

CUG 2006 Proceedings 1 of 6

High Level Synthesis for the Cray XD-1 System in a Grid
Environment

Giorgio Brusco (a), Rocco Casilli (a), Philip LoCascio (d), Alessandro
Marongiu (a,b), Silvio Migliori (b), Paolo Palazzari (a,c), Vittorio Rosato (a,c),
Paolo Verrecchia (a) 1

(a) Ylichron S.r.l, (b) ENEA – INFO, (c) ENEA – CAMO, (d) ORNL – Life Science Division

ABSTRACT: The rapid increase in integrated circuit densities, with the slowing in the
increase in commodity CPU clock rates, has fostered the investigation of hybrid
architectures using FPGA technologies to provide some specialized accelerated
computational capability, such as the Cray XD-1 system. In order to take full advantage
of the FPGA enabled nodes of the Cray XD-1 system, and avoiding the traditional
problematic development times typical of custom digital circuit design, High Level
Synthesis (HLS) methodologies appear to be a promising research avenue. An HLS
allows one to obtain a synthesizable VHDL description, in a near automated way,
starting from a specific algorithm given in some High Level language (such as the ANSI
C). In this presentation we describe the using of the HLS methodology developed by
Ylichron S.r.l. – a spin-off company of the Italian Agency for the New Technologies, the
Energy and the Environment (ENEA) – to implement a library of core algorithms
utilizing the FPGA module of the XD-1 system. In order to further promote the using of
such powerful computing platform, the XD1 system has been embedded within the ENEA
Grid environment. As illustrative test case to show the advantages achievable through
the adoption of reconfigurable devices we implemented a parallel solution, coded in
C+MPI, of the Low Autocorrelation Binary String optimization problem; the solution
boosted by the FPGA devices configured to compute the cost function of the optimization
process was characterized by a speed-up factor S=19 with respect to the case in which
FPGAs were not used.

KEYWORDS: GRID computing, High Level Synthesis

1 This work has been performed under the framework of the project CRESCO (Center for Computational Research on
Complex Systems), funded by the Italian Ministry for University and Research, in the frame of the National Research
Programme (PON 2000-2006 Measure II.2, Action a).

CUG 2006 Proceedings 2 of 6

1. Introduction

Reconfigurable computing gained a lot of attention in
last years as it was promising the achieving of
performances significantly higher than the ones given by
the current generation of high end computing systems.
The reason for such a performance gain is based on the
possibility to use reconfigurable devices (i.e. FPGA, Field
Programmable Gate Array) to implement, for each
algorithm to be executed, dedicated computing
architectures which match the algorithm structure. As a
consequence to this approach, all the FPGA available
logic, as well as I/O bandwidth, will be used with
maximal efficiency, thus avoiding the severe underusing
of silicon area usually encountered in conventional
microprocessors which have a lot of their area devoted to
implement complex memory hierarchies, out of order
execution, scheduling policies etc... In a conventional
processor, at each clock cycle, a lot of resources do not
perform any operation while, resorting to a dedicated
parallel computing architecture, nearly each part is active
at every clock cycle. This parallel structure of the
architecture implemented on the reconfigurable device is
the key issue to overcome the gap existing between the
clock frequency of microprocessors and FPGA devices:
such a gap is in the order of a factor 10÷30, being the
clock frequency of a microprocessor ~3 GHz, while
100-300 MHz is the typical range of operating frequency
for the circuits implemented onto FPGAs. As a rule of the
thumb, taking into account the different efficiency in the
resources utilization, an implementation on FPGA
becomes competitive with a SW implementation when
the parallelism exploitable is larger than the processor to
FPGA clock frequency ratio.

