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ABSTRACT: This paper describes the implementations of the main components of the 
Message Passing Toolkit (MPT) on XT3 - MPI and SHMEM.  Approaches to tuning of 
applications using MPT components are discussed.  Current and upcoming feature work for 
both packages is also described. 
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1. Introduction 

The Message Passing Toolkit is available on a range of 
current and legacy CRAY systems.  On most of these 
platforms, the Toolkit has featured implementations of MPI 
and SHMEM.   
 
The XT3 MPT package includes an MPI implementation 
based on MPICH2 1.0.2 with some updates from the 
MPICH2 1.0.3 release.   Most MPI-2 functionality available 
in MPICH2 is available on XT3 including remote memory 
access (RMA), MPI I/O, collective operations using inter-
communicators, etc.  MPI-2 process creation and 
management  features, described in Chapter 3 of [1] are not 
currently supported. 
 
The SHMEM implementation is all-new for XT3, partly 
owing to the significant differences between remote 
memory access methods available for SHMEM on XT3 and 
those available on most legacy and current CRAY 
platforms  
 
Both the MPI and SHMEM implementations utilize the 
Portals interface to the XT3 network [2,3].  This interface 
places an emphasis on scalability and offload of 
communication-related work from the host processor.  This 
has a significant impact on how applications can best use 
MPI and SHMEM on XT3. 
 
Portals is an API which encapsulates many elements 
important to MPI-1 messaging, in particular MPI message 
matching order semantics.  It presents an asynchronous 
interface to the application.  An application submits 
requests that involve data motion – PtlGet, PtlPut, etc.  to 
Portals.   An application can also submit requests to match 
application receive buffers with the data motion operations 

from other processes.  Portals indicates the progress of 
these various requests to an application via entries 
deposited in event queues(EQ) that have been associated 
with these requests. Cray has also ensured that, to some 
extent, progress of Portals may also be inferred by the 
visibility of updates in host memory on a node. 
 
The rest of this document will be organized as follows.  
Section 2 will describe essentials of the MPI 
implementation on XT3.  Section 3 will likewise give an 
overview of the SHMEM implementation on XT3.  These 
descriptions should help application programmers better 
determine how to optimize their MPI or SHMEM codes for 
XT3.  Section 4 will consider performance tuning and 
pitfalls to avoid for MPI and SHMEM applications.  
Section 5 will consider some outstanding issues with XT3 
MPI, as well as future work planned for MPT components. 

2. XT3 MPICH2 Implementation 

The XT3 MPICH2 uses a custom abstract device interface 
(ADI3) based on a combination of the approach used in an 
earlier Portals-based MPICH1 implementation [4] and 
elements of the MPICH2 CH3 device [5].   
 
As with a number of other MPI implementations, an eager 
protocol is used for sending short messages.  By default, 
short in the context of XT3 MPICH2 means messages with 
up to 128000 bytes of data.  A sender assumes that the 
receiver has sufficient buffer space (either using MPI 
internal buffers or pre-posted application buffers) and other 
necessary resources to manage short messages at the 
receiver.   If the message to send is very short (1024 or 
fewer bytes by default), the sender first allocates a local 
buffer and copies the application data into this local, MPI 
internal buffer.  The data is then transferred in manner 
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similar to that used for longer short messages.  This 
approach allows blocking sends to return more quickly. 

 

Starting with the MPT 1.3 release, a sender can use one of 
two procedures for handling longer messages.  The default 
is for the sender to build a small 8-byte message, which is 
sent to the receiver.  This message has sufficient 
information for the receiver to pull the message data using 
a  Portals PtlGet, when a match is found with a posted 
receive.  In previous releases, the default was for the sender 
to send the message data much as if it were delivering a 
short message using the eager protocol.  The former 
procedure is better when it is likely that the receiver is 
unable to pre-post matching receives prior to arrival of the 
data, but may be trying to do so shortly thereafter.  This 
series of events occurs frequently in MPI benchmark tests, 
as well as for certain collective operations.  The latter 
method is better when application logic insures that 
matching receives are often pre-posted.  Using the 
MPICH_PTL_EAGER_LONG environment variable, the 
latter, eager procedure can be recovered.  Note that the 
long protocol also assumes there are sufficient resources 
(space in the unexpected EQ ) for the receiver to process 
the message. 
 
