
CUG 2006

Cray and Lustre

Charlie Carroll
Branislav Radovanovic

Cray Inc.

Outline

• Past: Cray’s history with CFS and Lustre
• Present: Where we stand today
• Future: Cray’s plans for Lustre
• Lustre performance results

Cray and CFS History

• Red Storm was the first Cray system with Lustre;
our relationship with CFS started in April 2003

• From Peter Braam’s slides:
• CFS founded in 2001
• Shipping production code since 2003
• Privately held, self-funded, US-based corporation
• Profitable since Day One
• More than 40 full-time engineers
• Twenty percent of the Top 100 supercomputers (as

of Nov. 2005)

Outline

• Past: Cray’s history with CFS and Lustre
• Present: Where we stand today
• Future: Cray’s plans for Lustre
• Lustre performance results

Cray XT3 Software Architecture
• Lightweight OS on

compute PEs, full-
featured Linux on
Service PEs

• Service PEs specialize
by function

• Software architecture
eliminates OS “Jitter”

• Software architecture
enables reproducible
run times

• Large machines boot in
under 30 minutes,
including file system

• Job launch time is a few
seconds on 1000s of
PEs

Compute PE

Login PE

Network PE

System PE

I/O PE

Service Partition

Compute
Partition

Specialized
Linux nodes

Lustre OSTs and
MDSs run here

Cray XT3 Lustre Architecture
• Highly scalable; more than 10,000 compute nodes
• XT3 compute clients run Catamount microkernel and use liblustre
• Portals networking over XT3 SeaStar interconnect
• Full Linux on service and I/O nodes

OST

data control

OST

SeaStar
Network

liblustre.a linked
with program

MDS

10GigE GigE GigE

C C C C C C C

N LL OST OST

Cray XD1 System Architecture

Compute
• 12 AMD Opteron 32/64 bit, x86

processors
• High Performance Linux
RapidArray Interconnect
• 12 communications processors
• 1 Tb/s switch fabric
Active Management
• Dedicated processor
Application Acceleration
• 6 co-processors

Processors directlyProcessors directly
connected viaconnected via

integrated switch fabricintegrated switch fabric

Cray XD1 Lustre Example
OST:node 6

2xFC

Chassis 1

2xFC

2xFC

2xFC

Chassis 2
OST:node 6

RapidArray

Sample of Cray Lustre
Installations
• Rice University
• Naval Research Laboratory
• Oak Ridge National Laboratory
• Ohio Supercomputer Center
• Sandia National Laboratories
• University of Western Australia
• Pittsburgh Supercomputing Center
• Atomic Weapons Establishment
• Alabama Supercomputer Authority
• Swiss National Supercomputing Centre
• Maui High Performance Computing Center
• Sony Information Technologies Laboratories
• Japan Advanced Institute of Science and Technology
• US Army Engineer Research and Development Center

Installed on nearly 30
Cray XT3 and Cray XD1
systems worldwide

Experiences with Lustre

• When it works, it works very well
• But it is fragile
• It sits at the top of the stack
• If a lower-level component sneezes, Lustre gets

violently ill
• It is difficult to diagnose
• Find cause from symptoms is rarely straightforward
• Hard to be sure that everything is healthy

Cray XT3 Lustre Experiences

• Lustre is an inherent part of the Cray XT3 system
• Cray XT3 systems started shipping in early 2005

and the full software stack needed time to mature
• Lustre had to wait for all lower levels to stabilize

• Liblustre.a is not a standard client
• New code for CFS
• Catamount microkernel is very simple

• Cray XT3 systems scale to large sizes
• Most production systems have 1000s of sockets
• Most production systems have 30-60 OSTs

Cray XD1 Lustre experiences

• Lustre is optional for Cray XD1 systems, ~10%
• Cray XD1 Lustre started shipping in summer 2005
• Cray XD1 software stack is all Linux
• Uses standard Lustre client on compute nodes
• Designed for lower-end system – fewer options,

easier to test
• Cray XD1 systems are generally small
• Most systems with Lustre have 1-3 cabs (144-432

sockets)
• Most systems with Lustre have 4-8 OSTs

Cray XT3-XD1 Comparison

• Summary
• Experiences with Lustre on the Cray XD1 were

better than on the Cray XT3
• Proves Lustre can be a powerful and useful product
• Demonstrates that the Cray XT3 environment

needs to be improved

Scalability

Client

Environment

moderatelyhighly

standard Lustreliblustre.a

standard LinuxLinux and
Catamount

Cray XD1Cray XT3

Current Lustre Status
• Lustre is now perceived as stable on XT3 systems
• Being used in production at major sites
• Users trust they can write/read Lustre files

