
Supercomputer Simulation Design Through Simulation

Rolf Riesen
Sandia National Laboratories∗

Albuquerque, NM 87185-1110
rolf@sandia.gov

Abstract

Performance modeling of large scale applications
and predicting the impact of architectural changes
on the behavior of an application is difficult. Tra-
ditional approaches to measuring applications often
change their behavior. Modeling an application on a
new architecture requires in-depth knowledge of the
application. Both tasks often involve studying an ap-
plication to learn where probes have to be inserted.

In this paper we describe a novel approach that is
a hybrid between discrete event simulation and mea-
suring the behavior of a running application. We ex-
plain how our early prototype works and how it can
be used. We mention several experiments that we
have already performed with this protype and show
its potential for future research areas.

Keywords: MPI, simulation, perfor-
mance, virtual time

1 Introduction

Large-scale parallel systems grow more complex
with each generation. Estimating how a new sys-
tem or design feature will affect a particular appli-
cation is a necessary but difficult task. Sandia Na-
tional Laboratories has begun a project to use dis-
crete event simulation for a complete system con-
taining thousands of nodes. Even using parallel sim-
ulators this is a nearly impossible task. This paper
describes a very early prototype towards that lofty
goal.

Decisions on how to improve a next-generation
system are often made by people with a lot of expe-
rience and intuition about how these complex sys-
tems work. It seems obvious to assume that per-
formance will increase if a more powerful proces-
sor is used. What is not so obvious is how much

∗Sandia is a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States De-
partment of Energy under contract DE-AC04-94AL85000.

performance will improve. For other decisions, for
example a change in the network routing algorithm
or implementing collective operations inside the net-
work interface card (NIC), there may be no perfor-
mance gain at all. Predicting the application impact
of even small changes in a complex system is very
difficult. Simulation promises a more scientific way
of answering such questions beforehand.

In this paper we describe the prototype of a hybrid
simulator. The application executes unchanged on
the compute nodes while a network simulator runs
on one additional node. For each MPI message the
application sends, an event is sent to the network
simulator. The simulator keeps statistics about the
MPI traffic and provides network delay information
back to the application. The application uses that
information to update a virtual clock on each of its
nodes.

As far as the application is concerned, it operates
at the same performance level inside the virtual time
frame as before when the network simulator was not
present. The network simulator has knowledge of
all MPI traffic in the system and can change the per-
ceived characteristics of the network. This allows
us to measure application performance with a sim-
ulated network that is faster, slower, or has differ-
ent collectives performance than the actual network
in use. It also allows us to collect any imaginable
statistics about an applications message passing be-
havior.

Although this simulator only exists as a simple
protype so far, it shows extraordinary promise and
has already yielded useful information about bench-
marks and applications.

In Section 2 we describe in detail how the sim-
ulator works. How the simulator is used in prac-
tice is described in Section 3. In Section 4 we show
some early results of validating our simulator, and in
Section 5 we describe some of the experiments we
are currently conducting. We then list advantages of
our hybrid approach and compare it to other work in
Section 6. We close the paper with a brief summary

1

in Section 7.

2 Design

In this section we describe the design of the first pro-
totype of our simulator. It consists of a very simple
network simulator and a wrapper library for the MPI
calls. We will describe the simulator and the wrap-
per library in the next two sub-sections, and follow
with a section on how the simulator handles virtual
time, and a final section that describes how the sim-
ulator can be used.

2.1 Node (Application)

The MPI application runs as it would normally; it
is not simulated. The network simulator runs on an
additional node. For example, if an application re-
quires 64 nodes to run, we will need 65 nodes to
run it with a simulated network. For each MPI mes-
sage that is sent, including collective operations, the
application sends an event to the network simulator.
During each receive the application will block until
it receives an event from the network simulator.

The receive event has to match the MPI message
the application is currently receiving and contains a
delay value∆. With this value, the network simula-
tor informs the application node how long, in simu-
lated time, the message spent in the network. Based
on that information the node may then adjust its vir-
tual time.