Following such a promise for high performances,
they have been proposed, by Cray and SGI, computing
architectures with FPGA devices tightly connected to the
processing nodes through fast switches and not through
the PCI. Thanks to this tight connection, FPGA/Processor
access to data produced by the Processor/FPGA is very
fast (low latency and high bandwidth). Nevertheless, the
availability of a fast and reliable parallel computing
architecture equipped with reconfigurable devices is only
a necessary condition for the exploitation, by the end
users, of the computing power of the system. In order to
allow the end users to take real advantage from a
reconfigurable architecture like the Cray XD1 – the one
which we refer to – it is necessary that the access to the
FPGA part should not require skills different from the
ones of normal users of computing systems. To this aim,
the FPGA part will be activated by the end users through
calls, within a standard C+MPI code, to a standard library
of functionalities. Furthermore, it would be highly
desirable that the system could be immersed in a Grid
environment.

In this work we will present the experience we made
on the integration of the Cray XD1 system, equipped with
FPGA co-processing elements, in the ENEA Grid
environment and in the developing the way to integrate
the FPGA library into a C+MPI code. Some library
elements have been developed through the High Level
Synthesis design flow made available by Ylichron S.r.l

2. The ENEA GRID Environment

In order to meet the needs of the medium and small
Italian companies, ENEA (Italian National Agency for
New Technologies, Energy and the Environment) has
started a Grid project. The main goals of this project are:

a) providing ENEA for its internal use, and the

eventual use by external users, with a computing
Grid.

b) stimulating the demand of Grid computing by
medium and small companies, providing examples
of successful applications running on the Grid, and
helping the users in formulating their models in a
way that can exploit the power of the Grid.

c) developing a special middleware to support the
seamless integration of special purpose devices (i.e.
electronic microscopes, DNA sequencers, FPGA
and DSP, ...).

ENEA research activity is performed in 12 sites

around Italy, and the ENEA Grid infrastructure is born
with the mission to provide an integrated environment
covering most of ENEA's multi-platform computational
resources, connected in a wide area network. The key
elements in the ENEA Grid implementation are:

1) a distributed file system (AFS/OpenAFS),
2) a wide area resource manager (Platform LSF) and
3) a unified user interface (based on Java and Citrix

Technologies).
AFS is a distributed filesystem product, pioneered at

Carnegie Mellon University. It offers a client-server
architecture for file sharing, providing location
independence, scalability, security, and transparent
migration capabilities for data.

LSF provides on demand access and scalability in
distributing applications and executing workload. It is
based on a multiqueue system of batch jobs, having the
queues programmable service policies. The ENEA Grid
implementation selected a time based queue
classification; each queue can feed every system, selected
later on the basis of user specified flags or requests
(number of CPUs, specific SW, class of architecture
(FPGA), ...)

These components form the middleware that
provides the functionalities typical of a Grid, "unique
authentication, authorization, resource access and
resource discovery," as stated by Ian Foster and Carl
Kesselman in their classical paper "The Anatomy of the

CUG 2006 Proceedings 3 of 6

Grid." The choice of mature and multi-platform software
components, either proprietary as LSF and Citrix or open-
source as OpenAFS, greatly improves the reliability, ease
of management and update of the system. ENEA Grid
implementation began in 1998 and the new resources
have been progressively introduced in what is now a
production-quality Grid infrastructure.

The services offered by ENEA Grid include the

access to computation resources, graphic and 3-D
immersive facilities, and software resources, including
commercial codes (e.g., Fluent, Abacus, Catia) and
elaboration environments (e.g., Matlab, IDL, SAS).
ENEA Grid computational resources include about 700
processors with either MIMD architecture -- as IBM SP,
SGI Altix and Onyx, and Cray XD1 -- or in cluster
configuration -- with Linux 32/64 systems and Apple
Mac OSX. A 128-node IBM SP4 with 256 nodes IBM
SP5 [~3 Tflops] are the most important resource at the
moment. These resources are located in six computer
centres in northern, central and southern Italy and are
connected over the WAN by the Italian Academic and
Research Network (GARR). ENEA Grid has, at present,
about 600 registered users and more that 2TB of stored
data, with 18TB available.

