

CUG 2006 Proceedings 1 of 8

Shared Computing Resource for Advancing Science and
Engineering Using the Cray XD1 at Rice University1

Jan E. Odegard, B. Kim Andrews, Franco Bladilo,
Kiran Thyagaraja, Roger Moye, Keith Schincke
Rice University, Houston, Texas

ABSTRACT: In this paper we discuss the recent procurement and deployment of one of
the largest XD1 systems in the world. The system deployed at Rice University by the
Computer and Information Technology Institute in collaboration with the IT Division
represents a major addition (~3× increase in theoretical compute capacity) to the
existing shared HPC infrastructure. The Cray XD1 will serve as the primary HPC
resource supporting cutting edge research in engineering, the physical sciences and the
social sciences. This paper focuses on three aspects of the system: (1) the system
procurement process, (2) the system deployment and acceptance process, and (3) system
operation and management.

KEYWORDS: XD1, procurement, deployment, acceptance, management

1 This work was supported in part by a Major Research Infrastructure grant from the National Science Foundation (CNS-
0421109), Rice University and partnerships with AMD and Cray.

1 Introduction

Rice University is a private, coeducational institution
of higher education located in the center of Houston,
Texas. Rice is a member of and is located across the street
from the Texas Medical Center, the world’s largest
medical complex, with a total of 42 institutions treating
over 5 million patients per year. The first president of
Rice University, Edgar Odell Lovett, envisioned building
an institution of higher learning that “…aspires to
university standing of the highest grade.…For the present
it is proposed to assign no upper limit to its educational
endeavor.” inaugural address, 1912.

Since 1912, Rice has grown steadily and today has
about 540 faculty members distributed across four
academic schools and five professional schools, 2900
undergraduate students and 1900 graduate students.

Rice is still a small institution; in fact, it is one of the
smallest research universities in the US. Recognizing that
in many cases this was a handicap, Rice created a number
of cross disciplinary research institutes in the 1980s

focused on areas of research strength where the faculty
felt that Rice could be far bigger than the size would lead
one to believe. These institutes (in IT, Energy,
Biotechnology, Quantum Chemistry and
Nanotechnology) were created as virtual organizations
with a mission to serve as a catalyst stimulating far
reaching collaborative projects supporting the ambitions
of the faculty to reach beyond its size. The Computer and
Information Technology Institute (CITI) was created to
support research in High Performance Computing,
Information Technology, and Computational Science and
Engineering (all broadly conceived). CITI’s mission is to
“build a community of scholars that engages in
collaborative research and education covering virtually
every aspect of information technology and computing.”

1.1 Shared Computing Infrastructure

CITI has historically been focused on supporting
faculty members seeking to engage in basic research in
information technology. This mission expanded in 2002
when it became clear that our continued success in
research would be severely limited without a focused
effort aimed at providing large scale, campus wide,

CUG 2006 Proceedings 2 of 8

computational resources to an increasing number of
faculty members whose research was either primarily
computational or, as was increasingly the case, a strong
combination of computation and experimentation. At that
time CITI, under the leadership of the Director and
Executive Director of the institute, coordinated a team of
faculty members that wrote a successful proposal to the
NSF Major Resource Infrastructure (MRI) program for a
1 TeraFLOP Intel Itanium2 shared computing resource.
With this first grant Rice procured a 280-processor HP
Itanium2 system. Recognizing that additional capacity
would soon be needed, CITI coordinated a second
proposal to the same NSF program in 2004, leading to the
procurement of the current 3 TeraFLOP Cray XD1.

2 Cray XD1 Site Overview

The Cray XD1 deployed at Rice is configured in five
racks. Three racks are populated with 28 XD1 chassis
(12+12+4), one rack contains two 144-port switches, and
the final rack is populated with about 20TB of usable
storage (6TB Lustre and 15TB NFS). Additional details
of the system can be found by visiting
http://www.citi.rice.edu.