It is on the receiver side of the ADI3 device that some of 
the special features of Portals are more evident.  MPI is 
responsible for inserting Match Entries (ME) into a linked 
list managed by the Portals layer of the network protocol 

stack.  MEs can be used to encapsulate MPI message 
matching criteria – a message tag, a communicator context, 
source process, and the wildcards MPI_ANY_TAG and 

MPI_ANY_SOURCE.  In the XT3 Portals implementation, 
a memory descriptor (MD) can be associated with a ME.  
When an incoming message is received off of the network,  
Portals extracts information in the message header (the first 
packet of the message)   and traverses this linked list of 
MEs looking for a match between the message header and 
an ME.  This information can include an MPI tag, context 
from a MPI communicator, and sender.  When a match is 
found, Portals delivers the data into the buffer described by 
the MD.  An application can request that Portals manage 
delivery of data into this buffer – a receive-side managed 
buffer.  The application can also specify that a ME be 
removed from the linked list if a match is found.  The 
application can further specify the maximum amount of 
data, which can be received from each incoming message, 
or optionally, that it is okay to truncate the message.  Even 
if there is a match between the message header and the ME, 
Portals will continue traversing the linked list looking for a 
match, if the message does not meet these length 
requirements (maximum allowed message size and 
available space in the MD if truncation is not allowed). 
 
XT3 MPICH2 uses these Portals features as follows.  At job 
start-up within MPI_Init, three buffers for eager messages 
are allocated and special MEs for these buffers are 
initialized and inserted at the start of the linked list of MEs 

Figure 1 MPI Configuration of Portals Match Entries (MEs) for handling pre-posted receives and unexpected long and 
short messages. 
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for the MPI library.  The buffers are marked for receive-
side management by Portals, that the maximum size 
message which can be received is 128000 bytes, and that 
truncation is not allowed.  Portals is responsible for 
delivering unexpected messages with 128000 or fewer bytes 
of data into these buffers.   Behind these three MEs in the 
linked list, a ME for long messages is inserted.  This ME 
will truncate the message data to 0.  Data in the event 
queue entries generated by matches to this ME provide MPI 
with enough information to pull the data from the sender 
side using a PtlGet. MPI is now ready to handle the 
application’s MPI communication requirements. 
 
At some point, a process will probably post a receive to the 
MPI library using one of the variants of the MPI_Recv 
function.  The library first checks the receive against any 
unexpected messages which have already been received.  If 
the receive matches a previously arrived short, unexpected 
message, the data is copied from the part of one of the three 
short unexpected message buffers holding the data and the 
receive is marked complete.  If the posted receive matches 
an unexpected long message, the data is pulled from the 
sender node via a PtlGet.  When a get end event is 
received, the receive is marked complete.  If no matches are 
found in the unexpected queue, MPI builds an ME and MD 
to describe the receive request.  Through a series of 
operations which are somewhat involved, owing to 
potential race conditions between incoming unexpected 
messages and receipt of the ME/MD by Portals, MPI inserts 
the ME into the linked list of requests ahead of the three 
MEs for unexpected short messages, but behind any MEs 
inserted into the linked list for previously posted receive 
requests.  This arrangement is depicted in Figure 1.  
 
At some point, a buffer for short, unexpected messages may 
get filled up with unexpected message data.  The Portals 
layer informs MPI via an attribute in an event queue entry 
(EQE) deposited into the unexpected EQ that the buffer has 
become inactive.  MPI must then scan the buffer for any 
data which has not yet been matched by a receive, and copy 
this data into heap memory.  A ME is then reconstituted for 
this short, unexpected message buffer.  It is then reinserted 
into the linked list behind the two other short, unexpected 
message MEs.  
 