3. The ENEA High Level Synthesis design
flow

As stated in the introduction, the key point for the
success of reconfigurable architectures is the availability
of a design flow which allows the (nearly) effortless
migration toward such a new computational paradigm.
The path we are following in the integration of the CRAY
XD1 system within the ENEA Grid is based

1) on the adoption of a library of functionalities
implemented onto FPGA and easily integrable,
through few API calls, within a C+MPI program and

2) on the development of a design flow to enlarge, in a
fast and reliable way, the set of functionalities
included in the library.
The first point is achieved in a straightforward

manner, by including within a C function the calls to the
Cray primitives to load the desired bitstream into the
FPGA, to perform the (eventually) needed DMA
operations to move the input data and to output the results
and to start the application. The functionality can be
invoked in a blocking or not blocking way; in the first
case the calling process will wait till the completion of the
functionality, in the latter case the calling process will
prosecute its execution and will call a specific
synchronization function to wait, when necessary, the
results produced by the FPGA.

In order to define a simple design flow to develop a
new functionality to be added to the FPGA library, we
decided to use High Level Synthesis (HLS)

methodologies and, in particular, we used the HLS
methodology developed by Ylichron S.r.l, an ENEA
spin-off company. We decided for such a solution
because, as illustrated in figure 1, specifics can be
expressed by means of an ANSI C program (actually it is
a subset of the ANSI C, as the use of pointers and
recursion is disallowed). The user is not requested to deal
with low level details like parallelism extraction and
signal representation.

Input specs
(ANSI C)

Limited precision
simulation

Parallelism
Extraction

(CDFG, SARE)

Allocation
&

scheduling

VHDL-RTL
generation

Xilinx proprietary
synthesis tools

FPGA
bitstream

C++ code augmented with objects
representing limited precision variables
(fixed point, floating point with limited
mantissa)

C++ code representing a CDFG of the
input program. SARE are used to model
the nesting of iterative computations.

FSM describing Control Path and Data
Path of a parallel system which
implements the algorithm expressed
through the input code.

Synthesizable VHDL representing the
input FSM

Input specs
(ANSI C)

Limited precision
simulation

Parallelism
Extraction

(CDFG, SARE)

Allocation
&

scheduling

VHDL-RTL
generation

Xilinx proprietary
synthesis tools

FPGA
bitstream

C++ code augmented with objects
representing limited precision variables
(fixed point, floating point with limited
mantissa)

C++ code representing a CDFG of the
input program. SARE are used to model
the nesting of iterative computations.

FSM describing Control Path and Data
Path of a parallel system which
implements the algorithm expressed
through the input code.

Synthesizable VHDL representing the
input FSM

Figure 1: Ylichron S.r.l. design flow

Once that the user has given the original specifics
through a C program, together with a collection of
significative input cases, the code is automatically
instrumented in order to estimate the dynamic of the
program variables, thus making an initial guess for
potential candidates for a limited precision, fixed point
representation. Such a guess is given as input to a
simulator which, for all the input tests, performs an error
analysis with respect to the original representation;
guided by the results of the error analysis, corrections are
manually performed on the signal representation an the
process is iterated till the satisfaction, within a certain
threshold error, of the specifics. The code obtained from
previous iterative process is used as input for a module in
charge to extract the parallelism from the original
program; control flow and data flow analysis are

CUG 2006 Proceedings 4 of 6

performed and the result is a Control and Data Flow
Graph (CDFG), with nodes characterized by a blocking
semantics in order not to be obliged to use buffered
communication channels in the synthesis process. The
multidimensional variables, accessed within iterative
constructs, are analysed through the System of Affine
Recurrence Equations theory [Mong 94] [Mar 00]. The
CDFG, as well the SARE portions of the code, are then
passed to an Allocation and Scheduling module which
uses a priority list scheduling algorithm [Lak 1999] to
map CDFG onto a Finite State Machine (FSM)
controlling a parallel data path; the parts described
through the SARE model are mapped according to the
method described in [Mar 01]. Finally there is a module
to generate the synthesizable VHDL program which is
successively processed through standard proprietary
compilation tools to produce the bitstream which will
configure the FPGA. It is worth to be underlined that,
once the specifics are correct and the limited precision
arithmetic maintains the errors within the predefined
threshold, the final architecture – corresponding to the
bitstream – will implement the specifics within the same
error threshold, being the whole synthesis process
'correct-by-construction'.

