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ABSTRACT: The rapid increase in integrated circuit densities, with the slowing in the 
increase in commodity CPU clock rates, has fostered the investigation of hybrid 
architectures using FPGA technologies to provide some specialized accelerated 
computational capability, such as the Cray XD-1 system.  In order to take full advantage 
of the FPGA enabled nodes of the Cray XD-1 system, and avoiding the traditional 
problematic  development times typical of custom digital circuit design, High Level 
Synthesis (HLS) methodologies appear to be a promising research avenue. An HLS 
allows one to  obtain a synthesizable VHDL description, in a near  automated way, 
starting from a specific algorithm given in some High Level language (such as  the ANSI 
C). In this presentation we describe the using of the HLS methodology developed by 
Ylichron S.r.l. – a spin-off company of the Italian Agency for the New Technologies, the 
Energy and the Environment (ENEA) – to implement a library of core algorithms 
utilizing the FPGA module of the XD-1 system. In order to further promote the using of 
such powerful computing platform, the XD1 system  has been embedded within the ENEA 
Grid environment. As illustrative test case to show the advantages achievable through 
the adoption of reconfigurable devices we implemented a parallel solution, coded in 
C+MPI, of the Low Autocorrelation Binary String optimization problem; the solution 
boosted by the FPGA devices configured to compute the cost function of the optimization 
process was characterized by a speed-up factor S=19 with respect to the case in which 
FPGAs were not used. 
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1. Introduction 

Reconfigurable computing gained a lot of attention in 
last years as it was promising the achieving of 
performances significantly higher than the ones given by 
the current generation of high end computing systems. 
The reason for such a performance gain is based on the 
possibility to use reconfigurable devices (i.e. FPGA, Field 
Programmable Gate Array) to implement, for each 
algorithm to be executed, dedicated computing 
architectures which match the algorithm structure. As a 
consequence to this approach, all the FPGA available 
logic, as well as I/O bandwidth, will be used with 
maximal efficiency, thus avoiding the severe underusing 
of silicon area usually encountered in conventional 
microprocessors which have a lot of their area devoted to 
implement complex memory hierarchies, out of order 
execution, scheduling policies etc... In a conventional 
processor, at each clock cycle, a lot of resources do not 
perform any operation while, resorting to a dedicated 
parallel computing architecture, nearly each part is active 
at every clock cycle. This parallel structure of the 
architecture implemented on the reconfigurable device is 
the key issue to overcome the gap existing between the 
clock frequency of microprocessors and FPGA devices: 
such a gap is in the order of a factor 10÷30, being the 
clock frequency of a microprocessor ~3 GHz, while 
100-300 MHz is the typical range of operating frequency 
for the circuits implemented onto FPGAs. As a rule of the 
thumb, taking into account the different efficiency in the 
resources utilization, an implementation on FPGA 
becomes competitive with a SW implementation when 
the parallelism exploitable is larger than the processor to 
FPGA clock frequency ratio. 

Following such a promise for high performances, 
they have been proposed, by Cray and SGI, computing 
architectures with FPGA devices tightly connected to the 
processing nodes through fast switches and not through 
the PCI. Thanks to this tight connection, FPGA/Processor 
access to data produced by the Processor/FPGA is very 
fast (low latency and high bandwidth). Nevertheless, the 
availability of a fast and reliable parallel computing 
architecture equipped with reconfigurable devices is only 
a necessary condition for the exploitation, by the end 
users, of the computing power of the system. In order to  
allow the end users to take real advantage from a 
reconfigurable architecture like the Cray XD1 – the one 
which we refer to – it is necessary that the access to the 
FPGA part should not require skills different from the 
ones of normal users of computing systems. To this aim, 
the FPGA part will be activated by the end users through 
calls, within a standard C+MPI code, to a standard library 
of functionalities. Furthermore, it would be highly 
desirable that the system could be immersed in a Grid 
environment.  