The system was intentionally designed with
additional core infrastructure that we can expand by
adding eight more XD1 chassis without increasing port
count on the spine switch. The fully populated
configuration can house 48 XD1 chassis in 4 racks. This
spare infrastructure was added to accommodate near term
needs for capacity growth as well as to support groups
and individuals that might have special needs but could
still benefit from the economy of scale and leveraged
system administration support. Growth can either be in
the form of system-wide large scale shared investments or
through the investments of individual research groups for
“private partitions”, much like a condominium.

2.1 Procurement Process

An open invitation for vendors to present technology
solutions that would be available and satisfy broad
guidelines was made in the form of a written RFI (request
for information) document. The RFI loosely specified
technology needs, targets size and time line. A number of
vendors opted to participate in this RFI round giving in-
depth NDA technology and roadmap presentations to the
Rice procurement team. Based on technologies presented,
we issued a thoroughly detailed request for proposals
(RFP) asking vendors to prepare bids on a substantial
system built around the AMD OpteronTM processor.
Vendors were given a cost target and were generally
asked to bid a solution that they felt could be deploy by
late 2005. While dual cores were not a requirement, we
did expect many vendors to propose them.

The system was required to run 64-bit Linux and the
bid required vendors to include end-to-end hardware and
software maintenance for three years with options for
additional years of support. Each vendor was required to
prepare a comprehensive written bid providing extensive
benchmarking results and addressing each of the
specifications outlined in a meticulous Hardware and
System Software Requirements section.

Questions by vendors during the RFP process were
required to be submitted in writing. Questions and
corresponding answers (without the vendors’ name) were
posted to a password protected shared web page that was
accessible by all vendors. This web page was a natural
extension of the RFP document and served as the only
interaction between vendor and customer during the RFP
process. This provided a very insulation

2.2 Benchmarking

The benchmarking requirements consisted of two
types: (1) system components benchmarks and (2)
customer code benchmarks. A system configured with
proposed hardware (or largely equivalent hardware) with
at least 36 processors was required for benchmarking. A
detailed report of all benchmarks should, in addition to
reporting performance results, also provide enough
information about the system and all software for the
results to be reproduced. We also requested that if large
scale benchmarking could only be done on single core
systems, then dual core performance must be predicted
based on limited tests of early access systems, which each
of the vendors had indicated would be accessible during
the RFP process. Vendors were free to use their preferred
compiler suite, but must specify versions (with any
patches applied) and all compiler flags that were used for
each of the benchmarks. Benchmark code changes of any
kind were forbidden.

2.3 System Component Benchmarks

To illustrate the scope of the benchmarking
requirements, we are providing a brief summary of the
benchmarking requirements. All benchmarking results
were required to be presented in a spreadsheet.
Networking configurations; OS kernel versions, drivers
and patches; and application versions were required for
all benchmarks.

HPC Challenge

• Run benchmark on a 4, 16, and 32 processor
dual socket configured system with proposed
hardware

• If available please report results obtained by
running on larger systems

CUG 2006 Proceedings 3 of 8

• Run MPICH, and if applicable a vendor
preferred commercial MPI

NPB (NAS Parallel Benchmarks)

• Run mg, cg, and sp in the NPB 2.3 benchmarks
suite with Class C size over the proposed
computational network with dual socked nodes

• Run MPICH, and if applicable a vendor
preferred commercial MPI

• Report results and provide graphs for the
following cluster configurations

• For mg
o 4, 8, 16, 32
o Recommended: 64, 128

• For cg
o 4, 8, 16, 32
o Recommended: 64, 128

• For sp
o 4, 9, 16, 25, 36
o Recommended: 49, 64, 81, 100

If possible please report results on file system using
Bonnie++ as follows

• Bonnie++ (hard drive and file system
performance)

• Run Bonnie++ on the proposed compute node
hardware, master node hardware, and file server
hardware

• Run with file sizes that are 5 times the physical
memory

• Report all results (throughput and CPU usage)
• Run Bonnie++ over NFS (hard drive and file

system performance)
• Run Bonnie++ over NFS from proposed file

server to two proposed clients over the proposed
I/O network

• NFS server is the proposed file server
• NFS client is the proposed compute node
• Export file system using the following options:

o sync, rw, no_root_squash
• Client mount options are variable with the

following exceptions that must be set:
o hard, intr, tcp

• Report NFS server configuration used including
export options

• Report NFS client mount options used
• Report OS version including kernel, kernel

patches, GigE NIC drivers, version, and options
for the NFS file server and NFS clients.

