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ABSTRACT: In this paper we discuss the recent procurement and deployment of one of 
the largest XD1 systems in the world. The system deployed at Rice University by the 
Computer and Information Technology Institute in collaboration with the IT Division 
represents a major addition (~3× increase in theoretical compute capacity) to the 
existing shared HPC infrastructure. The Cray XD1 will serve as the primary HPC 
resource supporting cutting edge research in engineering, the physical sciences and the 
social sciences. This paper focuses on three aspects of the system: (1) the system 
procurement process, (2) the system deployment and acceptance process, and (3) system 
operation and management.  
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1 Introduction 

Rice University is a private, coeducational institution 
of higher education located in the center of Houston, 
Texas. Rice is a member of and is located across the street 
from the Texas Medical Center, the world’s largest 
medical complex, with a total of 42 institutions treating 
over 5 million patients per year. The first president of 
Rice University, Edgar Odell Lovett, envisioned building 
an institution of higher learning that “…aspires to 
university standing of the highest grade.…For the present 
it is proposed to assign no upper limit to its educational 
endeavor.” inaugural address, 1912. 

Since 1912, Rice has grown steadily and today has 
about 540 faculty members distributed across four 
academic schools and five professional schools, 2900 
undergraduate students and 1900 graduate students. 

Rice is still a small institution; in fact, it is one of the 
smallest research universities in the US. Recognizing that 
in many cases this was a handicap, Rice created a number 
of cross disciplinary research institutes in the 1980s 

focused on areas of research strength where the faculty 
felt that Rice could be far bigger than the size would lead 
one to believe. These institutes (in IT, Energy, 
Biotechnology, Quantum Chemistry and 
Nanotechnology) were created as virtual organizations 
with a mission to serve as a catalyst stimulating far 
reaching collaborative projects supporting the ambitions 
of the faculty to reach beyond its size. The Computer and 
Information Technology Institute (CITI) was created to 
support research in High Performance Computing, 
Information Technology, and Computational Science and 
Engineering (all broadly conceived). CITI’s mission is to 
“build a community of scholars that engages in 
collaborative research and education covering virtually 
every aspect of information technology and computing.” 

1.1 Shared Computing Infrastructure 

CITI has historically been focused on supporting 
faculty members seeking to engage in basic research in 
information technology. This mission expanded in 2002 
when it became clear that our continued success in 
research would be severely limited without a focused 
effort aimed at providing large scale, campus wide, 
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computational resources to an increasing number of 
faculty members whose research was either primarily 
computational or, as was increasingly the case, a strong 
combination of computation and experimentation. At that 
time CITI, under the leadership of the Director and 
Executive Director of the institute, coordinated a team of 
faculty members that wrote a successful proposal to the 
NSF Major Resource Infrastructure (MRI) program for a 
1 TeraFLOP Intel Itanium2 shared computing resource. 
With this first grant Rice procured a 280-processor HP 
Itanium2 system. Recognizing that additional capacity 
would soon be needed, CITI coordinated a second 
proposal to the same NSF program in 2004, leading to the 
procurement of the current 3 TeraFLOP Cray XD1. 

2 Cray XD1 Site Overview 

The Cray XD1 deployed at Rice is configured in five 
racks. Three racks are populated with 28 XD1 chassis 
(12+12+4), one rack contains two 144-port switches, and 
the final rack is populated with about 20TB of usable 
storage (6TB Lustre and 15TB NFS). Additional details 
of the system can be found by visiting 
http://www.citi.rice.edu. 

The system was intentionally designed with 
additional core infrastructure that we can expand by 
adding eight more XD1 chassis without increasing port 
count on the spine switch. The fully populated 
configuration can house 48 XD1 chassis in 4 racks. This 
spare infrastructure was added to accommodate near term 
needs for capacity growth as well as to support groups 
and individuals that might have special needs but could 
still benefit from the economy of scale and leveraged 
system administration support. Growth can either be in 
the form of system-wide large scale shared investments or 
through the investments of individual research groups for 
“private partitions”, much like a condominium. 

2.1 Procurement Process 

An open invitation for vendors to present technology 
solutions that would be available and satisfy broad 
guidelines was made in the form of a written RFI (request 
for information) document. The RFI loosely specified 
technology needs, targets size and time line. A number of 
vendors opted to participate in this RFI round giving in-
depth NDA technology and roadmap presentations to the 
Rice procurement team. Based on technologies presented, 
we issued a thoroughly detailed request for proposals 
(RFP) asking vendors to prepare bids on a substantial 
system built around the AMD OpteronTM processor. 
Vendors were given a cost target and were generally 
asked to bid a solution that they felt could be deploy by 
late 2005. While dual cores were not a requirement, we 
did expect many vendors to propose them. 