In this work we will present the experience we made 
on the integration of the Cray XD1 system, equipped with 
FPGA co-processing elements, in the ENEA Grid 
environment and in the developing the way to integrate 
the FPGA library into a C+MPI code. Some library 
elements have been developed through the High Level 
Synthesis design flow made available by Ylichron S.r.l 

2. The ENEA GRID Environment 

In order to meet the needs of the medium and small 
Italian companies, ENEA (Italian National Agency for 
New Technologies, Energy and the Environment) has 
started a Grid project. The main goals of this project are: 

 
a) providing ENEA for its internal use, and the 

eventual use by external users, with a computing 
Grid.  

b) stimulating the demand of Grid computing by 
medium and small companies, providing examples 
of successful applications running on the Grid, and 
helping the users in formulating their models in a 
way that can exploit the power of the Grid.  

c) developing a special middleware to support the 
seamless integration of special purpose devices (i.e. 
electronic microscopes, DNA sequencers, FPGA 
and DSP, ...). 

 
ENEA research activity is performed in 12 sites 

around Italy, and the ENEA Grid infrastructure is born 
with the mission to provide an integrated environment 
covering most of ENEA's multi-platform computational 
resources, connected in a wide area network. The key 
elements in the ENEA Grid implementation are:  

1) a distributed file system (AFS/OpenAFS),  
2) a wide area resource manager (Platform LSF) and  
3) a unified user interface (based on Java and Citrix 

Technologies).  
AFS is a distributed filesystem product, pioneered at 

Carnegie Mellon University. It offers a client-server 
architecture for file sharing, providing location 
independence, scalability, security, and transparent 
migration capabilities for data. 

LSF provides on demand access and scalability in 
distributing applications and executing workload. It is 
based on a multiqueue system of batch jobs, having the 
queues programmable service policies. The ENEA Grid 
implementation selected a time based queue 
classification; each queue can feed every system, selected 
later on the basis of user specified flags or requests 
(number of CPUs, specific SW, class of architecture 
(FPGA), ...) 

These components form the middleware that 
provides the functionalities typical of a Grid, "unique 
authentication, authorization, resource access and 
resource discovery," as stated by Ian Foster and Carl 
Kesselman in their classical paper "The Anatomy of the 
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Grid." The choice of mature and multi-platform software 
components, either proprietary as LSF and Citrix or open-
source as OpenAFS, greatly improves the reliability, ease 
of management and update of the system. ENEA Grid 
implementation began in 1998 and the new resources 
have been progressively introduced in what is now a 
production-quality Grid infrastructure. 

 
The services offered by ENEA Grid include the 

access to computation resources, graphic and 3-D 
immersive facilities, and software resources, including 
commercial codes (e.g., Fluent, Abacus, Catia) and 
elaboration environments (e.g., Matlab, IDL, SAS). 
ENEA Grid computational resources include about 700 
processors with either MIMD architecture -- as IBM SP, 
SGI Altix and Onyx, and Cray XD1 -- or in cluster 
configuration -- with Linux 32/64 systems and Apple 
Mac OSX. A 128-node IBM SP4 with 256 nodes IBM 
SP5 [~3 Tflops] are the most important resource at the 
moment. These resources are located in six computer 
centres in northern, central and southern Italy and are 
connected over the WAN by the Italian Academic and 
Research Network (GARR). ENEA Grid has, at present, 
about 600 registered users and more that 2TB of stored 
data, with 18TB available. 

 

3. The ENEA High Level Synthesis design 
flow 

As stated in the introduction, the key point for the 
success of reconfigurable architectures is the availability 
of a design flow which allows the (nearly) effortless 
migration toward such a new computational paradigm. 
The path we are following in the integration of the CRAY 
XD1 system within the ENEA Grid is based  

1) on the adoption of a library of functionalities 
implemented onto FPGA and easily integrable, 
through few API calls, within a C+MPI program and 

2) on the development of a design flow to enlarge, in a 
fast and reliable way, the set of functionalities 
included in the library. 
The first point is achieved in a straightforward 

manner, by including within a C function the calls to the 
Cray primitives to load the desired bitstream into the 
FPGA, to perform the (eventually) needed DMA 
operations to move the input data and to output the results 
and to start the application. The functionality can be 
invoked in a blocking or not blocking way; in the first 
case the calling process will wait till the completion of the 
functionality, in the latter case the calling process will 
prosecute its execution and will call a specific 
synchronization function to wait, when necessary, the 
results produced by the FPGA. 