MPI uses two Event Queues to monitor progress of the 
requests submitted to Portals.  An unexpected EQ is used to 
track incoming unexpected messages.  Arrival of an 
unexpected message, whether short or long, will generate 
two EQEs.  A put start event will be generated as the data 
begins to arrive.  A put end event will be generated when 
the data has been deposited in host memory and can be 
used.  It is possible that a flood of unexpected messages can 
overrun this EQ.  The other EQ is used for tracking of 
other events.  These include sending of data from the send 
side.  The sender needs to know when it is safe to reuse a 

buffer.  This is indicated by receipt of a send end event for 
short messages.  For long messages utilizing the default 
GET protocol (receiver pulls the data), the buffer can only 
be reused upon receipt of a reply end event.  The other EQ 
is also used to handle pre-posted receives and MPI-2 RMA 
requests.  EQs will be discussed further in Section 5. 
 

XT3 MPI-2 RMA Implementation 
 

The XT3 MPICH2 uses a Portals-based variant of the 
approach taken in the CH3 ADI3 device for supporting 
MPI-2 remote memory access (RMA).  In this approach, 
one-sided operations are simulated using two-sided 
send/receive messaging.   To avoid interference with the 
MPI-1 machinery described in the previous section, a 
duplicate set of MEs for unexpected short RMA messages is 
at job start-up.  There is no eager long protocol for MPI-2 
RMA.  The intent of the implementation is to provide MPI-
2 RMA functionality. 
 
MPI-2 RMA accesses are organized around exposure 
epochs and windows[1].  An application marks the 
beginning of an exposure epoch using one of the RMA 
synchronization functions: MPI_Win_fence, 
MPI_Win_start/MPI_Win_post, or MPI_Win_lock.  The 
application can then begin using RMA access calls: 
MPI_Put, MPI_Get, MPI_Accumulate.  In the XT3 
MPICH2 implementation, no data motion actually occurs in 
these calls.  Almost all data motion occurs at the end of an 
epoch, e.g. in a MPI_Win_fence call.  At this point all 
processes involved in the epoch determine how many 
updates from calls to RMA access functions by the other 
processes need to be processed.  Each process then 
examines the list of RMA access requests posted locally by 
the application and begins building RMA messages.  For 
accesses that involve derived data types, this includes 
packing information about the data type into the message.  
If the access request is a PUT or ACCUMULATE, the 
application data is also packed into the message.  The 
message is then sent using approaches similar to that for 
MPI-1 send/receive operations described in the previous 
section.  Receivers  unpack these messages and for PUT or 
ACCUMULATE operations, update the target region of the 
window.  For GETs, the message is unpacked to determine 
which region(s) of the window are being accessed.  Any 
derived data information is unpacked and used to 
reconstitute the data type used in the original MPI_Get call.  
The appropriate region(s) of the window are then packed 
into a buffer using this data type information.  This buffer 
is then delivered as a message back to the original 
requestor. 
 
The performance of MPI-2 RMA on XT3 should be similar 
to that provided by other MPICH2 channels 
implementations, though better efficiency results from more 



CUG 2006 Proceedings  4 

efficient allocation of some of the internal data structures 
specific to the Portals implementation. 
 

XT3 MPI-IO(ROMIO)  
 

The liblustre implementation provides fairly strong file 
system consistency semantics.  This allows a 
straightforward MPICH-2 ROMIO implementation on 
Catamount.  Since record locking is available, non-
contiguous I/O optimizations are possible (this is not 
possible for example, when PVFS is used). 
 

 3. XT3 SHMEM Implementation 

 
As with the MPI implementation on XT3, the SHMEM 
implementation relies on the Portals network protocol stack 
to transfer data between processes.  The SHMEM 
implementation on XT3 has been presented previously [6].  
An overview of the implementation is given here. 
 

SHMEM uses Portals in a more static manner than MPI.   
At job start-up, the SHMEM library examines segments of 
the application process: data segment, symmetric heap, 
private heap, and stack.  The base address and lengths of all 

segments are defined at job startup, and are the same across 
all processes running the same executable.  The data 
segment and symmetric heap are the only remotely 
accessible program segments supported currently with XT3 
SHMEM.    Only processes running the same executable in 
a MPMD job can use SHMEM for interprocess 
communication. 
 
