
Combining the strengths of UMIST and
The Victoria University of Manchester

Parallel Performance Analysis Parallel Performance Analysis
on Cray Systemson Cray Systems
Kevin Roy
University of Manchester

Cray User Group
8-11 May 2006, Lugano, Switzerland

CUG 2006 2Combining the strengths of UMIST and
The Victoria University of Manchester

Overview

Author

– Kevin Roy

– Kevin.Roy@manchester.ac.uk

Background

– What we do and why we do it.

– Why do we need to profile

– What I wanted to achieve

The tool itself

Summary and future directions

Combining the strengths of UMIST and
The Victoria University of Manchester

BackgroundBackground

CUG 2006 4Combining the strengths of UMIST and
The Victoria University of Manchester

Manchester Computing Services

MIMAS – National Datasets
provides services to over 250
institutions.

CSAR – A national HPC service to
UK academia.

NGS – National Grid Service

AGSC – UK AccessGrid support
centre

ESNW – eScience North West

CUG 2006 5Combining the strengths of UMIST and
The Victoria University of Manchester

Manchester Computing Research

Advanced Virtual Prototyping Research Centre
(AVPRC)

– virtual reality in engineering with ‘real-time’
finite element analysis software

Internationally successful RealityGrid project

Data intensive computing
– Supercomputer Data Mining

– NACTeM, NCeSS, MIMAS, NGS;

Exploring role of new technologies - FPGA,
Cell, Clearspeed, etc

Manchester Visualization Centre (30 years)
– AVS/Express (MPE, Parallel Toolkit)

– Immersive visualization driven by SGI Altix

– Passive Stereo Lab integrated with AccessGrid

International grid projects

CUG 2006 6Combining the strengths of UMIST and
The Victoria University of Manchester

High Performance Computing services
since 1948

Williams-Kilburn
Baby

CDC7600/ICL19
06A

CDC7600/ICL19
04S

CDC Cyber 205 VP1200

VPX 240/10

Cray T3E (576)

Cray T3E (816)

SGI Origin3000
(512)

SGI Altix (256)

SGI Altix (512)

Dell EM64T
(2000)

2

3

4

5

6

7

8

9

10

11

12

1948 1958 1968 1978 1988 1998 2008

FL
O

PS
 (l

og
)

CUG 2006 7Combining the strengths of UMIST and
The Victoria University of Manchester

Why Profile?

Significant investment is made in HPC systems

– We should ensure that they are used efficiently

Efficient use is affected by numerous factors

– Inefficient coding (such as loop orderings).

– Applicability of the code to the hardware.

– Quality of the compiler.

Profiling allows us to find the problem areas in codes and
work on those.

CUG 2006 8Combining the strengths of UMIST and
The Victoria University of Manchester

Motivation

Machine upgrade

Many applications had not been touched for years

Porting exercise gave opportunity to improve the codes

Problem:

– Large number of applications, short amount of time

Needed to get in-depth information quickly and simply

– Existing tools provided all the necessary information but it was
time consuming looking for it.

CUG 2006 9Combining the strengths of UMIST and
The Victoria University of Manchester

Motivation

Wanted to improve scalability of code as well as serial
performance.
– Poor serial performance is easy to spot using profiles

– Poor scalability is harder to spot and requires analysis of multiple
profiles.

I needed to report on each application worked on
– Part of any report in evidence of performance improvements

Good tools are expensive. They didn’t do quite what I
wanted either.

I enjoy writing little applications like this.
– Fun to start a new application from scratch

– Opportunity to learn new things

Combining the strengths of UMIST and
The Victoria University of Manchester

The ToolThe Tool

CUG 2006 11Combining the strengths of UMIST and
The Victoria University of Manchester

Requirements

What I wanted:

– My application needed to be portable

– Needed to build on system profilers.

– Need access to all the data if needed

– Quick and simple interface

– Needed to compare multiple profiles on different processor counts

– Needed to compare many revisions of the code against each other.

