
High Level Synthesis for the
Cray XD-1 System in a Grid
Environment

Giorgio Brusco (a), Rocco Casilli (a), Philip
LoCascio (d), Alessandro Marongiu (a,b),
Silvio Migliori (b), Paolo Palazzari (a,c),
Vittorio Rosato (a,c), Paolo Verrecchia (a)

(a) Ylichron S.r.l, (b) ENEA – INFO,
(b) (c) ENEA – CAMO, (d) ORNL – Life Science Division

Outline of presentation

 Programming with reconfigurable devices
 Why
 When
 How

 High Level Synthesis methodologies
 Using FPGA in C+MPI environment
 Example: the LABS problem
 Conclusions

Programming with reconfigurable devices:
Why
 Processors are hitting the “memory wall”: the

gap between the processor clock period and
the memory access time is increasing so

 A lot of area is devoted to implement memory
hierarchies (both cache controllers and cache
banks)

Programming with reconfigurable devices:
Why
 In conventional processor there is poor

exploitation of the concept of parallelism,
being data and istructions fetched from
memory;

 the instruction per cycle (IPC) figure is low, in
the order of 5-6;

Programming with reconfigurable devices:
Why
 Some computations (limited precision

arithmetic, character based) severely under
use processor resources (memory
bandwidth, functional units);

 in these cases processors are employed with
very poor efficiency.

Programming with reconfigurable devices:
Why
 Programmable devices (FPGA) offer a lot of

interesting characteristics:
 Very High Internal Memory Bandwidth: 250 32bit

SelectRam Banks, accessed at fck=200 MHz, offer
a bandwidth of 200 GB/sec;

 High Degree of Internal Parallelism: depending on
the type of computation, from tens up to
thousands of functional units can be implemented
and activated in parallel, resulting in very high IPC

Programming with reconfigurable devices:
When
FPGA can be effectively used whenever a

computationally intensive problem
 involves operations not efficiently supported

by COTS processors,
 under-uses processor bandwidth and/or

processor functional units,
 has enough parallelism to hide the lowest

clock frequency of FPGA circuits with respect
to processors

Programming with reconfigurable devices:
When
 includes an heavy computational kernel

which can be mapped onto a parallel
architecture embeddable within a
programmable device,

 communication between such a
computational kernel and the remaining part
of the algorithm has complexity smaller than
the computational kernel.

Programming with reconfigurable devices:
How
 Simplicity should be a must:
 the access to the FPGA part should not

require skills different from the ones of
normal users of computing systems.

 High Level Synthesis methodologies have to
been adopted in order to hide, as much as
possible, HW low level details.

 Within a certain extent, performances can be
sacrificed to obtain simplicity

High Level Synthesis methodologies

 HLS translates, in a sequence of (nearly)
automated steps, HL specifics (expressed,
for instance, in ANSI C) into a synthesizable
description (VHDL-RTL, for instance).

 The whole translation process has to be
correct by construction, so the final
architecture is correct once the correctness
of the original C specs has been ensured

 Specs are checked at HL

The Ylichron Design Flow

Input Specs
(ANSI C)

Limited precision
simulation

Parallelism extraction
(CDFG,SARE)

Allocation & Scheduling

VHDL-RTL generation

Xilinx proprietary synthesis
tools

FPGA
configuration

bitstream

Using FPGA in C+MPI

 The structure of a C library of FPGA
functionalities has been defined.

 A given functionality is invoked as a normal C
library function; this function embodies all the
data transfer and synchronization details.

 We defined a standard environment, plus the
necessary API, to access – in arbitrated
manner – FPGA resources (memory,
registers, DMA)

The LABS problem

 S = {s1, ..., sN; si=±1}

 LABS problem arises from the area of digital
communication. In fact, LABS's can be used
to generate efficient codes for error
correction and robust procedures for
communication synchronization

!!
!

"

#

$$
$

%

&

!
!

"

#

$
$

%

&
= ' '

=

(

=

+

N

k

kN

i

kii
S

N
ssS

1

2

1

min

The LABS problem: Parallel Tempering

input

M replicas of MC

temperature values Ti for each MC

output

s* | H(s*)<= H(s) !s generated
begin

for i=1 to M s[i] = random

while not stop_condition

for i=1 to M do in parallel MC(Ti)

for i=1 to M-1 do in parallel

swap(s[i+1],s[i]) with

p=exp((1/Ti+1-1/Ti)*(H(s[i+1])-H(s[i]))

/* s[i] becomes the solution for MC at

temperature Ti+1 and s[i+1] becomes

the solution for MC at temperature Ti*/

endfor in parallel

endwhile

end

The LABS problem: Monte Carlo

/* Monte Carlo cycle at temperature T, MC(T) */

for i=1 to NumberSamples

x’ = GenerateNew(r,x) /* x’ is ‘close’ to x */

accept = false

if f(x’) < f(x) then

accept = true

else if exp((f(x)-f(x’))/T) > random(0,1) then

accept = true

end if

if accept then x = x’

end for

/* end of Monte Carlo cycle at temperature T, MC(T) */

The LABS problem

 Is a good candidate for FPGA
implementation?

 involves operations not efficiently supported
by COTS processors?

 Yes, single binary operations have to be
implemented

The LABS problem

 Is a good candidate for FPGA
implementation?

 under-uses processor bandwidth and/or
processor functional units?

 Yes, each operation requires the access at
only two different bits, so we use only 3% of
memory bandwidth. Furthermore, we use
only one integer unit.

The LABS problem

 Is a good candidate for FPGA
implementation?

 has enough parallelism to hide the lowest
clock frequency of FPGA circuits with respect
to processors?

 Yes, it has nearly N functional units that can
run in parallel, and
N=0(1000) >>fck_proc/fck_circuit = 3x109/1x108=30

The LABS problem

 Is a good candidate for FPGA
implementation?

 includes an heavy computational kernel
which can be mapped onto a parallel
architecture embeddable within a
programmable device?

 Yes, it is based on a computational kernel
which has O(N2) time complexity; a lot
(thousands) of bit operations can be mapped
into a single FPGA.

The LABS problem

 Is a good candidate for FPGA
implementation?

 communication between such a
computational kernel and the remaining part
of the algorithm has complexity smaller than
the computational kernel?

 Yes, communication is O(N) while
computation is O(N2)

The LABS problem

(·) ? +0

Control FSM

Input string

OutputFU FU FU FU FU

N Functional Units

=

1

±

The LABS problem
void Compute_H(u64 *s, u64 *res, int fp_id)

{

dma_type = HOST_TO_FPGA;

dma_size = (N/8);

ptr_host = (u_64) s;
resource_fgga = selramblock;

dma_transfer_blocked(dma_type,

dma_size,

ptr_host,

resource_fgga,

fp_id);
/* Start application and wait for its completion*/

application_start_blocked(fp_id);

/* Read the result from FPGA Register0 */

resource_fgga = reg0;

*res = read_longword_from_FPGA(resource_fgga, fp_id);

}

Program DMA

Do DMA

Do computation

Pass results
back

The LABS problem: performances

 N = 1024;
 Optimized implementation on the Cray XD-1

Opteron processor: 970 µsec to compute the
H(s) function.

 Implementation on FPGA + communication
and synchronization overhead: 52 µsec;
circuit clocked at 100 MHz and VirtexPro P50
used at ∼80%

 S = 19

Conclusions

 We discussed why, when and how it is
convenient to use FPGA devices instead of
SW implementation on conventional
processors;

 The Ylichron HLS design flow has been
presented;

 The illustrative LABS problem has been
shown as example of the performance
improvements that can be obtained with HLS
and dedicated circuits.