The system was required to run 64-bit Linux and the 
bid required vendors to include end-to-end hardware and 
software maintenance for three years with options for 
additional years of support. Each vendor was required to 
prepare a comprehensive written bid providing extensive 
benchmarking results and addressing each of the 
specifications outlined in a meticulous Hardware and 
System Software Requirements section. 

Questions by vendors during the RFP process were 
required to be submitted in writing. Questions and 
corresponding answers (without the vendors’ name) were 
posted to a password protected shared web page that was 
accessible by all vendors. This web page was a natural 
extension of the RFP document and served as the only 
interaction between vendor and customer during the RFP 
process. This provided a very insulation 

2.2 Benchmarking 

The benchmarking requirements consisted of two 
types: (1) system components benchmarks and (2) 
customer code benchmarks. A system configured with 
proposed hardware (or largely equivalent hardware) with 
at least 36 processors was required for benchmarking. A 
detailed report of all benchmarks should, in addition to 
reporting performance results, also provide enough 
information about the system and all software for the 
results to be reproduced. We also requested that if large 
scale benchmarking could only be done on single core 
systems, then dual core performance must be predicted 
based on limited tests of early access systems, which each 
of the vendors had indicated would be accessible during 
the RFP process. Vendors were free to use their preferred 
compiler suite, but must specify versions (with any 
patches applied) and all compiler flags that were used for 
each of the benchmarks. Benchmark code changes of any 
kind were forbidden. 

2.3 System Component Benchmarks 

To illustrate the scope of the benchmarking 
requirements, we are providing a brief summary of the 
benchmarking requirements. All benchmarking results 
were required to be presented in a spreadsheet. 
Networking configurations; OS kernel versions, drivers 
and patches; and application versions were required for 
all benchmarks. 

HPC Challenge 

• Run benchmark on a 4, 16, and 32 processor 
dual socket configured system with proposed 
hardware 

• If available please report results obtained by 
running on larger systems 
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• Run MPICH, and if applicable a vendor 
preferred commercial MPI 

NPB (NAS Parallel Benchmarks) 

• Run mg, cg, and sp in the NPB 2.3 benchmarks 
suite with Class C size over the proposed 
computational network with dual socked nodes 

• Run MPICH, and if applicable a vendor 
preferred commercial MPI 

• Report results and provide graphs for the 
following cluster configurations 

• For mg 
o 4, 8, 16, 32 
o Recommended: 64, 128 

• For cg 
o 4, 8, 16, 32 
o Recommended: 64, 128 

• For sp 
o 4, 9, 16, 25, 36 
o Recommended: 49, 64, 81, 100 

If possible please report results on file system using 
Bonnie++ as follows 

• Bonnie++ (hard drive and file system 
performance) 

• Run Bonnie++ on the proposed compute node 
hardware, master node hardware, and file server 
hardware 

• Run with file sizes that are 5 times the physical 
memory 

• Report all results (throughput and CPU usage) 
• Run Bonnie++ over NFS (hard drive and file 

system performance) 
• Run Bonnie++ over NFS from proposed file 

server to two proposed clients over the proposed 
I/O network 

• NFS server is the proposed file server 
• NFS client is the proposed compute node 
• Export file system using the following options: 

o sync, rw, no_root_squash 
• Client mount options are variable with the 

following exceptions that must be set: 
o hard, intr, tcp 

• Report NFS server configuration used including 
export options 

• Report NFS client mount options used 
• Report OS version including kernel, kernel 

patches, GigE NIC drivers, version, and options 
for the NFS file server and NFS clients. 

2.4 Customer Code Benchmarks 

This section lists the vendor-specified application 
codes that we asked them to benchmark. The list consists 
of a mix of commercial (most vendors had the appropriate 

licenses), open source and internally-developed codes. 
Some of Rice codes were subject to executing an NDA. 
Additional details on problem size for each code and all 
the necessary information for running benchmarks on 
Rice code was provided to the vendors through the RFP 
web page extension. 

