
CUG 2006 Proceedings 1

Message Passing Toolkit (MPT) Software on XT3

Howard Pritchard, Doug Gilmore, Monika ten Bruggencate, David
Knaak, and Mark Pagel, Cray Inc.

ABSTRACT: This paper describes the implementations of the main components of the
Message Passing Toolkit (MPT) on XT3 - MPI and SHMEM. Approaches to tuning of
applications using MPT components are discussed. Current and upcoming feature work for
both packages is also described.

KEYWORDS: CRAY XT3, MPI, Portals, SHMEM,MPICH2

1. Introduction

The Message Passing Toolkit is available on a range of
current and legacy CRAY systems. On most of these
platforms, the Toolkit has featured implementations of MPI
and SHMEM.

The XT3 MPT package includes an MPI implementation
based on MPICH2 1.0.2 with some updates from the
MPICH2 1.0.3 release. Most MPI-2 functionality available
in MPICH2 is available on XT3 including remote memory
access (RMA), MPI I/O, collective operations using inter-
communicators, etc. MPI-2 process creation and
management features, described in Chapter 3 of [1] are not
currently supported.

The SHMEM implementation is all-new for XT3, partly
owing to the significant differences between remote
memory access methods available for SHMEM on XT3 and
those available on most legacy and current CRAY
platforms

Both the MPI and SHMEM implementations utilize the
Portals interface to the XT3 network [2,3]. This interface
places an emphasis on scalability and offload of
communication-related work from the host processor. This
has a significant impact on how applications can best use
MPI and SHMEM on XT3.

Portals is an API which encapsulates many elements
important to MPI-1 messaging, in particular MPI message
matching order semantics. It presents an asynchronous
interface to the application. An application submits
requests that involve data motion – PtlGet, PtlPut, etc. to
Portals. An application can also submit requests to match
application receive buffers with the data motion operations

from other processes. Portals indicates the progress of
these various requests to an application via entries
deposited in event queues(EQ) that have been associated
with these requests. Cray has also ensured that, to some
extent, progress of Portals may also be inferred by the
visibility of updates in host memory on a node.

The rest of this document will be organized as follows.
Section 2 will describe essentials of the MPI
implementation on XT3. Section 3 will likewise give an
overview of the SHMEM implementation on XT3. These
descriptions should help application programmers better
determine how to optimize their MPI or SHMEM codes for
XT3. Section 4 will consider performance tuning and
pitfalls to avoid for MPI and SHMEM applications.
Section 5 will consider some outstanding issues with XT3
MPI, as well as future work planned for MPT components.

2. XT3 MPICH2 Implementation

The XT3 MPICH2 uses a custom abstract device interface
(ADI3) based on a combination of the approach used in an
earlier Portals-based MPICH1 implementation [4] and
elements of the MPICH2 CH3 device [5].

As with a number of other MPI implementations, an eager
protocol is used for sending short messages. By default,
short in the context of XT3 MPICH2 means messages with
up to 128000 bytes of data. A sender assumes that the
receiver has sufficient buffer space (either using MPI
internal buffers or pre-posted application buffers) and other
necessary resources to manage short messages at the
receiver. If the message to send is very short (1024 or
fewer bytes by default), the sender first allocates a local
buffer and copies the application data into this local, MPI
internal buffer. The data is then transferred in manner

CUG 2006 Proceedings 2

similar to that used for longer short messages. This
approach allows blocking sends to return more quickly.

Starting with the MPT 1.3 release, a sender can use one of
two procedures for handling longer messages. The default
is for the sender to build a small 8-byte message, which is
sent to the receiver. This message has sufficient
information for the receiver to pull the message data using
a Portals PtlGet, when a match is found with a posted
receive. In previous releases, the default was for the sender
to send the message data much as if it were delivering a
short message using the eager protocol. The former
procedure is better when it is likely that the receiver is
unable to pre-post matching receives prior to arrival of the
data, but may be trying to do so shortly thereafter. This
series of events occurs frequently in MPI benchmark tests,
as well as for certain collective operations. The latter
method is better when application logic insures that
matching receives are often pre-posted. Using the
MPICH_PTL_EAGER_LONG environment variable, the
latter, eager procedure can be recovered. Note that the
long protocol also assumes there are sufficient resources
(space in the unexpected EQ) for the receiver to process
the message.