In order to standardize I/O operation and to facilitate
the integration of the automatically generated
architectures within the Cray environment, we defined an
HW interface layer which allows to access, in arbitrated
manner, the memory blocks of the VirtexPro FPGA (the
SelectBlockRAM), a set of predefined internal registers
and a DMA engine which transfers data to/from the
FPGA memory resources.

4. Example of MPI application

As a prototype example of the proposed approach,
we decided to implement a parallel algorithm to
determine to length N string SN = {s1, ..., sN; si=±1} which
(nearly) minimizes the sum of the square of all the
autocorrelation lags, i.e.






























= ∑ ∑

=

−

=
+

N

k

kN

i
kii

S
N ssS

1

2

0
min

the former is known as the Low Autocorrelation
Binary Sequences (LABS) problem. [Mar 94], [Fer 00].

The LABS problem arises from the area of digital
communication. In fact, LABS's can be used to generate
efficient codes for error correction and robust procedures
for communication synchronization. The problem of
finding LABS's is usually tackled by using an efficient
optimization strategy which minimizes the cost function
obtained by cumulating the square of all the
autocorrelation lags Hk(s):

 H(s) = ∑ ∑∑
= =

−

=
+ =













N

k

N

k
k

kN

i
kii Hss

1 1

2
2

1

Due to its complexity, optimization heuristics are
used to minimize H(s). In this work, we have chosen the
Parallel Tempering method, proposed by Marinari and
Parisi [Mar 92], as it has been shown to give better
results, in this specific problem, than other heuristics. The
pseudo-code for the PT algorithm is reported in figure 2,
where the MC(Ti) notation indicates the execution of a
Monte Carlo algorithm at temperature Ti (see figure 3)
input

M replicas of MC
temperature values Ti for each MC

output
s* | H(s*)<= H(s) ∀s generated

begin
for i=1 to M s[i] = random
while not stop_condition

for i=1 to M do in parallel MC(Ti)
for i=1 to M-1 do in parallel

swap(s[i+1],s[i]) with
p=exp((1/Ti+1-1/Ti)*(H(s[i+1])-H(s[i]))

/* s[i] becomes the solution for MC at
temperature Ti+1 and s[i+1] becomes
the solution for MC at temperature Ti*/endfor in parallel

endwhile
end

Figure 2: skeleton of the Parallel Tempering algorithm

/* Monte Carlo cycle at temperature T, MC(T) */
for i=1 to NumberSamples

x’ = GenerateNew(r,x) /* x’ is ‘close’ to x */
accept = false
if f(x’) < f(x) then

accept = true
else if exp((f(x)-f(x’))/T) > random(0,1) then

accept = true
end if
if accept then x = x’

end for
/* end of Monte Carlo cycle at temperature T, MC(T) */

Figure 3: skeleton of a Monte Carlo cycle at temperature
T

From figure 2, we see that all the Monte Carlo (MC)
cycles can run in parallel and, after the end of each MC
cycle, they try – still in parallel – to swap the solutions
with the adjacent (with respect to the temperature) MC.
As at each step of the MC cycle the function H(s), which
has time complexity O(N2), has to be computed and the
other operations (generation of a new string, acceptance
or rejection of the new string) are O(1) and practically,
for typical N values, they require a negligible computing
time with respect to the computation of H(s), in our
analysis and optimization effort we will refer only to the
computation of H(s).