• Lustre has always been seen as stable on XD1s
• Lustre is supported by Cray and CFS developers
• Over a dozen developers working on Lustre
• Trained Field Service and SPS engineers

• Focus on stability and reliability for Cray XT3
• Fixing bugs, particularly for scaling
• Very few optimizations
• Performance results to date have been acceptable

Outline

• Past: Cray’s history with CFS and Lustre
• Present: Where we stand today
• Future: Cray’s plans for Lustre
• Lustre performance results

HPC Customer Storage Req’ts

• High-speed local storage for HPC systems
• Very high speed and scalable to support

applications performance
• Mostly used for temporary, scratch data

• Site-wide data storage
• Permanent files shared by multiple systems
• Interoperability with installed environments

• Data management for permanent files
• Protect permanent files
• Backup, archival, HSM

Cray Storage Strategy

• Abandon hunt for the “holy grail” – the single
solution that can solve all customers’ storage
problems

• Instead pull together a set of tools to solve these
problems
• Find products excellent at meeting key

requirements
• Focused R&D with partners to strengthen products

for HPC and with Cray systems

CRAY Advanced Storage Architecture (CASA)

Large Cray
Computer

Large Servers, Workstations and Small Clusters

Small Workstations, Desktops

Fast NASFast NAS Fast NAS Fast NAS

CASA
Scalable
NAS Core

10G/1G Ethernet Network

Lustre
Parallel
File System

SAN Switch

HSM/Backup
Tape Robot/
Archive

MAID Disk
Archive

CRAY RDMA

Cray Innovation Zone

CRAY Archive

Efficient Data Flow

CASA

Cray’s File System Strategy

• Lustre is Cray’s solution for high-performance local
storage
• Cray XT3 and Cray XD1 today
• Future Cray systems under development

Current Priorities

• Reliability
• Troubleshooting
• Fragmentation
• Performance

Reliability
• Lustre is designed to support failover of the OST and MDS

• Backup servers take over in case of a failure
• New server connects to clients to replay cached or in-progress

transactions that had not been committed to disk
• Recovery transparent to applications

• Today Lustre failover works w/ Linux but not Catamount
• Failover works successfully on the Cray XD1
• Catamount clients are not guaranteed to reconnect to a server

within any specific recovery window
• CFS is fixing bugs and reworking recovery code to support

Catamount
• Expect solution to be transparent to the majority of applications but

some small percentage of running jobs may die
• After XT3 failover is functional, Cray will hook into CRMS

to automate the failover process
• Shut down the failed server and bring online the backup server

without operator involvement

Troubleshooting
• Cray’s highest development priority for CFS

• Improved error messages
• CFS has a near-term plan to revise error messages

• Improved documentation
• CFS is developing a complete Lustre manual
• Some sections included in 1.4.6; completion planned for 1.6.0

• Improved tools for file system logging, debugging, and
monitoring
• Know when something has gone wrong, where, and how to

repair; detailed design TBD
• Top items from attendees of Lustre Users Group in April

Understandable and documented error messages; troubleshooting
OST stripe management: 1) pools; 2) join files; 3) background

migration
Improved logging, debugging and diagnostic tools; NID logic; per-

client stats

Fragmentation
• Over time, the ext3 file system underlying Lustre can

become fragmented, degrading performance
• Files are split into many small pieces, scattered across the disks
• Exacerbated by Catamount clients, which do I/O synchronously

• Linux clients coalesce writes and send to OSTs in 1 MB chunks
• Severity should be lessened with XT3 1.4 with the ext3 mballoc

(multiblock allocator) option
• Upgrading to 1.4 won’t help an already fragmented disk,

defragmentation or reformat needed

• Addressing fragmentation
• Cray is developing a utility to evaluate file system fragmentation
• CFS is developing a defragmentation script