It is on the receiver side of the ADI3 device that some of
the special features of Portals are more evident. MPI is
responsible for inserting Match Entries (ME) into a linked
list managed by the Portals layer of the network protocol

stack. MEs can be used to encapsulate MPI message
matching criteria – a message tag, a communicator context,
source process, and the wildcards MPI_ANY_TAG and

MPI_ANY_SOURCE. In the XT3 Portals implementation,
a memory descriptor (MD) can be associated with a ME.
When an incoming message is received off of the network,
Portals extracts information in the message header (the first
packet of the message) and traverses this linked list of
MEs looking for a match between the message header and
an ME. This information can include an MPI tag, context
from a MPI communicator, and sender. When a match is
found, Portals delivers the data into the buffer described by
the MD. An application can request that Portals manage
delivery of data into this buffer – a receive-side managed
buffer. The application can also specify that a ME be
removed from the linked list if a match is found. The
application can further specify the maximum amount of
data, which can be received from each incoming message,
or optionally, that it is okay to truncate the message. Even
if there is a match between the message header and the ME,
Portals will continue traversing the linked list looking for a
match, if the message does not meet these length
requirements (maximum allowed message size and
available space in the MD if truncation is not allowed).

XT3 MPICH2 uses these Portals features as follows. At job
start-up within MPI_Init, three buffers for eager messages
are allocated and special MEs for these buffers are
initialized and inserted at the start of the linked list of MEs

Figure 1 MPI Configuration of Portals Match Entries (MEs) for handling pre-posted receives and unexpected long and
short messages.

CUG 2006 Proceedings 3

for the MPI library. The buffers are marked for receive-
side management by Portals, that the maximum size
message which can be received is 128000 bytes, and that
truncation is not allowed. Portals is responsible for
delivering unexpected messages with 128000 or fewer bytes
of data into these buffers. Behind these three MEs in the
linked list, a ME for long messages is inserted. This ME
will truncate the message data to 0. Data in the event
queue entries generated by matches to this ME provide MPI
with enough information to pull the data from the sender
side using a PtlGet. MPI is now ready to handle the
application’s MPI communication requirements.

At some point, a process will probably post a receive to the
MPI library using one of the variants of the MPI_Recv
function. The library first checks the receive against any
unexpected messages which have already been received. If
the receive matches a previously arrived short, unexpected
message, the data is copied from the part of one of the three
short unexpected message buffers holding the data and the
receive is marked complete. If the posted receive matches
an unexpected long message, the data is pulled from the
sender node via a PtlGet. When a get end event is
received, the receive is marked complete. If no matches are
found in the unexpected queue, MPI builds an ME and MD
to describe the receive request. Through a series of
operations which are somewhat involved, owing to
potential race conditions between incoming unexpected
messages and receipt of the ME/MD by Portals, MPI inserts
the ME into the linked list of requests ahead of the three
MEs for unexpected short messages, but behind any MEs
inserted into the linked list for previously posted receive
requests. This arrangement is depicted in Figure 1.

At some point, a buffer for short, unexpected messages may
get filled up with unexpected message data. The Portals
layer informs MPI via an attribute in an event queue entry
(EQE) deposited into the unexpected EQ that the buffer has
become inactive. MPI must then scan the buffer for any
data which has not yet been matched by a receive, and copy
this data into heap memory. A ME is then reconstituted for
this short, unexpected message buffer. It is then reinserted
into the linked list behind the two other short, unexpected
message MEs.

MPI uses two Event Queues to monitor progress of the
requests submitted to Portals. An unexpected EQ is used to
track incoming unexpected messages. Arrival of an
unexpected message, whether short or long, will generate
two EQEs. A put start event will be generated as the data
begins to arrive. A put end event will be generated when
the data has been deposited in host memory and can be
used. It is possible that a flood of unexpected messages can
overrun this EQ. The other EQ is used for tracking of
other events. These include sending of data from the send
side. The sender needs to know when it is safe to reuse a

buffer. This is indicated by receipt of a send end event for
short messages. For long messages utilizing the default
GET protocol (receiver pulls the data), the buffer can only
be reused upon receipt of a reply end event. The other EQ
is also used to handle pre-posted receives and MPI-2 RMA
requests. EQs will be discussed further in Section 5.

