

CUG 2006 Proceedings 1 of 4

Parallel Performance Analysis on Cray Systems

Kevin Roy, The University of Manchester

ABSTRACT: Solving serial performance problems is very different to solving the
performance problems on parallel codes. In many cases, the behaviour of an application
can depend on the number of processors used. Some parts of the code scale well and
others do not; when we look at parallel codes it is these nonscaling parts that are of most
interest. Identifying the components and when they become a problem is not often an
easy task. In this talk, we present some software that interfaces to existing Cray
performance analysis tools and presents clear and easy to view information.

KEYWORDS: PAT, scaling, performance tools, Cray

1. Introduction

The Need for Analysis

The use of HPC is now common place and an

integral part of today’s research and industry. The need
to solve increasingly larger problems with greater
accuracy has driven the HPC market; many research
groups have their own facilities and this has been made
possible through the availability of commodity clusters.
Recent surveys show that the University of Manchester
has over 30 clusters currently in use.

This availability has lead to increased numbers of
applications in use, particularly in the academic sector.
New applications often have the same problems of
suboptimal performance and the use of commodity
clusters often hides this problem as it can often be easier
to use larger system sizes. However this approach can
reach a natural limit and the focus then needs to be on
improving the application not just the system it is run on.
There are many reasons why an application might
perform poorly:

• Interconnect to CPU performance of the system
does not match what the application needs, e.g.,
poor interconnects can often leave the CPU idle,
waiting for communication to occur.

• The scientific programmer does not always have
the set of skills required to scale codes up to very
large systems.

• It has become increasingly easy to write
programs for today’s HPC systems, but in many
cases it has become increasingly difficult to get
better performance.

• Physical differences between systems can
produce very different performances on different
architectures.

• The constant change in choice of HPC platform
at research institutes coupled with the evolution
of microprocessors has meant continual need to
ensure performance through code profiling.

As computational scientists we need to overcome

these issues through a greater understanding of the
hardware and how it interacts with the application, this is
where profiling is useful.

Using Tools

Tools are essential for profiling, whether it is simple

timing routines placed in a code by the programmer,
something more elaborate provided by the hardware
vendor or purchased from an external source. Tools
enable us to quickly analyse our applications and focus on
areas that will provide the greatest improvements.

In section 2, we survey some existing products that

are available looking at their usefulness in profiling with
particular emphasis in parallel profiling. Section 3 looks
at what is missing in these tools and why this paper
discusses some new software. The software is described
in section 4.

CUG 2006 Proceedings 2 of 4

2. Description of Existing Performance Tools
There are a number of tools that available supplied as

either freeware, vendor supplied or purchased as a
separate product. Here we look at a couple of these
products:

• PAT/Apprentice
• OpenSpeedShop/Speedshop
• Gprof
• OPT
• Vampir/ Intel Trace Tools
• Vtune

PAT (Performance Analysis Tool) and Apprentice

are provided with Cray systems. These are very good
tools and have evolved over many years producing a very
stable effective environment however recompilation is
needed.

SpeedShop from SGI is in the same position; it is a

good effective tool. OpenSpeedShop is also available, as
an open source project it is more portable but restricted to
IA64 systems.

Gprof is one of the most portable in the list and is

available through Linux, but focuses on call graph
information rather than drilling down to line level
information.

OPT is also a portable, fully supported and an easy to

use front end, but those features come at a price as this is
a commercial product.

The Intel Trace tools and Vtune are Intel tools and

not available across a range of platforms.

Software C
ost

Portable

G
raphical

Serial

Parallel

PAT Y N N Y Y
Apprentice Y N Y Y Y
SpeedShop N N N Y S
OpenSpeedshop N S Y Y S
Gprof N S N Y N
OPT Y Y Y Y Y
Vampir/Intel Trace tools Y N Y N Y
Vtune Y N Y Y S

3. A New Tool
This work started as part of a porting exercise

required with a machine upgrade. Many of the
applications had not been examined and analysed for a
number of years, so the porting process provided an
excellent opportunity to examine the codes in great depth,
with the aim of providing a more computationally
efficient and scalable code.