• Might be slow; won’t be effective on full file systems
• Cray and CFS are evaluating whether problem remains with the

XT3 1.4 release

Performance

• Lustre performance difficult to characterize with
the XT3 1.3 release
• Linux 2.4, disk fragmentation, etc.
• Cray and various sites ran many performance tests

with limited success and wide variability
• Cray will characterize Lustre performance with the

XT3 1.4 release
• CFS will help with fixes and tuning
• CFS has committed to make XT3 Lustre “scream”

Outline

• Past: Cray’s history with CFS and Lustre
• Present: Where we stand today
• Future: Cray’s plans for Lustre
• Lustre performance results

Performance Results Outline

• Tips for Testing
• File Access Patterns
• Lustre Scaling
• Improving RAID-5 Performance

Striping
• Lustre has the flexibility to specify how a file is

striped across OSTs
• Default set when file system is made
• User can specify with lfs setstripe [dir | file] ...

• Striping across multiple OSTs is useful when an
application writes large, contiguous chunks of data
• OSTs run in parallel, increasing I/O performance

• If the application isn’t writing large data, striping
will hurt, not help
• Don't stripe for small files
• Don't stripe any more widely than you have to
• Don't use small blocks per OST in a stripe

Debugging Messages

• Lustre debugging messages are controlled by a
/proc variable
• Turning off debug logs increases performance and

repeatability
• % echo 0 > /proc/sys/portals/debug

• Turning off debug logs makes it difficult to diagnose
problems if something goes wrong

Performance Results Outline

• Tips for Testing
• File Access Patterns
• Lustre Scaling
• Improving RAID-5 Performance

File Access Patterns

file per process

shared file : segmented access shared file : strided access

Access Pattern Testing

• Platform
• XT3 with Compute Node Linux
• Lustre v.1.4.5 running on Linux 2.4.21 sles9
• DDN S2A8500 with 8 FC-2 ports

• Test
• IOR 1.1.2.1

• Use 1MB IOR Transfers to match size of Lustre RPC
• Measured Variations

• 1 client to multiple [1, 2, 4, 8] OSTs
• Multiple [1, 2, 4, 8, 16] clients to 8 OSTs

Single Process & Stripe Count
Lustre Single Client Performance

8 OSTs, Linux 2.4.21, Lustre 1.4.5

0

50

100

150

200

250

300

350

400

1 2 4 8

Stripe Count

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Write

Read

Discussion: Stripe Count
• For a single client

• Striping a file across more OSTs increases throughput
• The incremental improvement in performance diminishes

for each increase in stripe count
• The relative increase from one to two OSTs is greater than

the change from two to four or four to eight.

• With a stripe count of 8, the single client is writing to all 8
OSTs and the throughput from the client is at a maximum
of ~360 MB/s write and ~320 MB/s read

File per Process & Stripe Count
Lustre File per Process Performance

8 OSTs, Linux 2.4.21, Lustre 1.4.5

0

200

400

600

800

1000

1200

1 2 4 8 16

of Clients

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Write, StripeCnt=1

Read, StripeCnt=1

Write, StripeCnt=2

Read, StripeCnt=2

Discussion: File per Process
• Files with the wider stripe count reach the maximum

throughput with fewer clients
• Maximum throughput occurs when

(# of clients)*(stripe count) equals (# OSTs)
• Wider stripe count does not provide more performance

with higher client count
• Need to test with more clients to learn more about

aggregate performance when we exceed this number of
clients
• At this point, read performance drops off while write

performance levels off

Shared File Performance
Lustre Shared File Performance

8 OSTs, Stripe Count=8, Linux 2.4.21, Lustre 1.4.5

0

200

400

600

800

1000

1200

1 2 4 8 16

Clients

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Write:Segmented

Read:Segmented

Write:Strided

Read:Strided

Discussion: Shared File
• Shared files with a segmented access pattern support

greater read and write rates than shared files with a
strided access pattern

• The poor read performance for both types of shared file
is not understood, though we suspect the poor I/O
architecture of the Linux 2.4 kernel is a factor. We
expect significant improvements when we repeat the
tests on XT3 SIO nodes running a Linux 2.6 kernel