XT3 MPI-2 RMA Implementation

The XT3 MPICH2 uses a Portals-based variant of the
approach taken in the CH3 ADI3 device for supporting
MPI-2 remote memory access (RMA). In this approach,
one-sided operations are simulated using two-sided
send/receive messaging. To avoid interference with the
MPI-1 machinery described in the previous section, a
duplicate set of MEs for unexpected short RMA messages is
at job start-up. There is no eager long protocol for MPI-2
RMA. The intent of the implementation is to provide MPI-
2 RMA functionality.

MPI-2 RMA accesses are organized around exposure
epochs and windows[1]. An application marks the
beginning of an exposure epoch using one of the RMA
synchronization functions: MPI_Win_fence,
MPI_Win_start/MPI_Win_post, or MPI_Win_lock. The
application can then begin using RMA access calls:
MPI_Put, MPI_Get, MPI_Accumulate. In the XT3
MPICH2 implementation, no data motion actually occurs in
these calls. Almost all data motion occurs at the end of an
epoch, e.g. in a MPI_Win_fence call. At this point all
processes involved in the epoch determine how many
updates from calls to RMA access functions by the other
processes need to be processed. Each process then
examines the list of RMA access requests posted locally by
the application and begins building RMA messages. For
accesses that involve derived data types, this includes
packing information about the data type into the message.
If the access request is a PUT or ACCUMULATE, the
application data is also packed into the message. The
message is then sent using approaches similar to that for
MPI-1 send/receive operations described in the previous
section. Receivers unpack these messages and for PUT or
ACCUMULATE operations, update the target region of the
window. For GETs, the message is unpacked to determine
which region(s) of the window are being accessed. Any
derived data information is unpacked and used to
reconstitute the data type used in the original MPI_Get call.
The appropriate region(s) of the window are then packed
into a buffer using this data type information. This buffer
is then delivered as a message back to the original
requestor.

The performance of MPI-2 RMA on XT3 should be similar
to that provided by other MPICH2 channels
implementations, though better efficiency results from more

CUG 2006 Proceedings 4

efficient allocation of some of the internal data structures
specific to the Portals implementation.

XT3 MPI-IO(ROMIO)

The liblustre implementation provides fairly strong file
system consistency semantics. This allows a
straightforward MPICH-2 ROMIO implementation on
Catamount. Since record locking is available, non-
contiguous I/O optimizations are possible (this is not
possible for example, when PVFS is used).

 3. XT3 SHMEM Implementation

As with the MPI implementation on XT3, the SHMEM
implementation relies on the Portals network protocol stack
to transfer data between processes. The SHMEM
implementation on XT3 has been presented previously [6].
An overview of the implementation is given here.

SHMEM uses Portals in a more static manner than MPI.
At job start-up, the SHMEM library examines segments of
the application process: data segment, symmetric heap,
private heap, and stack. The base address and lengths of all

segments are defined at job startup, and are the same across
all processes running the same executable. The data
segment and symmetric heap are the only remotely
accessible program segments supported currently with XT3
SHMEM. Only processes running the same executable in
a MPMD job can use SHMEM for interprocess
communication.

Three memory descriptors (MDs) are used for the data
segment and three for the symmetric heap. Two of these
MDs are associated with event queues, one for GET and
one for PUT operations. The third is not associated with
any EQ, but is bound to a match entry (ME). It is also
configured to generate acknowledgements when a transfer
has completed, and is globally visible in the target node
memory. An initiator’s Portals PUT and GET requests
target this ME at a remote node. The three MDs for the
data segment and the three for the symmetric heaps are
marked as persistent and source-side managed. By not
associating the target ME/MD with an event queue,
generation of events at the target is avoided. This fits with
the one-sided program model SHMEM supports. Two MDs

are associated with the private heap and stack. Again, this
is to allow for separate tracking of PUT and GET requests,
which in turned facilitates implementation of non-blocking
SHMEM puts and gets in subsequent releases. The

CUG 2006 Proceedings 5

acknowledgments mentioned above are used by the initiator
to track outstanding PUT and GET requests. The job
layout is depicted in Figure 2.