Three memory descriptors (MDs) are used for the data 
segment and three for the symmetric heap.   Two of these 
MDs are associated with event queues, one for GET and 
one for PUT operations. The third is not associated with 
any EQ, but is bound to a match entry (ME). It is also 
configured to generate acknowledgements when a transfer 
has completed, and is globally visible in the target node 
memory.  An initiator’s Portals PUT and GET requests 
target this ME at a remote node.  The three MDs for the 
data segment and the three for the symmetric heaps are 
marked as persistent and source-side managed.  By not 
associating the target ME/MD with an event queue, 
generation of events at the target is avoided.  This fits with 
the one-sided program model SHMEM supports.  Two MDs 

are associated with the private heap and stack.  Again, this 
is to allow for separate tracking of PUT and GET requests, 
which in turned facilitates implementation of non-blocking 
SHMEM puts and gets in subsequent releases.  The 
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acknowledgments mentioned above are used by the initiator 
to track outstanding PUT and GET requests.  The job 
layout is depicted in Figure 2. 
 
In sharp contrast to MPI, SHMEM only uses event queues 
on the initiating side of a PUT or GET operation.  In 
principle this can lead to fewer difficulties with scalability 
issues concerning event queues at high process counts, 
since there is no generation of events at remote nodes 
owing to PUT or GET activity at an initiator.   
 
Compared to other CRAY platforms, the Portals network 
stack does allow for significant offloading of data motion 
from the host processors.  To leverage this capability, a 
non-blocking variant of PUTs has been introduced into 
XT3 SHMEM.  Future releases will include support for 
non-blocking GETS as well. 
 

4. Performance Tuning and Pitfalls to Avoid 
for MPI and SHMEM on XT3 

MPI Performance Tuning and Pitfall Avoidance 
 

One of the main goals of the Portals network protocol stack 
is to allow for progress of any state associated with MPI 
requests made by an application as independent of  
application activity as possible.  So typically, structuring an 
application to allow for maximum progress of this MPI 
state without the need for additional MPI calls by the 
application can lead to better performance. 

Pre-posting Receives 
 
One way for applications to insure better independent 
progress of MPI-related state is to structure algorithms so 
that a receive is guaranteed to be posted before the 
matching message arrive.  This allows for the Portals stack 
to match the message with the application buffer associated 
with the message, and deliver the incoming message 
directly into this buffer.  Among other things, this reduces 
the need for additional memory copies at the receiver side.   
Applications, which are structured in this manner, should 
also be run with the MPICH_PTL_EAGER_LONG 
environment variable set. 
 
In general non-blocking sends and receives are preferred on 
XT3.  There are no particular performance advantages for 
persistent send or receive requests. 
 
For the same reason that the Portals protocol stack delivers 
best performance when receives are pre-posted, it is 
generally not desirable to use MPI_Probe or MPI_Iprobe in 
performance critical sections of an application, as this 
approach to handling messages basically eliminates much 
of the benefits of overlapping communication with 
computation for which Portals is optimized. 
 
Note that pre-posting of receives does consume certain 
limited Portals resources (MEs).  There is currently a hard 
limit of 2048 active MEs on Catamount nodes.  Trying to 
pre-post more receives than this ME resource limitation 
allows will result in the job aborting.   Thus, although it is 
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good to pre-post receives in general, care should also be 
taken not to pre-post too many of them. 
 
Table 1 gives XT3 MPI environment variables that most 
typically require tuning for applications.  These 
environment variables are defined for both the 1.3 and 1.4 
releases of XT3 MPT. 
 