As typically requested when implementing an
algorithm onto an FPGA, the algorithm to compute H(s)
requires O(N2/2) operations (bit comparison and
increment/decrement of an accumulation variable) while
the overhead to move results to/from the FPGA memory
space requires (N/64+1) 64 bit data movements, thus

CUG 2006 Proceedings 5 of 6

being negligible with respect to the computation.
Furthermore, H(s) computing involves serial bit level
operations, forcing a really inefficient use of the
processor resources. Referring to the processor-to-FPGA
clock frequency ratio as stated in the introduction, due to
highly inefficient use of processor resources, it results
that a degree of parallelism of 30 should be enough to
obtain a real advantage from an FPGA implementation of
the algorithm to compute H(s). When we analyse a
possible pipelined parallel implementation of the H(s)
computation, we easily recognize that the Hk
autocorrelation lags can be computed in parallel, thus
introducing a parallelism degree of N (in our tests we
adopted the value N=1024 >> 30). Using the Ylichron
design flow, which in this case heavily relies on the
SARE theory, we obtained the parallel architecture
sketched in figure 4, which uses N Functional Units
(whose structure is depicted in figure 5), one squaring
unit ()2 and one accumulation unit.

In order to compute the whole H(s) function such an
architecture requires 2N clock cycles, resulting in an
average efficiency in FU utilization

 () () 25.0
22

2
CyclesClock #FU#

operations#

2

≈
×+












=
×

=
NN

N

η

(·) ² +0

Control FSM

Input string

OutputFU FU FU FU FU

Figure 4: Structure of the pipelined architecture to
compute H(s)

=

1

±

Figure 5: Structure of each one of the N FUs in the
pipelined architecture shown in figure 4

Once automatically obtained the bitstream encoding
previous architecture, the FPGA library function which
implements the H(s) computation is organized as shown
in figure 6.

As we see, the Compute_H function receives, other
than the I/O parameters, an integer value which is the
handle for the FPGA. Such an handle has to be initialized

through a call to the load_FPGA API which, receiving the
complete path to the configuration bitstream, to the FPGA
driver and an integer value containing some FPGA
configuration flags, configures the FPGA downloading
the specified bitstream into the selected FPGA and
returning the handle. Once the bitstream has been
downloaded into the FPGA, the circuit is started through
a call to the application_start_blocked(fp_id) API which
does not return the control till the end of the FPGA
computation.

The dma_transfer_blocked, as well as the
read_long_word_from_FPGA are some of the API
implemented referring to the HW layer designed to
interface the designs produced with the FPGA Cray
environment.

void Compute_H(u64 *s, u64 *res, int fp_id)
{

dma_type = HOST_TO_FPGA;
dma_size = (N/8);
ptr_host = (u_64) s;
resource_fgga = selramblock;
dma_transfer_blocked(dma_type,

dma_size,
ptr_host,
resource_fgga,

fp_id);
/* Start application and wait for its completion*/
application_start_blocked(fp_id);

/* Read the result from FPGA Register0 */
resource_fgga = reg0;
*res = read_longword_from_FPGA(resource_fgga, fp_id);

}
Figure 6: Skeleton of the FPGA library function which
implements H(s) computation.

In order to give an idea of the impact on
performances of the FPGA utilization, we report that, on
a single node of the Cray XD-1 system in the case of a
binary string with length N=1024, the SW
implementation of the H(s) function requires 970 µsec.
As reference, the main portion of the C code adopted is
reported in figure 7; it is worth to be underlined that the
integer product operation resulted faster than equality
check followed by increment/decrement and that, in order
to avoid misleading and unfair cache effects, we took care
to put the string in cache before starting the computation.
When we resorted to the FPGA function Compute_H (fig.
6) on strings of the same length N, thus including the I/O
data transfer time, we measured that the computing time
drops down to 52 µsec (having clocked the FPGA circuit
at fck=130 MHz). So in the LABS problem the adoption
of FPGA, programmed through the automatic design flow
sketched in figure 1, results in an overall speed-up S=19.