2.4 Customer Code Benchmarks

This section lists the vendor-specified application
codes that we asked them to benchmark. The list consists
of a mix of commercial (most vendors had the appropriate

licenses), open source and internally-developed codes.
Some of Rice codes were subject to executing an NDA.
Additional details on problem size for each code and all
the necessary information for running benchmarks on
Rice code was provided to the vendors through the RFP
web page extension.

2.5 Scientific Code

• Gaussian
• Amber 8
• NAMD
• In-house developed CFD
• In-house developed molecular modeling code

2.6 Selection Process

Although making final procurement decisions are a
complicated and time consuming task, we guided this
process using a small set of criteria that was supported by
the RFP specifications. Since the main objective of the
procurement was to support Rice’s specific computational
needs, the first level ranking was heavily biased towards
benchmarking performance. However, this in and of itself
was not sufficient since benchmarking can only cover one
subset of the codes we expected the system to support.
Based on this complexity, we used the combination of
criteria listed below.

Primary criteria:

• Benchmark performance as a predictor for
capability

• Peak performance (CPU count) as a measure of
capacity

• Cost

Secondary criteria:

• Partnership opportunities
• Power and cooling requirements
• Weight

2.7 Procurement Decision

A total of six vendors responded to the full RFP.
While each system had its unique features and was
roughly identical in peak performance (about the same
number of compute cores), there were significant
differences in designs and capabilities. Using the above
criteria for selection, however, the XD1 was a clear first
on most of the benchmarks as well as a clear winner on
each of the secondary criteria.

3 Deployment and Acceptance Criteria

We formalized the acceptance of the Cray with a
Memorandum of Understanding. This document basically

CUG 2006 Proceedings 4 of 8

provided detailed definitions of several terms relating to
the system’s state and outlined the necessary steps for the
system to be accepted.

The acceptance test had two phases, a Site Install
Test and a Production Test. The purpose of the Site Install
Test was to reproduce the performance of the system
before & after shipping it to Rice from Cray’s facility in
Chippawa Falls (an extensive subset of the site install test
had to be executed while the system was in the Cray
facility). The Site Test consisted of reproducing the pre-
shipping LINPACK results as well as a few key tests
within the HPCC benchmarking suite. After the
completion of the Site Test, a 60-day Performance Test
period was began. The purpose of this period was to
accumulate 30 consecutive days of Operational Use. We
linked the definition of Operational Use to an
“Effectiveness Level”.

For the purpose of the Production Test, the
“Effectiveness Level” of the System was computed as
follows:

)(100
)(
)(t

hoursTimeUseScheduled
hoursTimeUselOperationaLevelssEffectivne δ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×=

and)(tδ is a binary function with the value 1 or 0. The
function except during any time period when the
following is true:

• The Lustre file system is not available (this
includes all hardware and software associated
with the operation of the Lustre file system)

• The NFS file system is not available and
working (this includes all hardware and software
associated with the operation of the NFS file
system)

• Both master nodes are down
• All login (development) nodes are down
• The job scheduler is down
• Switch fails
Operational Use was defined as a system

Effectiveness Level of at least 96.5%, corresponding to
25 hours of downtime out of 30 days. In this way, we
hoped to avoid any ambiguities as far as whether the
system was “up” or “down” from an operational
viewpoint.