Derived Datatypes 

 
Compared to the handling of derived datatypes in MPICH1, 
techniques employed in MPICH2 for derived types are 
much improved.    Nonetheless, usage of derived types does 
result in extra overhead on both the send and receive sides.   
On the send side, a temporary buffer must be allocated and 
the message data packed into this buffer before being 
delivered to the Portals network stack.  Similarly at the 
receive end, if the message is not found in the unexpected 
queue, a temporary buffer must be allocated into which the 
incoming message data is delivered.  The data then has to 
be copied out of this temporary buffer into the application 
buffer.  There is no special hardware support on XT3 for 
handling derived types.  In general it is better to avoid 
derived types on XT3 if possible. 
 

Usage of Collective Operations 
 

Optimization of MPI collectives in XT3 MPICH2 is a work 
in progress (see Section 5). It is expected that the 
performance of commonly used collectives will improve in 
future releases of XT3 MPT. 
 

That having been said, it should be noted that to some 
degree, frequently observed usages of collective operations 
conflict with one of the design goals of Portals, the 
independent progress of MPI state and the application.  If 
analysis of an application indicates substantial time being 
spent in a collective communication operation that is 
essentially used for moving data following a computational 
cycle, it may be worth investigating if the computational 
cycle could be changed to allow for point-to-point 
communication calls to be embedded within the 
computational cycle.  This approach has a chance of 
allowing for overlap of communication with computation. 
 

MPI-2 RMA 
 

As described in Section 2, the MPI-2 RMA implementation 
in the XT3 MPICH2 library is intended to provide 
functionality, not performance.  Usage of MPI-2 RMA is 
currently discouraged on XT3. 
 

Debugging Related Environment Variable 
 
The MPICH_DBMASK environment variable 
(MSMDB_MASK in XT3 MPT 1.3 and earlier releases) 
can be used to assist in debugging MPI runtime related 
problems such as argument checking, EQ overflow, etc.  
Setting this environment variable to 0x200 will, for 
example, cause the application to abort and give a 
coredump and traceback when an MPI–related error occurs.  
Such errors include invalid arguments to MPI function 
calls, exhaustion of Portals or MPI internal resources, etc.  
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SHMEM Performance Tuning and Pitfall Avoidance 
 
For XT3 the most important point with respect to SHMEM 
is probably whether or not to use it.  Applications being 
ported from legacy CRAY platforms may have been using 
SHMEM owing to its significantly lower overhead than 
MPI for many types of data exchange scenarios.   On the 
XT3 however, the number of scenarios where SHMEM may 
offer lower overhead than MPI is significantly reduced.  
Thus if both an MPI and SHMEM version of an application 
exist, it may be more worthwhile to first port the MPI 
version to XT3. 
 

Usage of SHMEM Barrier 
 

The SHMEM barrier functionality is implemented in 
software on XT3, and has relatively high overhead.  Usage 
of barriers should be kept to a minimum.  Figure 2 shows 
the performance of shmem_barrier_all as a function of 
process count when using 1 and 2 processes per node. 
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Figure 2 Shmem_barrier_all overhead when running two 
processes per node(dashed line) and one process per node 
(solid line). 

 

Using non-blocking Puts 

 
As mentioned in Section 3, non-blocking SHMEM 
functions are being introduced in the XT3 SHMEM 
implementation to take advantage of the Portals network 
protocol stack offload capability.  In general, better 
performance will be obtained by using non-blocking 
SHMEM_PUTs.  The current mechanisms for insuring 
completion of a non-blocking put operation are either by 
invoking the shmem_quiet function, one of the various 
SHMEM atomic functions, or one of the SHMEM barrier 
functions.  To avoid exhaustion of the PUT event queue in 
SHMEM, one of these functions should be called 

periodically when invoking many non-blocking 
SHMEM_PUTs. 
 

Strided Gets and  Puts 
 
The Portals network protocol stack on XT3 is optimized for 
block transfers.  However, support for generalized 
gather/scatter remote memory operations is very poor, 
being over two orders of magnitude slower than block 
transfers of the same amount of data.  Hence performance 
for strided SHMEM GET and PUT operations is poor on 
XT3.  These functions should not be used in performance 
critical parts of SHMEM applications on XT3. 
 