In order to define a simple design flow to develop a 
new functionality to be added to the FPGA library, we 
decided to use High Level Synthesis (HLS) 

methodologies and, in particular, we used the HLS 
methodology developed by Ylichron S.r.l, an ENEA 
spin-off company. We decided for such a solution 
because, as illustrated in figure 1, specifics can be 
expressed by means of an ANSI C program (actually it is 
a subset of the ANSI C, as the use of pointers and 
recursion is disallowed). The user is not requested to deal 
with low level details like parallelism extraction and 
signal representation. 

 
Input specs
(ANSI C)

Limited precision 
simulation

Parallelism 
Extraction

(CDFG, SARE)

Allocation 
& 

scheduling

VHDL-RTL 
generation

Xilinx proprietary 
synthesis tools

FPGA 
bitstream

C++ code augmented with objects 
representing limited precision variables 
(fixed point, floating point with limited 
mantissa)

C++ code representing a CDFG of the 
input program. SARE are used to model 
the nesting of iterative computations.

FSM describing Control Path and Data 
Path of a parallel system which 
implements the algorithm expressed 
through the input code.

Synthesizable VHDL representing the 
input FSM

Input specs
(ANSI C)

Limited precision 
simulation

Parallelism 
Extraction

(CDFG, SARE)

Allocation 
& 

scheduling

VHDL-RTL 
generation

Xilinx proprietary 
synthesis tools

FPGA 
bitstream

C++ code augmented with objects 
representing limited precision variables 
(fixed point, floating point with limited 
mantissa)

C++ code representing a CDFG of the 
input program. SARE are used to model 
the nesting of iterative computations.

FSM describing Control Path and Data 
Path of a parallel system which 
implements the algorithm expressed 
through the input code.

Synthesizable VHDL representing the 
input FSM

 

Figure 1: Ylichron S.r.l. design flow 

Once that the user has given the original specifics 
through a C program, together with a collection of 
significative input cases, the code is automatically 
instrumented in order to estimate the dynamic of the 
program variables, thus making an initial guess for 
potential candidates for a limited precision, fixed point 
representation. Such a guess is given as input to a 
simulator which, for all the input tests, performs an error 
analysis with respect to the original representation; 
guided by the results of the error analysis, corrections are 
manually performed on the signal representation an the 
process is iterated till the satisfaction, within a certain 
threshold error, of the specifics. The code obtained from 
previous iterative process is used as input for a module in 
charge to extract the parallelism from the original 
program; control flow and data flow analysis are 
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performed and the result is a Control and Data Flow 
Graph (CDFG), with nodes characterized by a blocking 
semantics in order not to be obliged to use buffered 
communication channels in the synthesis process. The 
multidimensional variables, accessed within iterative 
constructs, are analysed through the System of Affine 
Recurrence Equations theory [Mong 94] [Mar 00]. The 
CDFG, as well the SARE portions of the code, are then 
passed to an Allocation and Scheduling module which 
uses a priority list scheduling algorithm [Lak 1999] to 
map CDFG onto a Finite State Machine (FSM) 
controlling a parallel data path; the parts described 
through the SARE model are mapped according to the 
method described in [Mar 01]. Finally there is a module 
to generate the synthesizable VHDL program which is 
successively processed through standard proprietary 
compilation tools to produce the bitstream which will 
configure the FPGA. It is worth to be underlined that, 
once the specifics are correct and the limited precision 
arithmetic maintains the errors within the predefined 
threshold, the final architecture – corresponding to the 
bitstream – will implement the specifics within the same 
error threshold, being the whole synthesis process 
'correct-by-construction'. 

In order to standardize I/O operation and to facilitate 
the integration of the automatically generated 
architectures within the Cray environment, we defined an 
HW interface layer which allows to access, in arbitrated 
manner, the memory blocks of the VirtexPro FPGA (the 
SelectBlockRAM), a set of predefined internal registers 
and a DMA engine which transfers data to/from the 
FPGA memory resources. 