2.5 Scientific Code 

• Gaussian 
• Amber 8 
• NAMD 
• In-house developed CFD 
• In-house developed molecular modeling code 

2.6 Selection Process 

Although making final procurement decisions are a 
complicated and time consuming task, we guided this 
process using a small set of criteria that was supported by 
the RFP specifications. Since the main objective of the 
procurement was to support Rice’s specific computational 
needs, the first level ranking was heavily biased towards 
benchmarking performance. However, this in and of itself 
was not sufficient since benchmarking can only cover one 
subset of the codes we expected the system to support. 
Based on this complexity, we used the combination of 
criteria listed below. 

Primary criteria: 

• Benchmark performance as a predictor for 
capability 

• Peak performance (CPU count) as a measure of 
capacity 

• Cost 

Secondary criteria: 

• Partnership opportunities 
• Power and cooling requirements 
• Weight 

2.7 Procurement Decision 

A total of six vendors responded to the full RFP. 
While each system had its unique features and was 
roughly identical in peak performance (about the same 
number of compute cores), there were significant 
differences in designs and capabilities. Using the above 
criteria for selection, however, the XD1 was a clear first 
on most of the benchmarks as well as a clear winner on 
each of the secondary criteria. 

3 Deployment and Acceptance Criteria 

We formalized the acceptance of the Cray with a 
Memorandum of Understanding. This document basically 
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provided detailed definitions of several terms relating to 
the system’s state and outlined the necessary steps for the 
system to be accepted. 

The acceptance test had two phases, a Site Install 
Test and a Production Test. The purpose of the Site Install 
Test was to reproduce the performance of the system 
before & after shipping it to Rice from Cray’s facility in 
Chippawa Falls (an extensive subset of the site install test 
had to be executed while the system was in the Cray 
facility). The Site Test consisted of reproducing the pre-
shipping LINPACK results as well as a few key tests 
within the HPCC benchmarking suite. After the 
completion of the Site Test, a 60-day Performance Test 
period was began. The purpose of this period was to 
accumulate 30 consecutive days of Operational Use. We 
linked the definition of Operational Use to an 
“Effectiveness Level”. 

For the purpose of the Production Test, the 
“Effectiveness Level” of the System was computed as 
follows: 
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and )(tδ  is a binary function with the value 1 or 0. The 
function except during any time period when the 
following is true: 

• The Lustre file system is not available (this 
includes all hardware and software associated 
with the operation of the Lustre file system) 

• The NFS file system is not available and 
working (this includes all hardware and software 
associated with the operation of the NFS file 
system) 

• Both master nodes are down  
• All login (development) nodes are down 
• The job scheduler is down 
• Switch fails 
Operational Use was defined as a system 

Effectiveness Level of at least 96.5%, corresponding to 
25 hours of downtime out of 30 days. In this way, we 
hoped to avoid any ambiguities as far as whether the 
system was “up” or “down” from an operational 
viewpoint. 

3.1 Measurement & Tracking of Operational Use 

Maintaining a high (>96.5%) Operational Use was 
the main goal of the Performance Acceptance phase. We 
met daily to track the progress of the testing and to log the 
accumulated Effectiveness Level, annotating problems as 
they arose. Rice was in charge or providing compute load 
on the system during the production test. This was 

accomplished with repeated and extensive benchmark 
runs as well as a small group of heavy-hitting friendly 
users. 

4 Problem Diagnosis and Resolution 

4.1 Hardware 

We saw only a very small number of hardware 
issues, and the hardware failures we observed were 
primarily caused by an abnormal level of power 
harmonics generated due to the high load drawn from one 
single PDU to power the entire system. 

Cray engineers said: “Our experience [had learned 
this after the system had left the Cray facility] shows that 
when more than a dozen or so XD1 three phase power 
supplies are fed by a single transformer (PDU), the 
accumulated current harmonics create a voltage harmonic 
above 5%. And we've found that when ambient voltage 
harmonics exceed 5%, our power supplies begin to fail.” 

We measured and found only very limited harmonics 
on the primary power feed and hence the harmonics 
problem was in fact created by the three-phase power 
supplies putting a significant amount of harmonics back 
into the power system, in some cases causing 10-12% 
power harmonics. A single transformer (i.e., a PDU) 
cannot mitigate this harmonic load sufficiently. As a 
result, eight of the three-phase power supplies ultimately 
failed during the Acceptance Test, well above statistical 
expectations. 

Resolution Options 

Replace all power supplies with single-phase power 
supplies. However, while this would have solved the 
problem, single-phase power supplies were not as reliable 
as their three-phase supplies and the MTBF would likely 
be higher. 