3.1 Measurement & Tracking of Operational Use

Maintaining a high (>96.5%) Operational Use was
the main goal of the Performance Acceptance phase. We
met daily to track the progress of the testing and to log the
accumulated Effectiveness Level, annotating problems as
they arose. Rice was in charge or providing compute load
on the system during the production test. This was

accomplished with repeated and extensive benchmark
runs as well as a small group of heavy-hitting friendly
users.

4 Problem Diagnosis and Resolution

4.1 Hardware

We saw only a very small number of hardware
issues, and the hardware failures we observed were
primarily caused by an abnormal level of power
harmonics generated due to the high load drawn from one
single PDU to power the entire system.

Cray engineers said: “Our experience [had learned
this after the system had left the Cray facility] shows that
when more than a dozen or so XD1 three phase power
supplies are fed by a single transformer (PDU), the
accumulated current harmonics create a voltage harmonic
above 5%. And we've found that when ambient voltage
harmonics exceed 5%, our power supplies begin to fail.”

We measured and found only very limited harmonics
on the primary power feed and hence the harmonics
problem was in fact created by the three-phase power
supplies putting a significant amount of harmonics back
into the power system, in some cases causing 10-12%
power harmonics. A single transformer (i.e., a PDU)
cannot mitigate this harmonic load sufficiently. As a
result, eight of the three-phase power supplies ultimately
failed during the Acceptance Test, well above statistical
expectations.

Resolution Options

Replace all power supplies with single-phase power
supplies. However, while this would have solved the
problem, single-phase power supplies were not as reliable
as their three-phase supplies and the MTBF would likely
be higher.

The second alternative was to add two more PDUs
and distribute the load equally across all PDUs. While
this would not eliminate power harmonics it would reduce
the harmonics level to an acceptable level.

Implemented Solution

Working with Cray Rice was able to, in a short
amount of time, to install two PDUs and distribute the
load across all three PDUs. This reduced the harmonics
and solved the problem for the system at its current size.
Future growth will, however, either require additional
PDU capacity or use of single-phase power supplies.

CUG 2006 Proceedings 5 of 8

4.2 Software

LDAP proxy randomly crashed

The first issue we encountered with LDAP on the
XD1 was that Active Manager's supported LDAP
configuration, unlike Cray’s NIS implementation,
required an external LDAP server instead of providing
the option of functioning as an LDAP server itself.

Our first approach was to install SuSE's openLDAP
RPMs and set up our server on the base node. This
solution didn't scale well due to the way SuSE built the
RPMs. The symptom we observed was that large jobs
failed to start. Further investigation proved that the
SuSE's threaded LDAP server had been built with a MAX
FD table (maximum number of concurrent connections or
open files) of 1024. This limit was easily overrun when
PBS tried to lookup gecos information on large parallel
jobs. (Cray was notified with a suggested fix)

The second attempt to address the issue was to use an
LDAP proxy. This limited the number of outgoing
connections to the server as well as decreased the query
request time. Unfortunately, while this looked like the
perfect technical solution, the openLDAP proxy backend
generated bugs that we traced along with Cray for weeks
without success. At one point, we decided to compile our
own openLDAP package, but it exhibited the same
behavior.

We homed in on the current configuration of an
external threaded openLDAP server running on Linux
Redhat Enterprise 4 with a MAX FD table of 8192. This
server is located outside the cluster Ethernet network and
some client tuning parameters (e.g. NSCD) were done on
the Cray XD1 system to decrease the request latency.
This solution has been working flawlessly since its
implementation.

PBS died randomly

This issue was likely caused by the ongoing LDAP
issues we had during that timeframe.

A user code ran across a max FD limit (1024) in the
PBSPro moms. Cray provided a patched PBSPro rpm
with this FD limit increased to 8192.

IMB could not be run consistently

IMB running with large processor counts (512 and
beyond) required more memory buffers than could be
stored in the RapidArray registration table. When the
table became full, the IMB application received a “buffer
registration failed” error and terminated. Unfortunately,
this triggers a bug when the IMB application is

terminated. The result of this bug is that some memory
corruption occurs and all subsequent application runs (of
any MPI application, not just IMB) fail to start with a
RapCreateCQ error.