Spin Waiting on Remote Variables 
 
One occasionally observes constructs like the following in 
SHMEM codes ported from other CRAY platforms: 
 

while(remval != 0) { 
 
shmem_get64(&remval,&rem_flag,1,pe); 
 
} 
 

This type of construct can severely tax the Portals network 
protocol stack, particularly if many processes are spinning 
on a variable at a single target process (PE).  If possible, 
other synchronization mechanisms relying on spinning on 
local memory should be employed [7]. 
 

5.  Issues and Future Work 

 

MPI Flow Control-Related Issues 
 

A significant number of MPI applications are experiencing 
resource exhaustion issues (particularly the unexpected EQ) 
as job sizes increase.  Applications employing techniques 
such as dynamic load balancing which generate many-to-
many communication patterns involving small messages 
appear to be especially susceptible to this issue.  The 
problem stems from the assumptions at the send side 
concerning resources at the receive side for short and long 
messages described in Section 2.  CRAY is actively 
investigating solutions to this problem that will allow for 
such applications to run satisfactorily without exhausting 
Portals resources  

 

Collective Communications 
 
Optimization of frequently used MPI collective operations 
on XT3 is a major priority for the MPT group.  Efforts are 
currently focused on  
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• tuning of the existing MPICH2 algorithms which 

exhibit problematic performance issues at higher 
process counts 

• SMP aware algorithms to deliver better performance 
when using multi-core processors 

• developing better algorithms for latency dominated 
alltoall and allgather operations involving small 
messages 

• topology-aware algorithms for better scaling of 
bandwidth intensive operations like alltoall at high 
process counts 
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Figure 3 MPI_Bcast overhead  using the default MPICH2 
algorithms(dashed line) and a binomial tree only algorithm 
(solid line).  Results from Pallas benchmark on 100 
processors. 
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Figure 4 MPI_Allreduce using SMP aware (solid line) and 
default MPICH2 allreduce algorithm at 2 processes per 
node using 128 nodes(long dashed line).  Results for 1 
process per node are given by the short dashed line. 
Results of PMB Allreduce test. 

 
 

Some of the work involving tuning of existing MPICH2 
algorithms will be available in the upcoming 1.4 release of 
MPT.  In particular, the performance of MPI_Bcast and 
MPI_Reduce for larger message sizes is improved over that 
realized in the 1.3 release for certain message lengths.  See 
Figure 3.  Table 2 gives a list of new environment variables 
to assist in tuning the current MPICH2 collective 
communication algorithms for XT3. 

 
SMP-aware algorithms for collective operations are also 
under investigation and will be available in an upcoming 
release of XT3 MPT.  These optimizations will be further 
improved by the availability of a cut-through path in Portals 
when exchanging data between processes on the same node.  
See Figure 4. 
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Figure 5 Comparison of latency for shmem_int_sum_to_all 
in current 1.3 release(dashed line) and 1.5 pre-release 
(solid line). 

 
Work is also on-going in optimizing SHMEM collective 
operations.  Performance of the shmem_X_sum_to_all will 
be significantly improved in the 1.5 release.  See Figure 5. 

SHMEM Atomics 
 

SHMEM atomic operations are fairly widely used in more 
complex SHMEM applications.  Their functionality is hard 
to replace with other constructs.  Some SHMEM atomic 
functions supported on other current CRAY platforms will 
be available in the XT3 MPT 1.4 release. 

 
The performance of the various atomic operations are 
similar in terms of latency and repetition rate.  Since these 
operations are implemented in software – the Portals 
network protocol stack – rather than hardware, latencies are 
substantially higher, and the repetition rates significantly 
lower, than on other CRAY platforms.  Figure 6 shows the 
latency for a SHMEM_FADD operation in which 
increasing numbers of processes are trying to update the 
same variable on a given target node. 
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Figure 6 Latency of shmem_fadd as a function of PEs 
updating one variable. 

 

Accelerated Portals 
 

The MPT components will be modified to best make use of 
the accelerated path through the Portals network protocol 
stack on Catamount compute nodes when it becomes 
available.  Concurrent with any such effort, the MPT group 
will also pursue reducing the MPICH2 component to short 
message latency. 
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