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Overview

Author

– Kevin Roy

– Kevin.Roy@manchester.ac.uk

Background

– What we do and why we do it.

– Why do we need to profile

– What I wanted to achieve

The tool itself

Summary and future directions
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Manchester Computing Services

MIMAS – National Datasets 
provides services to over 250 
institutions.

CSAR – A national HPC service to 
UK academia.

NGS – National Grid Service

AGSC – UK AccessGrid support 
centre

ESNW – eScience North West
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Manchester Computing Research

Advanced Virtual Prototyping Research Centre 
(AVPRC)

– virtual reality in engineering with ‘real-time’
finite element analysis software

Internationally successful RealityGrid project

Data intensive computing
– Supercomputer Data Mining

– NACTeM, NCeSS, MIMAS, NGS;

Exploring role of new technologies - FPGA, 
Cell, Clearspeed, etc

Manchester Visualization Centre (30 years)
– AVS/Express (MPE, Parallel Toolkit)

– Immersive visualization driven by SGI Altix

– Passive Stereo Lab integrated with AccessGrid

International grid projects
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High Performance Computing services 
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Why Profile?

Significant investment is made in HPC systems

– We should ensure that they are used efficiently

Efficient use is affected by numerous factors

– Inefficient coding (such as loop orderings).

– Applicability of the code to the hardware.

– Quality of the compiler.

Profiling allows us to find the problem areas in codes and 
work on those.
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Motivation

Machine upgrade

Many applications had not been touched for years

Porting exercise gave opportunity to improve the codes

Problem:

– Large number of applications, short amount of time

Needed to get in-depth information quickly and simply

– Existing tools provided all the necessary information but it was
time consuming looking for it.
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Motivation

Wanted to improve scalability of code as well as serial 
performance.
– Poor serial performance is easy to spot using profiles

– Poor scalability is harder to spot and requires analysis of multiple 
profiles.

I needed to report on each application worked on
– Part of any report in evidence of performance improvements

Good tools are expensive.  They didn’t do quite what I 
wanted either.

I enjoy writing little applications like this.
– Fun to start a new application from scratch

– Opportunity to learn new things
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Requirements

What I wanted:

– My application needed to be portable

– Needed to build on system profilers.

– Need access to all the data if needed

– Quick and simple interface

– Needed to compare multiple profiles on different processor counts

– Needed to compare many revisions of the code against each other.

– Needed to compare different processor decompositions

– Sorting

– Graphical performance charts

– Output to external formats for reports
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Reading In Data

Data comes in from system profiler

Best option is text based profiles – PAT

Data is incorporated into internal data structure

Time% | Cum.Time% |        Time |      Calls |Experiment=1

|Function

|PE='HIDE'

100.0% |    100.0% | 1666.872000 | 5497510788 |Total

|-------------------------------------------------------------

|  34.5% |     34.5% |  574.526869 |         60 |pdpstrf_

|  20.4% |     54.9% |  339.842347 | 1736599552 |pdrand_

|  15.4% |     70.2% |  255.942290 | 1821932904 |lmul_

|  15.2% |     85.4% |  253.131299 | 1820747972 |ladd_

|   4.8% |     90.2% |   79.594311 |         60 |pdmatgen_

|   3.4% |     93.6% |   56.476741 |    2863492 |MPI_Bcast

|   2.0% |     95.6% |   33.271027 |    7038416 |MPI_Type_commit

|   1.9% |     97.5% |   32.384416 |    2087458 |MPI_Recv

|   1.0% |     98.5% |   16.866056 |   82962768 |jumpit_



CUG 2006 13Combining the strengths of UMIST and
The Victoria University of Manchester

Data Views

Renameable tabbed windows 
for each run

Function list and summary info

Expandable functions giving 
information for each profile

Derived statistic information
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Interpretation

From here we can see load balancing

– high differences between max and min times per function

We can also easily identify poor serial performance

Fully sortable to aid discovery (standard feature in QT list 
views)

Can quickly skip between different runs using the tabs

Collections of profiles can be saved for easier retrieval.

We don’t see any more information here than profiles 
provide but accessing the information is quicker.  
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Generating Graphs

The graphs are the most essential part of this.

– My previous methods involved manually copying data to excel or 
Matlab to generate the graph.

– Slow and laborious

I identified two key things I wanted

– Scalability plots at a function level

– Performance plots (potentially the most wide ranging in terms of
use).
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Scalability Plot

Data output icons (later)

Scalability curve

Legend

Scalable routines

Non scaling routines

From here we see two small 
routines (on lower processor 
counts) will dominate at even 
higher processor counts.
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Scalability Plot

From the previous plot we can extrapolate the effects at 
higher processor counts.

– Perhaps the full system is not available yet.

If 66 processors are sufficient to run the code on then all 
data views give all the necessary information.

If we need to improve scalability we should start looking at 
the lower routines as they will become dominant
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Performance Plot

Performance chart

Here we compare a 4x4 
decomposition against a 8x2 
decomposition.

We can quickly analyse the 
behaviour

Also useful in comparing 
different revisions of the code
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Exporting Data

Viewing the data and graphs gives the ability to assess and 
places to target for optimization.

Exporting the graphs is necessary for reports and showing 
others (including code owners).

Data can be exported to 
– HTML table of selected data

– Excel file (CSV) of selected data

– LateX table of selected data

– Text output of selected data

– EPS

– JPEG

– Printer
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The SummaryThe Summary
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Conclusion

This served its purpose and more!

I would still like to add more features time permitting to improve 
functionality and portability
– Split up GUI from code to read in profile

– Add line level data

– Automatic analysis and problem highlighting

– Support for other tools on other systems (probably as needed).

– Support for other output formats (e.g., generate Matlab program to draw 
graphs).

– Add a hierarchy of tabs (would allow comparison of runs with different 
inputs or on different systems).

– Now I’m getting close to being able to store and retrieve information on 
every run of every code with every input set on every compiler on every 
system  that I have run it on.
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