4. Example of MPI application  

As a prototype example of the proposed approach, 
we decided to implement a parallel algorithm to 
determine to length N string SN = {s1, ..., sN; si=±1} which 
(nearly) minimizes the sum of the square of all the 
autocorrelation lags, i.e. 
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the former is known as the Low Autocorrelation 
Binary Sequences (LABS) problem. [Mar 94], [Fer 00].  

The LABS problem arises from the area of digital 
communication. In fact, LABS's can be used to generate 
efficient codes for error correction and robust procedures 
for communication synchronization. The problem of 
finding LABS's is usually tackled by using an efficient 
optimization strategy  which minimizes the cost function 
obtained by cumulating the square of all the 
autocorrelation lags Hk(s): 
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Due to its complexity, optimization heuristics are 
used to minimize H(s). In this work, we have chosen the 
Parallel Tempering method, proposed by Marinari and 
Parisi [Mar 92], as it has been shown to give better 
results, in this specific problem, than other heuristics. The 
pseudo-code for the PT algorithm is reported in figure 2, 
where the MC(Ti) notation indicates the execution of a 
Monte Carlo algorithm at temperature Ti (see figure 3) 
input

M replicas of MC
temperature values Ti for each MC

output
s* | H(s*)<= H(s) ∀s generated

begin
for i=1 to M s[i] = random
while not stop_condition

for i=1 to M do in parallel MC(Ti)
for i=1 to M-1 do in parallel

swap(s[i+1],s[i]) with 
p=exp((1/Ti+1-1/Ti)*(H(s[i+1])-H(s[i]))

/* s[i] becomes the solution for MC at 
temperature Ti+1 and s[i+1] becomes 
the solution for MC at temperature Ti*/endfor in parallel

endwhile
end

 

Figure 2: skeleton of the Parallel Tempering algorithm 

 
/* Monte Carlo cycle at temperature T, MC(T) */
for i=1 to NumberSamples

x’ = GenerateNew(r,x) /* x’ is ‘close’ to x */
accept = false
if f(x’) < f(x) then

accept = true
else if exp((f(x)-f(x’))/T) > random(0,1) then

accept = true
end if
if accept then x = x’

end for
/* end of Monte Carlo cycle at temperature T, MC(T) */

 

Figure 3: skeleton of a Monte Carlo cycle at temperature 
T 

From figure 2, we see that all the Monte Carlo (MC) 
cycles can run in parallel and, after the end of each MC 
cycle, they try – still in parallel – to swap the solutions 
with the adjacent (with respect to the temperature) MC. 
As at each step of the MC cycle the function H(s), which 
has time complexity O(N2), has to be computed and the 
other operations (generation of a new string, acceptance 
or rejection of the new string) are O(1) and practically, 
for typical N values, they require a negligible computing 
time with respect to the computation of H(s),  in our 
analysis and optimization effort we will refer only to the 
computation of H(s). 

As typically requested when implementing an 
algorithm onto an FPGA, the algorithm to compute H(s) 
requires O(N2/2) operations (bit comparison and 
increment/decrement of an accumulation variable) while 
the overhead to move results to/from the FPGA memory 
space requires (N/64+1) 64 bit data movements, thus 
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being negligible with respect to the computation. 
Furthermore, H(s) computing involves serial bit level 
operations, forcing a really inefficient use of the 
processor resources. Referring to the processor-to-FPGA 
clock frequency ratio as stated in the introduction, due to 
highly inefficient use of processor resources, it results 
that a degree of parallelism of 30 should be enough to 
obtain a real advantage from an FPGA implementation of 
the algorithm to compute H(s). When we analyse a 
possible pipelined parallel implementation of the H(s) 
computation, we easily recognize that the Hk 
autocorrelation lags can be computed in parallel, thus 
introducing a parallelism degree of N (in our tests we 
adopted the value N=1024 >> 30). Using the Ylichron 
design flow, which in this case heavily relies on the 
SARE theory, we obtained the parallel architecture 
sketched in figure 4, which uses N Functional Units 
(whose structure is depicted in figure 5), one squaring 
unit ( )2 and one accumulation unit.  