In sharp contrast to MPI, SHMEM only uses event queues
on the initiating side of a PUT or GET operation. In
principle this can lead to fewer difficulties with scalability
issues concerning event queues at high process counts,
since there is no generation of events at remote nodes
owing to PUT or GET activity at an initiator.

Compared to other CRAY platforms, the Portals network
stack does allow for significant offloading of data motion
from the host processors. To leverage this capability, a
non-blocking variant of PUTs has been introduced into
XT3 SHMEM. Future releases will include support for
non-blocking GETS as well.

4. Performance Tuning and Pitfalls to Avoid
for MPI and SHMEM on XT3

MPI Performance Tuning and Pitfall Avoidance

One of the main goals of the Portals network protocol stack
is to allow for progress of any state associated with MPI
requests made by an application as independent of
application activity as possible. So typically, structuring an
application to allow for maximum progress of this MPI
state without the need for additional MPI calls by the
application can lead to better performance.

Pre-posting Receives

One way for applications to insure better independent
progress of MPI-related state is to structure algorithms so
that a receive is guaranteed to be posted before the
matching message arrive. This allows for the Portals stack
to match the message with the application buffer associated
with the message, and deliver the incoming message
directly into this buffer. Among other things, this reduces
the need for additional memory copies at the receiver side.
Applications, which are structured in this manner, should
also be run with the MPICH_PTL_EAGER_LONG
environment variable set.

In general non-blocking sends and receives are preferred on
XT3. There are no particular performance advantages for
persistent send or receive requests.

For the same reason that the Portals protocol stack delivers
best performance when receives are pre-posted, it is
generally not desirable to use MPI_Probe or MPI_Iprobe in
performance critical sections of an application, as this
approach to handling messages basically eliminates much
of the benefits of overlapping communication with
computation for which Portals is optimized.

Note that pre-posting of receives does consume certain
limited Portals resources (MEs). There is currently a hard
limit of 2048 active MEs on Catamount nodes. Trying to
pre-post more receives than this ME resource limitation
allows will result in the job aborting. Thus, although it is

CUG 2006 Proceedings 6

good to pre-post receives in general, care should also be
taken not to pre-post too many of them.

Table 1 gives XT3 MPI environment variables that most
typically require tuning for applications. These
environment variables are defined for both the 1.3 and 1.4
releases of XT3 MPT.

Derived Datatypes

Compared to the handling of derived datatypes in MPICH1,
techniques employed in MPICH2 for derived types are
much improved. Nonetheless, usage of derived types does
result in extra overhead on both the send and receive sides.
On the send side, a temporary buffer must be allocated and
the message data packed into this buffer before being
delivered to the Portals network stack. Similarly at the
receive end, if the message is not found in the unexpected
queue, a temporary buffer must be allocated into which the
incoming message data is delivered. The data then has to
be copied out of this temporary buffer into the application
buffer. There is no special hardware support on XT3 for
handling derived types. In general it is better to avoid
derived types on XT3 if possible.

Usage of Collective Operations

Optimization of MPI collectives in XT3 MPICH2 is a work
in progress (see Section 5). It is expected that the
performance of commonly used collectives will improve in
future releases of XT3 MPT.

That having been said, it should be noted that to some
degree, frequently observed usages of collective operations
conflict with one of the design goals of Portals, the
independent progress of MPI state and the application. If
analysis of an application indicates substantial time being
spent in a collective communication operation that is
essentially used for moving data following a computational
cycle, it may be worth investigating if the computational
cycle could be changed to allow for point-to-point
communication calls to be embedded within the
computational cycle. This approach has a chance of
allowing for overlap of communication with computation.

MPI-2 RMA

As described in Section 2, the MPI-2 RMA implementation
in the XT3 MPICH2 library is intended to provide
functionality, not performance. Usage of MPI-2 RMA is
currently discouraged on XT3.