CUG 2006 Proceedings 6 of 6

for (k=0; k<SIZE; k++) {
temp = 0;
for (i=0; i<(SIZE-k); i++)

temp += s[i] * s[i+k];
autocorr += temp*temp;

}

Figure 7: reference C code to compute H(s)

5. Conclusions

In this work we reported about the experience we
made in ENEA using the Cray XD1 system, equipped
with FPGA co-processing elements (the Xilinx VirtexPro
P50). The pursued approach has been mainly concerned
with the 'usability' of the system, trying to hide, as much
as possible, all the low level details which are normally
involved in the use of reconfigurable devices. To this aim,
the High Level Synthesis design flow defined by
Ylichron S.r.l., based on the acquisition of specifics
through ANSI C programs and on correct-by-construction
steps which transform the ANSI C description into a
parallel architecture encoded in the configuration
bitstream.

In order to make really easy the exploitation of
programmable devices, a library of functionalities has
been defined, so that the user accesses the FPGA simply
calling a function which hides all the low level details
(I/O transfers, synchronizations). To further enlarge the
usability and availability of the XD1 system, it has been
embedded within the ENEA Grid environment.

As explanatory example to illustrate the using and
the advantages of programmable devices within C+MPI
programs, we considered the solution of the Low
Autocorrelation Binary String problem; in such a case the
adoption of the proposed design flow allows to speed-up
the computation of a factor S = 19.

Acknowledgments

The authors would like to thank Alessandro Secco
(LSF specialist) and CRAY staff for their precious help in
the set-up of the CRAY environment within the ENEA
Grid. We are also in debt with Giovanni Bracco, the
ENEA AFS expert.

References

[Fer 00] Ferreira F., Fontanari J., Stadler P.: "Landscape
statistics of the low-autocorrelation binary string
problem", J. Phys. A: Math. Gen. 33 (2000) 8635-8647

[Lak 1999] Lakshminarayana, G., Khouri, K., Jha, N.K.:
"Wavesched - a novel scheduling technique for control-

flow intensive Designs", IEEE Trans. on CAD of
Integrated Circuit and Systems, 18, 5 (May), 1999.

[Mar 00] Marongiu A., Palazzari P.: "Automatic Mapping
of Systems of N-dimensional Affine Recurrence
Equations (SARE) onto Distributed Memory Parallel
Sustems", IEEE Transactions on Software Engineering,
vol. 26, n. 3, March 2000.

[Mar 01] Marongiu A., Palazzari P.: "Automatic
implementation of affine iterative algorithms:Design flow
and communication synthesis", Computer Physics
Communications, 139, pp. 109-191, Sep. 2001.

[Mar 92] Marinari E., Parisi G.: "Simulated Tempering:
A New Monte Carlo Scheme", Europhysics Letters, 19,
1992.

[Mar 94] Marinari E., Parisi G., Ritort F.: "Replica Field
Theory for Deterministic Models: Binary Sequences with
Low Autocorrelation", J. Phys. A: Math. Gen. 27 (1994)
7615.

[Mong 94] Mongenet C., Clauss P., Perrin G.R.:
"Geometrical Tools to Map System of Affine Recurrence
Equations on Regular Arrays", Acta Informatica, Vol. 31,
No. 2, pp. 137-160, 1994.

About the Authors

Giorgio Brusco is SW development engineer at
Ylichron Srl – g.brusco@ylichron.it

Rocco Casilli is SW development engineer at
Ylichron Srl – r.casilli@ylichron.it

Philip LoCascio is researcher in Genome Analysis
and Modeling, ORNL

Alessandro Marongiu (Ph.D.) is CTO for the HW
section of Ylichron Srl and researcher at the ENEA
Portici Research Centre. a.marongiu@ylichron.it

Silvio Migliori is in charge of the Grid projects at
ENEA – migliori@enea.it.

Paolo Palazzari (Ph.D.) is CTO for the SW section of
Ylichron Srl and researcher at the ENEA Casaccia
Research Centre - p.palazzari@ylichron.it

Vittorio Rosato (Ph.D.) is president of Ylichron Srl
and researcher at the ENEA Casaccia Research Centre -
v.rosato@ylichron.it

Paolo Verrecchia is HW development engineer at
Ylichron Srl – p.verrecchia@ylichron.it