The registration table simply wasn't large enough to
run an IMB job at high processor counts. To run the job
successfully, Cray increased the size of the registration
table from 4000 to 128000 entries. This allowed IMB to
execute successfully and avoids the above-mentioned bug
as well.

Cray support and R&D worked a patch for 1.3GA
that included the following changes:

• kernel SP3 updates
• code changes to fix the IMB issue
• Lustre load that works with kernel SP3
The 1.3 patch load was deployed end February 2006

and this fix would be part of 1.4GA. The 1.4 load would
also correct other problems; most notably support a 144
port switch.

Pros: The workaround allowed us to continue
working without an interruption of service

Cons: The workaround does consume some memory.
Not sure what effects this workaround has on the stability
or performance of the rapid array network.

LVM at reboot requires manual intervention

The fileserver nodes were equipped with fiber
channel adapters that had no built-in support in Cray’s
supplied kernel. The driver for these adapters was being
loaded at a later stage of the system start-up. The problem
arises because SuSE, like many other Linux distributions,
expects that hardware is “ready” before trying to initialize
services such as LVM, quotas, etc. In our case, hardware
support wasn’t present to initialize these necessary
services and the result was a non-functional fileserver.

We suggested using a kernel init RAMdisk which is
a typical way of solving these issues but it conflicted with
AM/LSS.

The current solution is to use a boot local script that
runs at the very end of the start-up process and ensures
that hardware support and services are loaded in the
correct chronological order.

The permanent solution requires kernel fix from Cray

HPCC died after reboot, runs OK after resubmission

This never happened again after we moved into the
current LDAP solution. However, we will test this
carefully as we move to 1.4.

CUG 2006 Proceedings 6 of 8

Current System Issues

• We are unable to move nodes between partitions due
an issue with L2F route calculations. This has been
addressed on AM 1.4.

• System provisioning scalability is unacceptably slow.
We can only provision 8 blades at a time. This issue
has been brought to Cray’s attention.

• Lustre crashes sporadically. We have two tickets
open with Cray for this issue. There is a lustre
patched kernel that Alabama is currently running, as
they had similar issues. We are waiting for Cray to
confirm the stability of the fix.

• The base node crashes after approx. 2 weeks of
uptime. The kernel on base logs numerous errors
relating to the AMD IOMMU controller and it
eventually crashes the system. We have recently
spoken with Cray Engineers about this issue and they
may soon be able to provide a patched kernel, but
without lustre support. We shall wait until their first
testing site has validated this fix and Cray moves
forward with the lustre version of it.

• cfengine is a resource hog, it puts a high load on base
without doing too much work. Cray may have a
version of cfengine in AM 1.4 that is supposed to be
much more relaxed.

5 System Management

5.1 Research Computing Support Group

The Research Computing Support Group (RCSG)
works for Kamran Kahn, the Vice-Provost of Information
Technology, in the Academic and Research Computing
Department directed by Rick Peterson. The group is
managed by Dr. B. Kim Andrews, Manager of Research
Computing, and is staffed by four highly-trained
technologists with an opening for Research Computing
Application Developer. The goal of the RCSG is to
increase the productivity of Rice’s research faculty. There
are 4 main areas of service that the RCGS provides to the
Rice campus: system administration, application support,
user support, and data management.

5.2 Commissioning for Production

After the acceptance of the machine, we completely
re-commissioned the machine and wiped out all accounts.
We then quickly ran through some of the more stressful
benchmarks and confirmed that the machine was properly
configured.

In order to control the workload generated from
porting activities, we planned to move users onto the
machine in three phases. We first brought in all users who
had participated in the Acceptance Test and the faculty
members who were lead investigators of the MRI grant
proposal. We then quickly opened up the machine to the
other 30+ co-authors of the MRI proposal. The system
will be opened for general access by Rice faculty mid
May 2006 pending finalization of a revised online
account application system.