In order to compute the whole H(s) function such an 
architecture requires 2N clock cycles, resulting in an 
average efficiency in FU utilization 
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Figure 4: Structure of the pipelined architecture to 
compute H(s) 
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Figure 5: Structure of each one of the N FUs in the 
pipelined architecture shown in figure 4 

Once automatically obtained the bitstream encoding 
previous architecture, the FPGA library function which 
implements the H(s) computation is organized as shown 
in figure 6. 

As we see, the Compute_H function receives, other 
than the I/O parameters, an integer value which is the 
handle for the FPGA. Such an handle has to be initialized 

through a call to the load_FPGA API which, receiving the 
complete path to the configuration bitstream, to the FPGA 
driver and an integer value containing some FPGA 
configuration flags, configures the FPGA downloading 
the specified bitstream into the selected FPGA and 
returning the handle. Once the bitstream has been 
downloaded into the FPGA, the circuit is started through 
a call to the application_start_blocked(fp_id) API which 
does not return the control till the end of the FPGA 
computation. 

The dma_transfer_blocked, as well as the 
read_long_word_from_FPGA are some of the API 
implemented referring to the HW layer designed to 
interface the designs produced with the FPGA Cray 
environment. 

 
void Compute_H(u64 *s, u64 *res, int fp_id)
{

dma_type = HOST_TO_FPGA; 
dma_size = (N/8); 
ptr_host = (u_64) s; 
resource_fgga = selramblock;  
dma_transfer_blocked(dma_type,

dma_size,
ptr_host,
resource_fgga,

fp_id);
/* Start application and wait for its completion*/
application_start_blocked(fp_id);

/* Read the result from FPGA Register0 */
resource_fgga = reg0; 
*res = read_longword_from_FPGA(resource_fgga, fp_id);

}  
Figure 6: Skeleton of the FPGA library function which 
implements H(s) computation. 

In order to give an idea of the impact on 
performances of the FPGA utilization, we report that, on 
a single node of the Cray XD-1 system in the case of a 
binary string with length N=1024, the SW 
implementation of the H(s) function requires 970 µsec. 
As reference, the main portion of the C code adopted is 
reported in figure 7; it is worth to be underlined that the 
integer product operation resulted faster than equality 
check followed by increment/decrement and that, in order 
to avoid misleading and unfair cache effects, we took care 
to put the string in cache before starting the computation. 
When we resorted to the FPGA function Compute_H (fig. 
6) on strings of the same length N, thus including the I/O 
data transfer time, we measured that the computing time 
drops down to 52 µsec (having clocked the FPGA circuit 
at fck=130 MHz). So in the LABS problem the adoption 
of FPGA, programmed through the automatic design flow 
sketched in figure 1, results in an overall speed-up S=19. 
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for (k=0; k<SIZE; k++) {
temp = 0;
for (i=0; i<(SIZE-k); i++) 

temp += s[i] * s[i+k];
autocorr += temp*temp;

}  

Figure 7: reference C code to compute H(s)  

 

5. Conclusions  

In this work we reported about the experience we 
made in ENEA using the Cray XD1 system, equipped 
with FPGA co-processing elements (the Xilinx VirtexPro 
P50). The pursued approach has been mainly concerned 
with the 'usability' of the system, trying to hide, as much 
as possible, all the low level details which are normally 
involved in the use of reconfigurable devices. To this aim, 
the High Level Synthesis design flow defined by 
Ylichron S.r.l., based on the acquisition of specifics 
through ANSI C programs and on correct-by-construction 
steps which transform the ANSI C description into a 
parallel architecture encoded in the configuration 
bitstream.  

In order to make really easy the exploitation of 
programmable devices, a library of functionalities has 
been defined, so that the user accesses the FPGA simply 
calling a function which hides all the low level details 
(I/O transfers, synchronizations). To further enlarge the 
usability and availability of the XD1 system, it has been 
embedded within the ENEA Grid environment. 

As explanatory example to illustrate the using and 
the advantages of programmable devices within C+MPI 
programs, we considered the solution of the Low 
Autocorrelation Binary String problem; in such a case the 
adoption of the proposed design flow allows to speed-up 
the computation of a factor S = 19. 
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