The second alternative was to add two more PDUs 
and distribute the load equally across all PDUs. While 
this would not eliminate power harmonics it would reduce 
the harmonics level to an acceptable level. 

Implemented Solution 

Working with Cray Rice was able to, in a short 
amount of time, to install two PDUs and distribute the 
load across all three PDUs. This reduced the harmonics 
and solved the problem for the system at its current size. 
Future growth will, however, either require additional 
PDU capacity or use of single-phase power supplies. 
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4.2 Software 

LDAP proxy randomly crashed 

The first issue we encountered with LDAP on the 
XD1 was that Active Manager's supported LDAP 
configuration, unlike Cray’s NIS implementation, 
required an external LDAP server instead of providing 
the option of functioning as an LDAP server itself. 

Our first approach was to install SuSE's openLDAP 
RPMs and set up our server on the base node. This 
solution didn't scale well due to the way SuSE built the 
RPMs. The symptom we observed was that large jobs 
failed to start. Further investigation proved that the 
SuSE's threaded LDAP server had been built with a MAX 
FD table (maximum number of concurrent connections or 
open files) of 1024. This limit was easily overrun when 
PBS tried to lookup gecos information on large parallel 
jobs. (Cray was notified with a suggested fix) 

The second attempt to address the issue was to use an 
LDAP proxy. This limited the number of outgoing 
connections to the server as well as decreased the query 
request time. Unfortunately, while this looked like the 
perfect technical solution, the openLDAP proxy backend 
generated bugs that we traced along with Cray for weeks 
without success. At one point, we decided to compile our 
own openLDAP package, but it exhibited the same 
behavior. 

We homed in on the current configuration of an 
external threaded openLDAP server running on Linux 
Redhat Enterprise 4 with a MAX FD table of 8192. This 
server is located outside the cluster Ethernet network and 
some client tuning parameters (e.g. NSCD) were done on 
the Cray XD1 system to decrease the request latency. 
This solution has been working flawlessly since its 
implementation. 

PBS died randomly 

This issue was likely caused by the ongoing LDAP 
issues we had during that timeframe. 

A user code ran across a max FD limit (1024) in the 
PBSPro moms. Cray provided a patched PBSPro rpm 
with this FD limit increased to 8192. 

IMB could not be run consistently 

IMB running with large processor counts (512 and 
beyond) required more memory buffers than could be 
stored in the RapidArray registration table. When the 
table became full, the IMB application received a “buffer 
registration failed” error and terminated. Unfortunately, 
this triggers a bug when the IMB application is 

terminated. The result of this bug is that some memory 
corruption occurs and all subsequent application runs (of 
any MPI application, not just IMB) fail to start with a 
RapCreateCQ error. 

The registration table simply wasn't large enough to 
run an IMB job at high processor counts. To run the job 
successfully, Cray increased the size of the registration 
table from 4000 to 128000 entries. This allowed IMB to 
execute successfully and avoids the above-mentioned bug 
as well. 

Cray support and R&D worked a patch for 1.3GA 
that included the following changes: 

• kernel SP3 updates 
• code changes to fix the IMB issue 
• Lustre load that works with kernel SP3 
The 1.3 patch load was deployed end February 2006 

and this fix would be part of 1.4GA. The 1.4 load would 
also correct other problems; most notably support a 144 
port switch. 

Pros: The workaround allowed us to continue 
working without an interruption of service 

Cons: The workaround does consume some memory. 
Not sure what effects this workaround has on the stability 
or performance of the rapid array network. 

LVM at reboot requires manual intervention 

The fileserver nodes were equipped with fiber 
channel adapters that had no built-in support in Cray’s 
supplied kernel. The driver for these adapters was being 
loaded at a later stage of the system start-up. The problem 
arises because SuSE, like many other Linux distributions, 
expects that hardware is “ready” before trying to initialize 
services such as LVM, quotas, etc. In our case, hardware 
support wasn’t present to initialize these necessary 
services and the result was a non-functional fileserver. 

We suggested using a kernel init RAMdisk which is 
a typical way of solving these issues but it conflicted with 
AM/LSS. 

The current solution is to use a boot local script that 
runs at the very end of the start-up process and ensures 
that hardware support and services are loaded in the 
correct chronological order. 

The permanent solution requires kernel fix from Cray 

HPCC died after reboot, runs OK after resubmission 

This never happened again after we moved into the 
current LDAP solution. However, we will test this 
carefully as we move to 1.4. 
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Current System Issues 

• We are unable to move nodes between partitions due 
an issue with L2F route calculations. This has been 
addressed on AM 1.4. 