Sending, receiving, and matching events to MPI
messages is done by a wrapper library that has to be
linked with the application that is to be simulated.
The wrappers also contain the algorithm to adjust
the virtual time. The wrappers make use of the MPI
profiling interface and are described is Section 2.2.

No change to the application is needed except
that it must be linked with the simulation wrappers.
Since we are not controlling or changing the appli-
cation between MPI calls, a simulated application
must run on the same machine that we want to simu-
late. The early prototype simulator described in this
paper can only simulate the network. In order to
only change variables associated with message pass-
ing but not compute time, the application has to run
on the hardware that we are interested in evaluating.

We call it a hybrid simulator because only the
message passing is simulated and the application
runs, between MPI calls, as it did before. Through
the profiling interface the original MPI library is
used to transmit the application data across the exist-
ing network. This assures that the application runs

Figure 1: Data and event traffic

correctly.

2.2 MPI wrapper library

Figure 1 shows a conceptual view of the simu-
lator. The application runs unchanged using the
MPI_COMM_WORLDcommunicator. The wrap-
per library changes that communicator for each MPI
call to a communicator the simulator has created at
startup and only includes the nodes of the applica-
tion. Therefore, the application is not aware of the
existence of the network simulator that runs on an
additional node. The realMPI_COMM_WORLDin-
cludes the application nodes plus the network simu-
lator node. It is used to exchange events between the
application nodes and the network simulator node.

When an application sends an MPI message, it
does so through the regular MPI library and the pro-
tocol stack and network that was in place before.
This is shown in Figure 1 with the example of node
1 usingMPI_Send() to transmit data to node 3. The
data is sent and received in the same manner as be-
fore the application was linked with the network
simulator.

After the message has been received, the function
event_wait() waits for the matching event from the
network simulator. The event contains the delay in-
formation calculated by the simulator and is used to
update the local virtual time.

Event handling for collective operations is a little
bit more complex. As with the point-to-point oper-
ations, the wrappers call the actual MPI library to
carry out the operation. Each node that participates
in the operation sends an event to the network sim-
ulator indicating what type of collective operation
is in progress. The simulator forwards these events
to the root node which waits for all the events. In
the case of a broadcast operation the root node then
sends an event via the network simulator to all the
recipients of the collective operation. Figure 4 de-

2

int MPI_Send(void ∗data,int len ,
MPI_Datatype dt,
int dest , int tag ,
MPI_Comm comm)

{
tx= get_vtime();
SET_COMM();

// Send the MPI message
rc= PMPI_Send(data, len, dt , dest ,

tag , comm);
// Send event to simulator
event_send(tx, len, dt , dest , tag);
return rc ;

}

Figure 2: Stub code example forMPI_Send()

int MPI_Recv(void ∗data,int len ,
MPI_Datatype dt,
int src , int tag ,
MPI_Comm comm,
MPI_Status∗status)

{
t1= get_vtime();
SET_COMM();

// Receive the MPI message
rc= PMPI_Recv(data, len, dt , src ,

tag , comm, status);
t2= get_vtime();

// Wait for the matching event
event_wait (&tx, &∆,

status−>MPI_TAG,
status−>MPI_SOURCE);

// Adjust virtual time
if (tx +∆ > t1) t3= tx +∆;
else t3= t1;
set_vtime (t3);
return rc ;

}

Figure 3: Stub code example forMPI_Recv()

picts the traffic flow.

As with point-to-point operations, each node
waits for the actual operation to complete and a
matching event. The virtual time is adjusted based
on the longest delay between the root node and any

Figure 4: Event flow for collectives (reduction ex-
ample)

of the sending nodes of a reduce operation.

2.3 MPI Communicators

During initialization the simulator sets up a commu-
nicator for the application nodes only. This com-
municator contains the nodes the application runs
on and is used for intra-application communica-
tion. The regularMPI_COMM_WORLDcommuni-
cator encompasses the application and the simulator,
and is used to exchange events between the applica-
tion and the simulator.