However the existing tools did not provide

information in a convenient manner or more importantly,
quick enough. What was required was a simple tool that
could analyse simple serial profiles to obtain further
insight into serial and parallel performance. This quick
insight then provides opportunities to change and alter the
code and re-examine, the final goal was to provide a
simple mechanism to display results graphically for
reports to show code and function improvements. A
further key feature of this new tool is portability and cost

In summary the following features were a

requirement of the application:
• Portability of application
• Applicability of the application to multiple

systems and profiling tools.
• Build on existing tools as much as possible

(particularly profiling tools).
• Provide a simple and quick to use interface

to provide analysis and insight into the
performance and scalability of the
application.

• Produce graphical displays of scalability and
performance for use in reports.

4. The Software
The software was developed with the QT

programming toolkit for reusability and portability of the
graphical part of the application. This led to the
development of a C++ application.

The development strategy was based around:

1. Getting the performance data into the
application.

2. Being able to manipulate and view the data
and new and informative ways.

3. Being able to compare multiple runs of a
parallel application

4. Being able to visualise the data.

The software was originally designed for the

SpeedShop package for SGI Origin machines which was
a well understood package. The application has recently
been ported to the Cray systems. The format recognised

CUG 2006 Proceedings 3 of 4

on Cray is PAT which produces information of the form
shown in figure 1. This information was read into the
application and stored in a data structure that could be

manipulated expanded, should it be required.

Figure 1 Sample CrayPAT output

User Interface

A user interface needs to be intuitive to use and

provide simple access to all the data required. A decision
was made to use tabbed displays with the result from a
parallel run in a single tab. The other tabs can then be
used to store different runs, these can be either

• Runs with a different processor counts to

compare scalability
• Runs after optimization (potential saving a

history of optimizations), to show the
improvements made.

• Using the same processor count but with
different decompositions, again to see what
parts of the code are affected most by
changes in the decomposition.

Figure 2 shows the interface with re-nameable tabs

for easy identification of purpose, rows in the display
show functions within the profiled program with
statistical data (average and variance) across all profiles
within the run. The rows open out providing the full data
for each profile in the run if required.

The Reports

Much information can be gleaned from the numeric

summary data, load balancing and single processor
performance problems can be easily identified. In order
to gain insight across different runs the graphical reports
need to be run. By highlighting routines in the user
interface and then choosing a graphical report from the
menu system, graphs can be obtained like those in figures
3 and 4.

Figure 3 shows a classical scalability plot for the
highlighted routines, figure 4 shows a histogram of
performance which can be very useful when comparing
profiles of optimized against unoptimized codes or runs
where the distribution is changed.

The Output and I/O

The defining purpose of this application is to help

provide insight for code optimization and to demonstrate
code improvements that have been made; all of which
would be impossible without being able to get data into
the system and to store data that is produced.

The application uses its own data format for storing

profile data. This decision was essential, it simplifies the
I/O functions in the application, matches the data type in
use in the application and has the potential to expand as
new fields are required. It was also needed for portability
and neutrality; the application can be used to compare
runs across different architectures.

The application also provides a number of different

ways of exporting data tables that are used to produce the
reports:

• HTML Table
• Excel Table (CSV file)
• LaTeX Table

This is coupled with options to display the reports:

• EPS
• Direct printing
• Jpeg (through QT support)

5. Conclusion
ParProf has been very effective and delivers on all its

major features, development time is the only factor
stopping this expanding. The screenshots from figures 2,
3 and 4 show it in operation. There is a future in this tool
but it still requires development work in a couple of
independent directions.

• Separate

Here will be an examination of the effectiveness and
future of this tool.

Plus points and minus points
Things for the future. – Perl abstraction layer.

Acknowledgments
The authors would like to thank colleagues in

Manchester and collaborators in CSCS for their
experiences thoughts and use of Cray supercomputers.

Time% | Cum.Time% | Time | Calls |Experiment=1
 |Function
 |PE='HIDE'

 100.0% | 100.0% | 1666.872000 | 5497510788 |Total

34.5%
20.4%
15.4%
15.2%
4.8%
3.4%
2.0%
MPI_Type_commit
1.9%
1.0%

CUG 2006 Proceedings 4 of 4

About the Authors
Kevin Roy is team leader of the CSE team at

Manchester Computing, which helps provide local and
national HPC services. He has worked in HPC for over 7
years on a variety of systems including the recent Cray
T3E, XD1, and XT3 systems as well as past CUG
conferences in 2001 and as host in 2002. Kevin can be
reached at G49.3, Kilburn Building, The University of
Manchester, Oxford Road, Manchester, M13 9PL and via
email at Kevin.Roy@manchester.ac.uk.