• System provisioning scalability is unacceptably slow. 
We can only provision 8 blades at a time. This issue 
has been brought to Cray’s attention. 

• Lustre crashes sporadically. We have two tickets 
open with Cray for this issue. There is a lustre 
patched kernel that Alabama is currently running, as 
they had similar issues. We are waiting for Cray to 
confirm the stability of the fix. 

• The base node crashes after approx. 2 weeks of 
uptime. The kernel on base logs numerous errors 
relating to the AMD IOMMU controller and it 
eventually crashes the system. We have recently 
spoken with Cray Engineers about this issue and they 
may soon be able to provide a patched kernel, but 
without lustre support. We shall wait until their first 
testing site has validated this fix and Cray moves 
forward with the lustre version of it. 

• cfengine is a resource hog, it puts a high load on base 
without doing too much work. Cray may have a 
version of cfengine in AM 1.4 that is supposed to be 
much more relaxed. 

5 System Management 

5.1 Research Computing Support Group 

The Research Computing Support Group (RCSG) 
works for Kamran Kahn, the Vice-Provost of Information 
Technology, in the Academic and Research Computing 
Department directed by Rick Peterson. The group is 
managed by Dr. B. Kim Andrews, Manager of Research 
Computing, and is staffed by four highly-trained 
technologists with an opening for Research Computing 
Application Developer. The goal of the RCSG is to 
increase the productivity of Rice’s research faculty. There 
are 4 main areas of service that the RCGS provides to the 
Rice campus: system administration, application support, 
user support, and data management. 

5.2 Commissioning for Production 

After the acceptance of the machine, we completely 
re-commissioned the machine and wiped out all accounts. 
We then quickly ran through some of the more stressful 
benchmarks and confirmed that the machine was properly 
configured. 

In order to control the workload generated from 
porting activities, we planned to move users onto the 
machine in three phases. We first brought in all users who 
had participated in the Acceptance Test and the faculty 
members who were lead investigators of the MRI grant 
proposal. We then quickly opened up the machine to the 
other 30+ co-authors of the MRI proposal. The system 
will be opened for general access by Rice faculty mid 
May 2006 pending finalization of a revised online 
account application system. 

5.3 Operational Overview 

We use several industry standard packages to manage 
and monitor both the Cray as well as other large shared 
resources. For resource management and scheduling we 
use maui on top of PBSPro. We use Active Manager for 
internal component availability monitoring and alerts. A 
separate nagios server integrated into IT’s campus 
Operations Support is used for external availability 
monitoring. We have set up a ganglia grid for resources 
managed by the RCSG to provide real-time monitoring of 
utilization and performance.  

We monitor system availability using Active 
Manager. Nagios is also used to monitor availability (ping 
& ssh) of the 4 login nodes. We employ Change 
Management procedures for all modifications made by 
the RCSG. Any non-RCSG changes that might impact the 
system are also maintained in the Forward Schedule of 
Changes to avoid “Change Collisions.” 

Utilization is measured at several levels in order to 
maintain high system efficiency. To detect hardware 
problems/inefficiencies at their onset, we watch the 
individual real-time node utilization patterns (CPU, 
memory, network, etc.) using Ganglia. Queue statistics 
(e.g. # of jobs submitted & average wait time as a 
function of nodes requested, CPU usage by user, group, 
project, etc.) are gathered using internal Perl scripts that 
post-process a database generated in maui on a daily 
basis. We use this data to monitor the users’ overall 
throughput and queue submission strategies. We also use 
Perl scripts to analyze individual user application 
performance/efficiency (CPU, memory, i/o, etc.) to detect 
inefficient code. Users are brought in for consultation 
whenever we find queuing or performance anomalies. 
This has provided an excellent opportunity for mutually 
beneficial collaboration and relationship building between 
support staff and users. 

Problem resolution is handled using Rice’s IT-wide 
helpdesk software, Request Tracker. The software helps 
greatly to keep track of the complex user problems that 
are typical of supporting research on a shared resource. 
For problem avoidance (which is much more effective 
than problem resolution!) we are implementing a formal 
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partner relationship with principal investigators called a 
Service Assurance Partnership. One of the outcomes of 
this is that we meet regularly with individual research 
groups to discuss their end-to-end computing 
environment, present their usage statistics, problem 
resolution status, upcoming relevant infrastructure 
changes, etc. 