File Access Comparison
Lustre Performance and IOR File Access Patterns

8 OSTs, Linux 2.4.21, Lustre 1.4.5

0

200

400

600

800

1000

1200

1 2 4 8 16

of Clients

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

FPP:Write

FPP:Read

Segmented:Write

Segmented:Read

Strided:Write

Strided:Read

Discussion: File Access Patterns
• In general, write throughput increases until the number of

clients equals the number of OSTs
• File per Process (FPP) and Shared-Segmented reach

comparable maximum write throughput
• File per Process has higher read rates than either shared

file access pattern

Summary: File Access Patterns
• Comparing our results with the results Livermore Labs

reported in their paper at the Mass Storage Conference, both
studies show that
• Write performance is generally greater than read performance,

especially for the shared file access patterns.
• Shared-Segmented access patterns are faster than the Shared-

Strided access pattern
• But, our results show that

• File per Process reads scaled more closely to File per Process
writes

• For low client count, File per Process reads were even faster
than File per Process writes

• The maximum throughput from the RAID is ~1.5 GB/s
• Even though limited to 16 clients, with the File per Process

access pattern, we were able to achieve ~1.1 GB/s for both
reads and writes

• Our preliminary results do not include enough clients to show
the maximum aggregate throughput through the file system

Performance Results Outline

• Tips for Testing
• File Access Patterns
• Lustre Scaling
• Improving RAID-5 Performance

lmdd (Lmbench) I/O Benchmark

• lmdd developed by L. McVoy, SGI and C. Staelin, HP
• Test and methodology described in

http://www.usenix.org/publications/library/proceedings/sd96/full_papers/mcvoy.pdf

• Measured Variations
• Multiple Catamount clients [1, 2, 4, … 128, 256] to
 multiple OSTs [1, 2, 4, 8, 11]

• File Access Pattern - Minimize HDD Latencies
• Shared-Segmented, Overwriting the Segments

• Use 4kB to 16MB lmdd Requests
• 1MB, Max. Size of Lustre Client RPC

File Access Pattern
• Test tool lmdd with Sequential I/O to a shared file

• Target file composed of four shared segments
• Each process overwrites or reads these same four file

segments

Segment 1 Segment 2 Segment 3 Segment 4

P-a P-b P-c P-n

n processes

. . .

• This shared-segmented file access pattern effectively
removes the storage controller from the Lustre
performance tests
• Minimizes HDD Head Movement on reads and writes
• Maximizes RAID Cache Hits on Read

Test Environment
• Test

• One Shared lmdd File for all Processes
 lmdd of=/lus/nid00008/lmdd.cat/lm1 bs=1048576 count=5120
lmdd if=/lus/nid00008/lmdd.cat/lm1 bs=1048576 count=5120

• stripe size = 1 MB
• stripe count = 1, … 11 OSTs
• request size = 4 kB, … 16 MB

• Limit the test to 256 clients for all Lustre OSTs
• Platform

• Cray XT3 with a RAID 3 and RAID 5 systems
• Catamount Lustre client

• Versions
• Linux 2.4.21 (XT3 1.3.10)
• Lustre and liblustre.a 1.4.5

One OST, 1–256 Clients

1 2 4 8 16 32 64 128 2564k

16k

64k

256k

1M

4M

16M

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

4k

32k

256k

2M

16M

0

20

40

60

80

100

120

140

160

180

200
180-200

160-180

140-160

120-140

100-120

80-100

60-80

40-60

20-40

0-20

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 1, Stripe Size = 1MB
• RAID 3

•Theoretical bandwidth to a single OST is 200 MB/sec
•Achieved bandwidth: reads - 188 MB/sec, writes - 180 MB/sec
•Two to four clients easily can saturate an OST

Write performance Read performance

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients
Num. Clients

Transfer Size
Transfer Size

Eleven OSTs, 1–256 Clients

1

4 1
6 6
4

2
5
6

4k

32k

256k

2M

16M

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1 2 4 8 16 32 64 128 2564k

32k

256k

2M

16M

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
2000-2200

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 11, Stripe Size = 1MB
• RAID 3