Debugging Related Environment Variable

The MPICH_DBMASK environment variable
(MSMDB_MASK in XT3 MPT 1.3 and earlier releases)
can be used to assist in debugging MPI runtime related
problems such as argument checking, EQ overflow, etc.
Setting this environment variable to 0x200 will, for
example, cause the application to abort and give a
coredump and traceback when an MPI–related error occurs.
Such errors include invalid arguments to MPI function
calls, exhaustion of Portals or MPI internal resources, etc.

CUG 2006 Proceedings 7

SHMEM Performance Tuning and Pitfall Avoidance

For XT3 the most important point with respect to SHMEM
is probably whether or not to use it. Applications being
ported from legacy CRAY platforms may have been using
SHMEM owing to its significantly lower overhead than
MPI for many types of data exchange scenarios. On the
XT3 however, the number of scenarios where SHMEM may
offer lower overhead than MPI is significantly reduced.
Thus if both an MPI and SHMEM version of an application
exist, it may be more worthwhile to first port the MPI
version to XT3.

Usage of SHMEM Barrier

The SHMEM barrier functionality is implemented in
software on XT3, and has relatively high overhead. Usage
of barriers should be kept to a minimum. Figure 2 shows
the performance of shmem_barrier_all as a function of
process count when using 1 and 2 processes per node.

0
20
40
60
80

100
120
140
160

1 10 100 1000

NPES

O
ve

rh
ea

d
 (u

se
cs

)

Figure 2 Shmem_barrier_all overhead when running two
processes per node(dashed line) and one process per node
(solid line).

Using non-blocking Puts

As mentioned in Section 3, non-blocking SHMEM
functions are being introduced in the XT3 SHMEM
implementation to take advantage of the Portals network
protocol stack offload capability. In general, better
performance will be obtained by using non-blocking
SHMEM_PUTs. The current mechanisms for insuring
completion of a non-blocking put operation are either by
invoking the shmem_quiet function, one of the various
SHMEM atomic functions, or one of the SHMEM barrier
functions. To avoid exhaustion of the PUT event queue in
SHMEM, one of these functions should be called

periodically when invoking many non-blocking
SHMEM_PUTs.

Strided Gets and Puts

The Portals network protocol stack on XT3 is optimized for
block transfers. However, support for generalized
gather/scatter remote memory operations is very poor,
being over two orders of magnitude slower than block
transfers of the same amount of data. Hence performance
for strided SHMEM GET and PUT operations is poor on
XT3. These functions should not be used in performance
critical parts of SHMEM applications on XT3.

Spin Waiting on Remote Variables

One occasionally observes constructs like the following in
SHMEM codes ported from other CRAY platforms:

while(remval != 0) {

shmem_get64(&remval,&rem_flag,1,pe);

}

This type of construct can severely tax the Portals network
protocol stack, particularly if many processes are spinning
on a variable at a single target process (PE). If possible,
other synchronization mechanisms relying on spinning on
local memory should be employed [7].

5. Issues and Future Work

MPI Flow Control-Related Issues

A significant number of MPI applications are experiencing
resource exhaustion issues (particularly the unexpected EQ)
as job sizes increase. Applications employing techniques
such as dynamic load balancing which generate many-to-
many communication patterns involving small messages
appear to be especially susceptible to this issue. The
problem stems from the assumptions at the send side
concerning resources at the receive side for short and long
messages described in Section 2. CRAY is actively
investigating solutions to this problem that will allow for
such applications to run satisfactorily without exhausting
Portals resources

Collective Communications

Optimization of frequently used MPI collective operations
on XT3 is a major priority for the MPT group. Efforts are
currently focused on

CUG 2006 Proceedings 8

• tuning of the existing MPICH2 algorithms which

exhibit problematic performance issues at higher
process counts

• SMP aware algorithms to deliver better performance
when using multi-core processors

• developing better algorithms for latency dominated
alltoall and allgather operations involving small
messages

• topology-aware algorithms for better scaling of
bandwidth intensive operations like alltoall at high
process counts

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Message Length (bytes)

B
ca

st
 o

ve
rh

ea
d

 (
u

se
cs

)

Figure 3 MPI_Bcast overhead using the default MPICH2
algorithms(dashed line) and a binomial tree only algorithm
(solid line). Results from Pallas benchmark on 100
processors.