In order for the application to use the new com-
municator instead ofMPI_COMM_WORLDwith-
out actually changing the application, we use
a little trick. When an MPI wrapper sees
MPI_COMM_WORLDbeing passed in, it replaces
it with the communicator the simulator initially cre-
ated for the application only.

If an application creates sub-communicators they
are within the communicator the simulator created
for the application nodes only.

2.4 Virtual time

Each application node maintains a virtual time
frame. For each event it receives it may adjust the
local virtual time depending on when the event was
sent and how much of a delay the network simula-
tor has assigned to it. Figure 5 shows the algorithm
graphically and Figure 6 shows the pseudo code that
implements it.

If we receive a messages withtx (including the
delay∆ added by the network simulator) that is less
thant1, then we set the local virtual time tot1. That
is we remove the actual time spent processing and
receiving the data. The reason for this is that we
cannot say how long beforet1 the message arrived.

If the virtual arrival time is aftert1 then we adjust
the local virtual time to the virtual time the message

3

Figure 5: Virtual time

if (tx +∆ > t1)
t3= tx +∆;

else
t3= t1;

set_vtime (t3);

Figure 6: Local virtual time adjustment

was sent plus the virtual time it spent in the network.
This way the nodes synchronize their virtual times
whenever sends and receives occur close enough to
each other.

The functionMPI_Wtime() is a wrapper that re-
turns the virtual time that has passed since the pro-
gram started.

2.5 Network simulator

The network simulator of the current prototype
framework is very simple. It uses a model of the
point-to-point performance of a network to calcu-
late a delay based on message length. This delay,
possibly adjusted to simulate a faster or slower net-
work, is sent in the event to the receiving node. The
receivers takes it into consideration when updating
their local virtual time.

For point-to-point messages the simulator basi-
cally applies the well know function:∆ = s

B + L,
where the delay∆ is calculated based on the mes-
sage sizes, taking into consideration the bandwidth

B and latencyL of the network.
For collective operations the simulator assumes

that a logarithmic fan-out and fan-in algorithm is
used by the MPI library.

In addition to calculating network delays, the net-
work simulator also keeps message statistics. Cur-
rently it counts all collective operations separately
and all point-to-point operations. It also maintains
tables to accumulate the number of messages and the
amount of data sent between each node pair. It also
updates a set of buckets that are used to keep track
of the message sizes used. The simulator counts all
messages of size≤ 16 bytes,≤ 64B,≤ 256B, and so
on.

Future version of the network simulator will take
the topology of the network into account and will
allow evaluation congestion and routing delays.

2.6 Linking

The network simulator and the MPI wrappers form
a library that needs to be linked with the application
to be simulated. The current prototype requires the
renaming of themain() function of the application.
In Fortran programs the keywordprogram must
be replaced withsubroutine and the function
must be namedmain_node() .

Since simulator already has a stub forMPI_Init()
and an application has to initialize MPI before it can
make any message passing calls, it is easier to put
simulator initialization into theMPI_Init() wrapper.
Future generations of the simulator framework will
not require a source code change at all. A simple
linking with the simulator will be enough.

3 Usage

There are two steps involved in getting the simula-
tor ready to be linked with an application. First, the
point-to-point performance of the target architecture
has to be measured (or predicted) using a simple
point-to-point latency/bandwidth benchmark. Using
the information, the network simulator needs a func-
tion that calculates the delay for a given message
length.

A second measurement is necessary to accurately
model collective operations. We run an all-to-all
operation inside a tight loop and measure its per-
formance on the target architecture for various size
messages. That allows us to create a simple logarith-
mic model of the algorithm used by MPI. Figure 7
shows the model compared to the measured perfor-
mance for our Cray XT3 Red Storm system.

4

0 s

0.01 ms

0.02 ms

0.03 ms

0.04 ms

0.05 ms

0.06 ms

0.07 ms

0.08 ms

0.09 ms

16 k 32 k 48 k 64 k 80 k 96 k 112 k 128 k

Ti
m

e

Number of ints exchanged

 4 nodes
16 nodes
64 nodes

model

Figure 7: Modeling collective operations

Once these simple models are in place, the simu-
lator can be linked with the application as described
in Section 2.6. Since we run the application na-
tively, we must run it on the same types of nodes that
the target system has otherwise the compute timing
would be skewed.