– Needed to compare different processor decompositions

– Sorting

– Graphical performance charts

– Output to external formats for reports

CUG 2006 12Combining the strengths of UMIST and
The Victoria University of Manchester

Reading In Data

Data comes in from system profiler

Best option is text based profiles – PAT

Data is incorporated into internal data structure

Time% | Cum.Time% | Time | Calls |Experiment=1

|Function

|PE='HIDE'

100.0% | 100.0% | 1666.872000 | 5497510788 |Total

|---

| 34.5% | 34.5% | 574.526869 | 60 |pdpstrf_

| 20.4% | 54.9% | 339.842347 | 1736599552 |pdrand_

| 15.4% | 70.2% | 255.942290 | 1821932904 |lmul_

| 15.2% | 85.4% | 253.131299 | 1820747972 |ladd_

| 4.8% | 90.2% | 79.594311 | 60 |pdmatgen_

| 3.4% | 93.6% | 56.476741 | 2863492 |MPI_Bcast

| 2.0% | 95.6% | 33.271027 | 7038416 |MPI_Type_commit

| 1.9% | 97.5% | 32.384416 | 2087458 |MPI_Recv

| 1.0% | 98.5% | 16.866056 | 82962768 |jumpit_

CUG 2006 13Combining the strengths of UMIST and
The Victoria University of Manchester

Data Views

Renameable tabbed windows
for each run

Function list and summary info

Expandable functions giving
information for each profile

Derived statistic information

CUG 2006 14Combining the strengths of UMIST and
The Victoria University of Manchester

Interpretation

From here we can see load balancing

– high differences between max and min times per function

We can also easily identify poor serial performance

Fully sortable to aid discovery (standard feature in QT list
views)

Can quickly skip between different runs using the tabs

Collections of profiles can be saved for easier retrieval.

We don’t see any more information here than profiles
provide but accessing the information is quicker.

CUG 2006 15Combining the strengths of UMIST and
The Victoria University of Manchester

Generating Graphs

The graphs are the most essential part of this.

– My previous methods involved manually copying data to excel or
Matlab to generate the graph.

– Slow and laborious

I identified two key things I wanted

– Scalability plots at a function level

– Performance plots (potentially the most wide ranging in terms of
use).

CUG 2006 16Combining the strengths of UMIST and
The Victoria University of Manchester

Scalability Plot

Data output icons (later)

Scalability curve

Legend

Scalable routines

Non scaling routines

From here we see two small
routines (on lower processor
counts) will dominate at even
higher processor counts.

CUG 2006 17Combining the strengths of UMIST and
The Victoria University of Manchester

Scalability Plot

From the previous plot we can extrapolate the effects at
higher processor counts.

– Perhaps the full system is not available yet.

If 66 processors are sufficient to run the code on then all
data views give all the necessary information.

If we need to improve scalability we should start looking at
the lower routines as they will become dominant

CUG 2006 18Combining the strengths of UMIST and
The Victoria University of Manchester

Performance Plot

Performance chart

Here we compare a 4x4
decomposition against a 8x2
decomposition.

We can quickly analyse the
behaviour

Also useful in comparing
different revisions of the code

CUG 2006 19Combining the strengths of UMIST and
The Victoria University of Manchester

Exporting Data

Viewing the data and graphs gives the ability to assess and
places to target for optimization.

Exporting the graphs is necessary for reports and showing
others (including code owners).

Data can be exported to
– HTML table of selected data

– Excel file (CSV) of selected data

– LateX table of selected data

– Text output of selected data

– EPS

– JPEG

– Printer

Combining the strengths of UMIST and
The Victoria University of Manchester

The SummaryThe Summary

CUG 2006 21Combining the strengths of UMIST and
The Victoria University of Manchester

Conclusion

This served its purpose and more!

I would still like to add more features time permitting to improve
functionality and portability
– Split up GUI from code to read in profile

– Add line level data

– Automatic analysis and problem highlighting

– Support for other tools on other systems (probably as needed).

– Support for other output formats (e.g., generate Matlab program to draw
graphs).

– Add a hierarchy of tabs (would allow comparison of runs with different
inputs or on different systems).

– Now I’m getting close to being able to store and retrieve information on
every run of every code with every input set on every compiler on every
system that I have run it on.

Combining the strengths of UMIST and
The Victoria University of Manchester

Manchester ComputingManchester Computing