0
100
200
300
400
500
600
700

1 10 100 1000 10000 100000

Vector Length (bytes)

A
llr

ed
u

ce
 O

ve
rh

ea
d

 (
u

se
cs

)

Figure 4 MPI_Allreduce using SMP aware (solid line) and
default MPICH2 allreduce algorithm at 2 processes per
node using 128 nodes(long dashed line). Results for 1
process per node are given by the short dashed line.
Results of PMB Allreduce test.

Some of the work involving tuning of existing MPICH2
algorithms will be available in the upcoming 1.4 release of
MPT. In particular, the performance of MPI_Bcast and
MPI_Reduce for larger message sizes is improved over that
realized in the 1.3 release for certain message lengths. See
Figure 3. Table 2 gives a list of new environment variables
to assist in tuning the current MPICH2 collective
communication algorithms for XT3.

SMP-aware algorithms for collective operations are also
under investigation and will be available in an upcoming
release of XT3 MPT. These optimizations will be further
improved by the availability of a cut-through path in Portals
when exchanging data between processes on the same node.
See Figure 4.

0

200
400

600

800

1000
1200

1400

0 50 100 150

NPES

la
te

n
cy

 (
u

se
cs

)

Figure 5 Comparison of latency for shmem_int_sum_to_all
in current 1.3 release(dashed line) and 1.5 pre-release
(solid line).

Work is also on-going in optimizing SHMEM collective
operations. Performance of the shmem_X_sum_to_all will
be significantly improved in the 1.5 release. See Figure 5.

SHMEM Atomics

SHMEM atomic operations are fairly widely used in more
complex SHMEM applications. Their functionality is hard
to replace with other constructs. Some SHMEM atomic
functions supported on other current CRAY platforms will
be available in the XT3 MPT 1.4 release.

The performance of the various atomic operations are
similar in terms of latency and repetition rate. Since these
operations are implemented in software – the Portals
network protocol stack – rather than hardware, latencies are
substantially higher, and the repetition rates significantly
lower, than on other CRAY platforms. Figure 6 shows the
latency for a SHMEM_FADD operation in which
increasing numbers of processes are trying to update the
same variable on a given target node.

CUG 2006 Proceedings 9

0

50

100

150

200

250

0 20 40 60 80

NPES

L
at

en
cy

 (u
se

cs
)

Figure 6 Latency of shmem_fadd as a function of PEs
updating one variable.

Accelerated Portals

The MPT components will be modified to best make use of
the accelerated path through the Portals network protocol
stack on Catamount compute nodes when it becomes
available. Concurrent with any such effort, the MPT group
will also pursue reducing the MPICH2 component to short
message latency.

About the Authors

The authors are members of the Message Passing Toolkit
group at Cray. Howard Pritchard can be reached at
howardp@cray.com.

References

[1] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI – The Complete
Reference, vol. 2, The MPI Extensions, MIT Press, 2nd
edition, 1998.

[2] R. Brightwell, W. Lawry, A. B. Maccabe, and R.
Riesen. Portals 3.0: Protocol Building Blocks for Low
Overhead Communication. In Proceedings of the 2002
Workshop on Communication Architecture for Clusters,
April 2002.

[3] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and
K. Underwood. Implementation and performance of
Portals 3.3 on the Cray XT3. In Proceedings of the 2005
IEEE International Conference on Cluster Computing,
September 2005.

[4] R. Brightwell, A. B. Maccabe, and R. Riesen. Design,
Implementation, and Performance of MPI on Portals 3.0.
In Internationl Journal of High Performance Computing
Applications. Vol. 17, No. 1 (2003).

[5] W. Gropp and E. Lusk. MPICH2: A High Performance
Portable Implementation of MPI, Clusterworld 2004.
http://www.clusterworld.com/CWCE2004/William_Gropp_
presentation.pdf

[6] M. ten Bruggencate. Cray SHMEM on XT3. In CUG
Summit 2005 Proceedings.

[7] J. H. Mellor-Crummey, and M. L. Scott.
Algorithms for scalable synchronization on shared
memory multiprocessors. In ACM Trans. Computer
Systems. Vol. 9, No. 1 (1991).