Our queuing policy is currently very simple. Fair 
Share is implemented with a four-hour maximum runtime 
and no limit on the number of CPUs requested. We now 
heavily favor the Quality of Service for multi-node job 
requests to prevent the queue fragmentation caused by 
high numbers of single-CPU jobs, which we have 
observed on other systems and diagnosed it on the Cray 
before the bias was in place. Requests for changes in or 
exceptions to the queuing policy may be made through 
Request Tracker. During the porting phase of an 
application we have made several exceptions for timing, 
parallelizing and optimizing code. Prior experience 
indicates that there will be the need to accommodate large 
scalability studies and time-sensitive requests as well. 

The partitioning of the machine for dedicated use 
continues to be an area of focus and interest. Currently, 
we have dedicated nodes running under a separate maui 
partition that allows the principal investigator to set and 
manage their own queues within some reasonable bounds. 
There is no sharing of unused nodes (and there has not 
been a free cycle since it was set up!), but we are 
planning to incorporate preemption into any future shared 
resource in order to assure timely access to sub-system 
owners. 

5.4 Policy Overview 

There are several policy documents either completed 
or at various stages of review. All users must read and 
agree to the campus-wide Acceptable Use and Security 
policies. Last fall, Rice University endorsed a new Core 
Services Service Level Agreement (SLA) describing IT 
services that are provided as a matter of course to the 
entire Rice community. An analogous SLA pertaining to 
research computing support has already been reviewed by 
the IT Advisory Committee and awaits further review 
before being finalized. The Research SLA describes 
services and associated costs of computer support beyond 
that provided through the Core SLA. 

CITI and Rice’s Information technology are working 
together to create a Shared Research Computing Resource 
(SRCR – pronounced ShareCore) policy framework that 
will apply to all shared computer resources. This not only 
provides a framework for granting agencies to use while 
leveraging resources, but also offers an optimal working 
model to faculty who are looking to invest as a SRCR 
partner. 

There are also several policies documents that 
address operational issues and user support. The Change 
Management Policy outlines the workflow and 
requirements of making changes to the research 
computing infrastructure. The queuing policy document 
provides the user with a high-level description of a given 
resources queuing policies as well as technical details on 
how PBSPro/maui implements these policies, including 
tools to assist users in developing a submission strategy. 

At a user group level, the Service Assurance 
Partnership MOU details the relationship between the 
RCSG and scientific investigators working on projects 
through their research group. Designed to increase 
productivity by increasing the synergy between the RCSG 
and Rice’s research groups, centers, and institutes, it is 
basically a central repository of information for meeting 
the specific research computing needs of our faculty 
partners.  

6 Summary 

This paper describes the process of procuring, 
deploying and operating a 3 TeraFLOP Cray XD1 at Rice 
University. The process involved a competitive bid 
process with six vendors. The bid process involved an 
extensive benchmarking request that was designed to 
stress capability and capacity requests, as well as IO 
performance for engineering and science computing 
needs. Of the six vendors that submitted bids only one 
vendor, Cray, delivered a complete set of results as per 
our request. The timeframe for these benchmarks (late 
spring 2005) did not permit large scale benchmarking on 
Dual Core AMD Opteron. Cray did, however, provide 
extensive scaling analysis for the different benchmarks 
where this was relevant and while such numbers may 
always be questioned the documentation provided for the 
scaled performance was extensive and backed up with 
data from limited experiments on sample availability of 
dual core technology. We were truly impressed by Cray’s 
benchmarking team and our overall experience with the 
Cray installation team and field support was exemplary. 

Based on our current experience we do have a 
number of recommendations related to the Active 
Manager (AM) that we feel Cray might want to consider 
in light of the XD1 or future products where AM might 
be considered. 

Active Manager by default is very intrusive and 
makes many assumptions it shouldn’t, such as forcefully 
associating queues with hardware partitions. 

We believe this software would be more acceptable if 
it were modularized. The monitoring and system 
management components need to be separated. The 
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customer should be able to choose what method of system 
provisioning to use as well as how to distribute and 
maintain configurations, networking, etc. 

We understand that the current AM model may be 
good for smaller clusters, but it does not scale well on 
large shared computing systems. 

Active Manager does not provide information 
comparable to the industry standard, nagios. In fact, 
Active Manager is not capable of providing historical 
resource availability information at all. The alarm and 
fault response features are not as flexible as nagios and 
the ability to create new “components” to be monitored 
doesn’t seem to be documented or available. 
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