In order for the simulator to be useful in the pre-
diction of future systems it is necessary to run it on
nodes that are of a different kind than the target ar-
chitecture. This will be possible once we have actual
node simulators and leave the hybrid model behind.
It may also be possible to linearly adjust the com-
pute portion of a job to match the target system. We
will conduct experiments to evaluate the size of error
introduced by such a simplistic model.

Once the application and the simulator are linked
together we need a configuration file before we can
run it. The file contains the number of nodes (cur-
rently always 1) tha the network simulator runs on,
and the number of nodes the application is using.
The file also contains a line with parameters that
are passed to the simulator. Currently supported
are factors for bandwidth, latency, and collectives
that the simulator uses to adjust the computed delay
based on the point-to-point and logarithmic collec-
tives model. This allows us to conduct experiments
pretending that collective operation incur zero-cost.

The configuration file also contains the parame-
ters that would ordinarily be passed on the appli-
cation command line. The simulator places those
into anargv array and passes it to the applications
originalmain function.

4 Validation

We have begun validating our approach. Figure 8
shows the performance of the class C NAS paral-
lel benchmarks. Each benchmark was run seven

 0

 100

 200

 300

 400

 500

 600

 700

 800

BT 16
BT 64

CG 16

CG 64

EP 16
EP 64

FT 16
FT 64

IS
 16

IS
 64

LU
 16

LU
 64

MG 16

MG 64

SP 16
SP 64

Ti
m

e
in

 s
ec

on
ds

NAS Class C Run Times

Real
Simulation

Figure 8: Runtime comparison of class A bench-
marks

times and each simulation was run seven times. The
shaded rectangles in the plot show the range of tim-
ing values measured by the benchmark. The error
bars are the times reported by the benchmark when
run under the simulator. All of the simulated runs
fall within the range of the run times reported when
the benchmark was run in stand-alone mode.

We did not have access to a dedicated machine
for our studies. To ensure the greatest accuracy pos-
sible, we allocated the required nodes and ran all
seven iterations on the same set of nodes, interleaved
with the seven runs of the simulation.

5 Experiments

In this section we describe some of the experiments
that we have performed using the prototype simula-
tor described in this paper.

5.1 Communication patterns

Since all message traffic causes events to be sent to
the network simulator, it is easy to count and accu-
mulate information about the message passing pat-
terns an application exhibits. We have conducted ex-
periments using the NAS parallel benchmarks and
published them in [2].

5.2 Varying bandwidth and latency

The current network simulator basically uses the for-
mula∆ = s

B +L to calculate the virtual time a mes-
sage took through the network. It is therefore easy
to include two additional parameters to modify the
model of the network:∆ = s

αB +βL. The default for
α andβ is 1.0, but they can be changed in the con-
figuration file. We are currently working on a paper

5

describing these experiments.

5.3 Zero-Cost collectives

In addition to theα and β parameters discussed
above, the simulator accepts a third parameter that
can be used to influence the behavior of collective
operations. We use it to model a network that has
the usual cost of point-to-point operations but im-
parts no delay at all for collective operations. Run-
ning applications like that gives us the best possible
performance an application could achieve, if the per-
formance of collective operations were improved.

We submitted a paper describing our results in [3].

5.4 Intrusion-free MPI traces

Another aspect of our simulator design which we
have not explored yet, is its ability to collect huge
amount of information without changing the virtual
time an application runs in. For example, it would
be easy to collect for each individual messages all
its envelope information; e.g., source, destination,
tag, len, and type of collective operation. We would
also store the virtual send and receive time for each
message and store that potentially huge amount of
information on a disk.

The wall-clock run time of the simulation would
dramatically increase, but the virtual time seen by
the application would not. If this approach works as
predicted, we have the potential to gather very large
and accurate timing and communication profiles for
applications; even if they span thousands of nodes.