•Theoretical bandwidth to single 11 OSTs is 2200 MB/sec
•Achieved bandwidth: reads - 2.03 GB /sec, writes - 1.78 GB /sec

Read performanceWrite performance

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients
Num. Clients

Transfer Size
Transfer Size

1

4

1
6

6
4 2
5
6

1
2

4
8

11

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1

4

1
6

6
4 2
5
6

1
2

4
8

11

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
2000-2200

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

Scaling 1-11 OSTs, 1–256 Clients

• Our results, for sequential I/O, show that
• Aggregate Lustre performance scales well with the number of OSTs
• To realize the full benefit of scaling, need large number of clients

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 1 – 11 OSTs, Stripe Size = 1MB
• I/O request size 16MB

Read performance scalingWrite performance scaling

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients Num. ClientsStripe Count Stripe Count

File Access Pattern
• Test tool IOR with Sequential I/O to a shared file

• Each process writes or reads its own segment in the
shared file

• This shared-segmented file access pattern shows the
performance of Lustre combined with the storage
controller

shared file : segmented access

Test Environment
• Test

• One Shared IOR File for all Processes (segmented access)
 IOR -a POSIX -w -k -o /lus/IORfile -i 1 -t 1m -b 256g -T 90

 IOR -a POSIX -r -o /lus/IORfile -i 1 -t 1m -b 256g -T 90

• stripe size = 11 OSTs
• request size = 4kB, …16MB

• Limit the test to 256 clients for all Lustre OSTs
• Platform

• Cray XT3 with a RAID 3 system
• Catamount Lustre client

• Versions
• Linux 2.4.21 (XT3 1.3.10)
• Lustre 1.4.5
• IOR 1.1.2.1

Eleven OSTs, 1–256 Clients

1 2 4 8 16 32 64 128 2564k

16k

64k

256k

1M

4M

16M

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 32 64 128 2564k

16k

64k

256k

1M

4M

16M

0

200

400

600

800

1000

1200

1400

1600

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

• IOR, multiple sequential I/O streams to a Shared File
• Stripe Count = 11 OSTs, Stripe Size = 1MB
• RAID 3

• The poor cache hit ratio significantly affects read performance
• Peak bandwidth for reads - 1.46 GB/sec, writes 1.60 GB/sec
• For large number of clients reads degraded to 600 - 800 MB/sec from the

1.46 GB/sec peak bandwidth due to read cache misses

Read performanceWrite performance

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients
Num. Clients

Transfer Size Transfer Size

Summary: Lustre Scaling
• By itself, the Lustre file system scales very well

• Adding more OSTs improves aggregate performance
• Striping across multiple OSTs yields significant I/O

performance improvements for large I/O request sizes
(greater than #OSTs x 1MB) to huge shared files

• Large number of clients (more than 16 per OST) are needed
to take the full advantage of the high stripe count

• But for large numbers of clients, caching policies of the
back-end RAID system begins to impact performance
• Read performance is impacted the most
• In our tests, we believe write-back cache masked disk drive

mechanical latencies
• The performance testing was done using Catamount

Lustre client and Lustre server running 2.4.21 Linux kernel
• We expect improved results in future tests with the 2.6 Linux

kernel in the OS release 1.4

Performance Results Outline

• Tips for Testing
• File Access Patterns
• Lustre Scaling
• Improving RAID-5 Performance

RAID-3
• RAID Level 3 - (RAID 3)

• Uses byte-level striping across data disks with dedicated parity
drive

• Hardware accelerator to calculate parity for writes and reads
• Exact number of bytes sent in each stripe depends on the
particular implementation (settings)

• RAID 3 uses dedicated parity disk
• Any single disk failure in the array can be tolerated (data

recalculated using parity)

RAID level 3

Dedicated
parity disk

Unused
disk space

Files striped
byte-level
across all disks

RAID-5
• RAID Level 5 - (RAID 5)

• Uses block-level striping with distributed parity
• Hardware accelerator to calculate parity for writes and reads
• Exact number of bytes sent in each stripe could be selected
• Distributed parity algorithm, writes data and parity blocks across all
the drives in the array