5.3 Operational Overview

We use several industry standard packages to manage
and monitor both the Cray as well as other large shared
resources. For resource management and scheduling we
use maui on top of PBSPro. We use Active Manager for
internal component availability monitoring and alerts. A
separate nagios server integrated into IT’s campus
Operations Support is used for external availability
monitoring. We have set up a ganglia grid for resources
managed by the RCSG to provide real-time monitoring of
utilization and performance.

We monitor system availability using Active
Manager. Nagios is also used to monitor availability (ping
& ssh) of the 4 login nodes. We employ Change
Management procedures for all modifications made by
the RCSG. Any non-RCSG changes that might impact the
system are also maintained in the Forward Schedule of
Changes to avoid “Change Collisions.”

Utilization is measured at several levels in order to
maintain high system efficiency. To detect hardware
problems/inefficiencies at their onset, we watch the
individual real-time node utilization patterns (CPU,
memory, network, etc.) using Ganglia. Queue statistics
(e.g. # of jobs submitted & average wait time as a
function of nodes requested, CPU usage by user, group,
project, etc.) are gathered using internal Perl scripts that
post-process a database generated in maui on a daily
basis. We use this data to monitor the users’ overall
throughput and queue submission strategies. We also use
Perl scripts to analyze individual user application
performance/efficiency (CPU, memory, i/o, etc.) to detect
inefficient code. Users are brought in for consultation
whenever we find queuing or performance anomalies.
This has provided an excellent opportunity for mutually
beneficial collaboration and relationship building between
support staff and users.

Problem resolution is handled using Rice’s IT-wide
helpdesk software, Request Tracker. The software helps
greatly to keep track of the complex user problems that
are typical of supporting research on a shared resource.
For problem avoidance (which is much more effective
than problem resolution!) we are implementing a formal

CUG 2006 Proceedings 7 of 8

partner relationship with principal investigators called a
Service Assurance Partnership. One of the outcomes of
this is that we meet regularly with individual research
groups to discuss their end-to-end computing
environment, present their usage statistics, problem
resolution status, upcoming relevant infrastructure
changes, etc.

Our queuing policy is currently very simple. Fair
Share is implemented with a four-hour maximum runtime
and no limit on the number of CPUs requested. We now
heavily favor the Quality of Service for multi-node job
requests to prevent the queue fragmentation caused by
high numbers of single-CPU jobs, which we have
observed on other systems and diagnosed it on the Cray
before the bias was in place. Requests for changes in or
exceptions to the queuing policy may be made through
Request Tracker. During the porting phase of an
application we have made several exceptions for timing,
parallelizing and optimizing code. Prior experience
indicates that there will be the need to accommodate large
scalability studies and time-sensitive requests as well.

The partitioning of the machine for dedicated use
continues to be an area of focus and interest. Currently,
we have dedicated nodes running under a separate maui
partition that allows the principal investigator to set and
manage their own queues within some reasonable bounds.
There is no sharing of unused nodes (and there has not
been a free cycle since it was set up!), but we are
planning to incorporate preemption into any future shared
resource in order to assure timely access to sub-system
owners.

5.4 Policy Overview

There are several policy documents either completed
or at various stages of review. All users must read and
agree to the campus-wide Acceptable Use and Security
policies. Last fall, Rice University endorsed a new Core
Services Service Level Agreement (SLA) describing IT
services that are provided as a matter of course to the
entire Rice community. An analogous SLA pertaining to
research computing support has already been reviewed by
the IT Advisory Committee and awaits further review
before being finalized. The Research SLA describes
services and associated costs of computer support beyond
that provided through the Core SLA.

CITI and Rice’s Information technology are working
together to create a Shared Research Computing Resource
(SRCR – pronounced ShareCore) policy framework that
will apply to all shared computer resources. This not only
provides a framework for granting agencies to use while
leveraging resources, but also offers an optimal working
model to faculty who are looking to invest as a SRCR
partner.