6 Related work

This work combines discrete event simulation with
performance evaluation of parallel applications.
Each field has a large number of publications. How-
ever, combining the two in the manner described in
this paper seems to be new.

Instrumenting applications to do performance
analysis always introduces timing artifacts that skew
the measurements. A large body of work has been
devoted to keep that skew as small as possible, but
all of these approaches have one or more of the fol-
lowing drawbacks:

1. a large and extensive effort to instrument the
application,

2. the almost impossible task of keeping the run-
ning application as unperturbed as possible,

3. a reduction in the amount of memory available
to the application so trace data can be stored,
and

4. a language specific measuring tool. In [1], for
example, the NAS parallel benchmarks were
rewritten in C.

There have been efforts, such as [4] that account
for the overhead introduced by the measuring tool.
The work in [4] is interesting because it makes use
of the MPI profiling interface and attempts to com-
pensate for measurement overhead as it occurs; not
simply adjusting the total execution time. We belive
that our approach is more precise, although we have
not yet shown that.

The work we describe in this paper shows that the
same measurements can be done with no real change
to the application and no perturbation to its message-
passing (virtual) timing and behavior. This is be-
cause we combine the aspects of a simulator with
the properties of a profiling tool.

7 Summary

This paper describes a novel approach combining
discrete event simulation with application perfor-
mance measuring in a hybrid way. Our approach re-
quires no changes to the application being measured
and seems to be very accurate. The application runs
in virtual time and does not perceive the intrusion
caused by the events sent between the network sim-
ulator and the application nodes.

The current network simulator provides only a
very simplistic network model. Future version will
include knowledge about the network topology and
provide more accurate information. Especially in
the case of congested networks. The current ver-
sion is already quite capable in collecting message
passing behavior data and has been used in several
experiments with benchmarks and real applications.

This work seems to be a promising avenue to-
wards a simulation framework that will allow the
simulation of large scale massively parallel ma-
chines.

8 Acknowledgments

George Riley, Georgia Tech, has helped a lot by
teaching me about parallel discrete event simula-
tion and helping shape ideas for the supercomputer
simulation project. Many thanks go to Arun Ro-
driguez for several insightful discussions. I would

6

also like to thank Keith Underwood for suggesting
the supercomputer simulation project, and the other
team members, Ron Brightwell and Jim Tomkins,
for their helpful comments. Torsten Hoefler from
the Technical University of Chemnitz has been very
helpful with his assistance in running real applica-
tions with the simulator and suggesting improve-
ments and additional research areas.

References

[1] Sundeep Prakash and Rajive L. Bagrodia. MPI-
SIM: using parallel simulation to evaluate MPI
programs. InWSC ’98: Proceedings of the 30th
conference on Winter simulation, pages 467–
474, Los Alamitos, CA, USA, 1998. IEEE Com-
puter Society Press.

[2] Rolf Riesen. Communication patterns. In
Workshop on Communication Architecture for
Clusters CAC’06, Rhodes Island, Greece, April
2006. IEEE.

[3] Rolf Riesen and Torsten Hoefler.In submis-
sion: zero-cost mpi collectives. InRecent Ad-
vances in Parallel Virtual Machine and Message
Passing Interface: 13th European PVM/MPI
Users’ Group Meeting Proceedings, Lecture
Notes in Computer Science. Springer-Verlag,
2006.

[4] Sameer Shende, Allen D. Malony, Alan Mor-
ris, and Felix Wolf. Performance profiling over-
head compensation for MPI programs. In Be-
niamino Di Martino, Dieter Kranzlmüller, and
Jack Dongarra, editors,Recent Advances in Par-
allel Virtual Machine and Message Passing In-
terface: 9th European PVM/MPI Users’ Group
Meeting, Sorrento, Italy, September 18 - 21,
2005. Proceedings, volume 3666 ofLecture
Notes in Computer Science, pages 359–367.
Springer Verlag, 2005.

7