• Any single disk failure in the array can be tolerated (data
recalculated using parity)

RAID level 5

Distributed
parity

Unused
disk space

Files striped
segment-level
(common
segment sizes
64kB – 256kB)

RAID-3 vs RAID-5

• Generally believed that RAID-3 performance is
better than RAID-5 for Lustre
• RAID 3 is commonly used for the applications using

large files requiring high transfer rates
• RAID 5 is usually preferred for transaction

processing, relational database, and general
purpose applications

• But RAID-3 requires all 8 disks to synchronize
results during reads, thus RAID-5 should be able
to outperform RAID-3

• Investigate RAID-5 configuration to improve
performance

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600

RAID-5 untuned vs tuned: Writes

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 8 OSTs, Stripe Size = 1MB
• Write requests 4kB, … 16MB

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients Num. Clients

Transfer Size

Transfer Size

•Achieved bandwidth, RAID 5 – 683 MB/sec vs. RAID 5 - 1.45 GB/sec

Untuned RAID 5 Tuned RAID 5

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600
1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

RAID-5 untuned vs tuned: Reads

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients Num. Clients

Transfer Size
Transfer Size

•Achieved bandwidth, RAID 5 – 1.53 GB/sec vs. RAID 5 - 1.55 GB/sec

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 8 OSTs, Stripe Size = 1MB
• Read requests 4kB, … 16MB

Untuned RAID 5 Tuned RAID 5

Discussion: untuned vs tuned RAID5
• The following parameters have been tuned

• Write-back cache size big enough (> 750 MB)
• Cache high/low watermark should not be set too low or high
• Cache segment alignment might need to match data layout

on the physical disks
• Settings are critical for the RAID 5 performance

• Factory default settings might not yield the best performance
• Overall I/O performance depends on how well back-end

RAID could be tuned for the specific I/O pattern

1 2 4 8 16 32 644k

8k

16k

32k

64k

128k

256k

512k

1M

2M

4M

8M

16M

0

200

400

600

800

1000

1200

1400

RAID-3 vs tuned RAID-5: Writes

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 8 OSTs, Stripe Size = 1MB
• Write requests 4kB, … 16MB

RAID 3, lmdd, 8 OSTs RAID 5, lmdd, 8 OSTs

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients Num. Clients

Transfer Size

Transfer Size

•Achieved bandwidth, RAID 3 - 1.34 GB/sec vs. RAID 5 - 1.45 GB/sec

RAID-3 vs RAID-5: Reads

4kB

32kB

256kB

2MB

16MB

1 2 4 8 16 32 63

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64
4k

16k

64k

256k

1M

4M

16M

0

200

400

600

800

1000

1200

1400

1600

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200

RAID 3, lmdd, 8 OSTs RAID 5, lmdd, 8 OSTs

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Ag
gr

eg
at

e
Ba

nd
w

id
th

 (M
B/

se
c)

Num. Clients Num. Clients

Transfer Size
Transfer Size

•Achieved bandwidth, RAID 3 - 1.49 GB/sec vs. RAID 5 - 1.55 GB/sec

• lmdd, Sequential I/O to a Shared File
• Stripe Count = 8 OSTs, Stripe Size = 1MB
• Read requests 4kB, … 16MB

Discussion: RAID3 vs RAID5
• Properly tuned RAID 5 system can outperform RAID 3

for both reads and writes
• Preliminary test results show that RAID 5 could

outperform RAID 3 for random I/O too. However, further
testing needs to be done to get the complete picture

• Overall I/O performance depends on how well back-end
RAID could be tuned for the specific I/O pattern

Summary
• Our results, for sequential I/O, show that

• Aggregate Lustre performance scales well with the number
of OSTs

• RAID mechanical latencies are the most critical factor for
overall I/O performance

• Properly tuned RAID 5 could outperform RAID 3 for both
reads and writes

• I/O that may be sequential to the application can appear
random to the RAID controller when there are multiple
independent, simultaneous sequential I/Os
• Overwhelming the cache in this way leads to

performance degradation in both reads and writes;
 however, reads are affected much more than writes.

• RAID has to be carefully tuned to maximize cache hits for
reads

Questions?