There are also several policies documents that
address operational issues and user support. The Change
Management Policy outlines the workflow and
requirements of making changes to the research
computing infrastructure. The queuing policy document
provides the user with a high-level description of a given
resources queuing policies as well as technical details on
how PBSPro/maui implements these policies, including
tools to assist users in developing a submission strategy.

At a user group level, the Service Assurance
Partnership MOU details the relationship between the
RCSG and scientific investigators working on projects
through their research group. Designed to increase
productivity by increasing the synergy between the RCSG
and Rice’s research groups, centers, and institutes, it is
basically a central repository of information for meeting
the specific research computing needs of our faculty
partners.

6 Summary

This paper describes the process of procuring,
deploying and operating a 3 TeraFLOP Cray XD1 at Rice
University. The process involved a competitive bid
process with six vendors. The bid process involved an
extensive benchmarking request that was designed to
stress capability and capacity requests, as well as IO
performance for engineering and science computing
needs. Of the six vendors that submitted bids only one
vendor, Cray, delivered a complete set of results as per
our request. The timeframe for these benchmarks (late
spring 2005) did not permit large scale benchmarking on
Dual Core AMD Opteron. Cray did, however, provide
extensive scaling analysis for the different benchmarks
where this was relevant and while such numbers may
always be questioned the documentation provided for the
scaled performance was extensive and backed up with
data from limited experiments on sample availability of
dual core technology. We were truly impressed by Cray’s
benchmarking team and our overall experience with the
Cray installation team and field support was exemplary.

Based on our current experience we do have a
number of recommendations related to the Active
Manager (AM) that we feel Cray might want to consider
in light of the XD1 or future products where AM might
be considered.

Active Manager by default is very intrusive and
makes many assumptions it shouldn’t, such as forcefully
associating queues with hardware partitions.

We believe this software would be more acceptable if
it were modularized. The monitoring and system
management components need to be separated. The

CUG 2006 Proceedings 8 of 8

customer should be able to choose what method of system
provisioning to use as well as how to distribute and
maintain configurations, networking, etc.

We understand that the current AM model may be
good for smaller clusters, but it does not scale well on
large shared computing systems.

Active Manager does not provide information
comparable to the industry standard, nagios. In fact,
Active Manager is not capable of providing historical
resource availability information at all. The alarm and
fault response features are not as flexible as nagios and
the ability to create new “components” to be monitored
doesn’t seem to be documented or available.

7 Acknowledgments

The authors would like to thank colleagues, users and
Cray for working together on the procurement and
deployment of the system at Rice University.

8 About the Authors

Jan E. Odegard is the Executive Director of the
Computer and Information Technology Institute at Rice
University. He can be reached at Rice University,
Computer and Information Technology Institute, 6100
Main St., Houston TX 77005, E-Mail: odegard@rice.edu.
B. Kim Andrews is the Manager of Research Computing
with the IT Division at Rice University. He can be
reached at Rice University, Information Technology,
6100 Main St., Houston TX 77005, E-Mail:
kimba@rice.edu Franco Bladilo is a Linux Architect
with the IT division at Rice University. He can be reached
at Rice University, Information Technology, 6100 Main
St., Houston TX 77005, E-Mail: bladilo@rice.edu Kiran
Thyagaraja is a Linux Integrator with the IT Division at
Rice University. He can be reached at Rice University,
Information Technology, 6100 Main St., Houston TX
77005, E-Mail: kiran@rice.edu Roger Moye is a Linux
Cluster Administrator with the IT Division at Rice
University. He can be reached at Rice University,
Information Technology, 6100 Main St., Houston TX
77005, E-Mail: moye@rice.edu Keith Schincke is a
Research Computing Support Specialist with the IT
Division at Rice University. He can be reached at Rice
University, Information Technology, 6100 Main St.,
Houston TX 77005, E-Mail: kschin@rice.edu

