cache lines and the maximum number of prefetch
instructions per loop to 4. It is sometimes useful to
experiment with this option, especially with the fetch-
ahead distance. The default fetch-ahead distance is 4
cache lines, which has proved most generally optimal on
a range of benchmarks and applications used internal to
PGI to validate each release of the compilers. There are
exceptions to every rule, and in some cases the overhead
of prefetching instructions outweighs the benefit of
prefetching. It is sometimes profitable to disable
prefetching entirely using –Mnoprefetch. Finally, the
directive

cmem$ prefetch <var1>[,<var2>[,…]]

can be used to explicitly fetch individual array elements
on a fine-grained loop-by-loop basis. Note that the
sentinel for this directive is cmem$, which is distinct from
the cpgi$ sentinel used for PGI optimization directives.
A similar pragma is available for C and C++. In
particular, we have seen cases where prefetching of index
vector elements using this directive, which is never
performed by default, can provide up to 10% speed-ups
on applications that make heavy use of indirection.

The current implementation of exceptions handling

in the PGC++ compiler uses setjmp/longjmp in a way that
is portable across all operating systems and target
processors. PGI is working toward a Linux and AMD64
implementation that is both highly optimized and
compliant with the vendor-neutral C++ ABI. In the
meantime, applications that do not require exceptions
support often speed up dramatically if the
––no_exceptions option is used. In addition, as noted
earlier, it is a good idea to enable either –Mipa=inline or
–Minline=levels:10 when compiling C++ applications.

The PGI compilers produce 64-bit executables by

default on AMD64 processor-based systems running a
64-bit operating system. In particular, this means that C
and C++ pointers and long data occupy 64-bits. For
some C and C++ applications, this can lead to a
significant increase in the aggregate size of the space
occupied by such data elements. In some cases, C and
C++ applications that do not require 64-bit addressing
speed up by 30% – 40% if they are compiled with
–tp k8-32. This instructs the compiler to generate a 32-
bit executable, limiting memory range to a maximum of 2
GBytes. In particular, if you are developing C or C++
applications for the Cray XT3 that use a small amount of
local memory on each node, try building with –tp k8-32
to see if it improves performance.

The aggregate option –fastsse includes a number of

options that PGI has determined provide generally
optimal scalar and SSE vector performance. The options
included in –fastsse may change from release to release
based on evolving knowledge of the target processors and
evolving optimization capabilities of the compilers. The
intent is to simplify the process of determining optimal
compile flags for any given release or target system. On
all platforms and for all releases so far, the –O2 option is
the highest level of scalar optimization enabled by default
as part of –fastsse. The PGI compilers support a –O3
option, which enables more aggressive hoisting and scalar
replacement which are not always profitable. It is
sometimes useful to use –O3 in addition to –fastsse to
enable these optimizations, but you should always time
your code with and without –O3 to ensure it’s beneficial.

CUG 2006 Proceedings 7 of 7

 Non-temporal store instructions on AMD64

processors bypass the data cache, and can result in
improved performance on memory-intensive loops that
operate over a very large index range. For example, the
STREAM benchmark requires use of non-temporal stores
to achieve maximum bandwidth on AMD64 processor-
based systems. The PGI compilers perform static
compile-time checks of index ranges where possible, and
dynamic checks at execution time. If the compiler
determines according to heuristics that a loop is likely to
benefit from non-temporal stores, it will generate an
alternate loop that is executed in such cases.

The –Mmovnt option instructs the compiler to

generate non-temporal stores and prefetch instructions,
even when it cannot determine that this is beneficial. This
option should be used carefully, as it can lead to
significant slowdowns for some loops. Of more interest
and use is the directive

cpgi$altcode [(n)] nontemporal

which allows precise control over the loop iteration count
above which non-temporal stores will be used. By
default, the compilers will use non-temporal stores if the
loop is memory-intensive and the data referenced in the
loop does not fit in the level-2 data cache.

Finally, the PGI directory structure is designed so
that multiple releases (e.g. 5.2, 6.0, 6.1) can be installed
concurrently on the same computer system. Your shell
path setting determines which release of the compilers is
invoked by default. The –V[version] option can be used
to specify which version of the PGI compilers should be
used to compile a given file, overriding the default. If
you are in an environment where PGI 6.1 is default, you
can specify that one or more files be compiled with PGI
6.0 simply by adding –V6.0 to the command-line for
those files. While many Cray sites provide the modules
command to switch back and forth between releases, the
–V option has the advantage that it can be used on a file-
by-file basis. It allows users to migrate from release-to-
release on their own schedule, and to easily test and
measure the capabilities of the PGI compiler releases
head-to-head on a file-by-file basis. Note that in some
cases there are incompatibilities that prevent mixing
object files compiled with two different releases in the
same executable.

Conclusion
PGI and Cray are working to deliver the best possible

compile-and-go performance to Cray XT3 and Cray XD1
users. In many cases, you can obtain near-optimal
compiled performance using –fastsse –Mipa=fast, or, if
inlining is required, by using –fastsse –Mipa=fast,inline.

However, there are always cases when the programmer
knows more about the application and input data than the
compiler can ever determine statically. Even profile-
feedback optimization, which we didn’t address in this
paper, is limited in the scope of what it can determine
dynamically about an application’s execution patterns or
data requirements. In such cases, the programmer can
improve performance, sometimes dramatically, by
experimenting with various options and directives to
provide the compiler with information that drives more
efficient code generation. We have outlined a number of
such options and directives which have proven useful
based on PGI’s experience with various applications and
benchmarks.

About the Authors
Douglas Miles is responsible for all business and

technical operations of The Portland Group (PGI). He
has worked in various positions over the last 20 years in
HPC applications engineering, math library development
and technical marketing at Floating Point Systems, Cray
Research Superservers, PGI and STMicroelectronics. He
can be reached by e-mail at douglas.miles@st.com. Brent
Leback is the Applications Engineering manager for PGI.
He has worked in various positions over the last 20 years
in HPC customer support, math library development,
applications engineering and consulting at QTC, Axian,
PGI and STMicroelectronics. He can be reached by
e-mail at brent.leback@st.com. David Norton works in
strategic technical marketing as a customer liaison for
PGI. He has worked in various positions over the last 20
years in application development and technical marketing
at the Naval Research Laboratory, Digital, Compaq,
Quadrics, LinuxNetworx, and PGI. He can be reached by
e-mail at norton@hpfa.com.

	1. Introduction
	2. SSE Vectorization
	3. Interprocedural Analysis (IPA)
	4. Function Inlining
	5. Parallelization for Multi-core Processors
	6. Miscellaneous Optimizations
	Conclusion
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

