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Abstract 
 

In this paper, we compared the performance of Cray X1E, XT3 with other two platforms, NEC SX8 
and an AMD Opteron cluster connected by Infiniband (AMD/IB), using both synthetic network 
benchmarks and a real scientific application, BeamBeam3D. In addition, we examine the relations between 
the synthetic benchmark results and application performance. We developed several models to predict the 
communication time for BeamBeam3D using the bandwidth and latency measured by synthetic 
benchmarks. The modeling results indicate that there is a big gap between the effective bandwidth on 
applications and the peak bandwidth measured by single-pair synthetic benchmarks mainly due to their 
inability to capture network contention. Using multi-pair communication results could significantly reduce 
this gap. 

 
1. Introduction 
 
Cray has recently introduced two new massively parallel processor systems, X1E and XT3. Cray X1E 

is an upgrade of the Cray X1 vector system by using advanced, faster dual-core processors to deliver better 
performance and greater density. XT3 is the third generation massively parallel processor system from 
Cray, building on the success of its predecessors, the Cray T3D™ and the Cray T3E™ systems, the Cray 
XT3 system is expected to bring astounding new levels of scalability and sustained application 
performance to high performance computing (HPC) [1]. In this paper, we are going to study its 
performance, together with other two HPC platforms, a vector platform from NEC (SX8) and a cluster built 
on AMD Opteron processors and Infiniband interconnects, using both synthetic network benchmarks and a 
scientific application (BeamBeam3D).  

 
Using synthetic benchmarks instead of real applications to compare the performance has its own 

advantages and disadvantages. Synthetic benchmarks are usually simple and can be easily ported to 
different platforms while tuning and porting applications could be tedious and costly in terms of both 
manpower and system execution time. The behavior of synthetic programs is also not difficult to control 
and the results are much easier to understand. However, to relate the synthetic benchmark results to 
application performance is challenging and difficult as the synthetic programs may not be able to accurately 
reflect the complex behavior of real applications. In this paper, we examined the performance relationships 
between several network benchmarks and a scientific application, BeamBeam3D, using a linear modeling 
technology. The results indicate that the two popular network benchmarks, single-pair unidirectional 
benchmark (PingPong) and single-pair bi-directional benchmark (PingPing) could not precisely capture the 
network contention. Therefore, applying the results measured by the above two synthetic benchmarks in 
our model leads to significant underestimation of the application communication time. However, the multi-
pair benchmarks, which allow several pair to communicate simultaneously, could capture the contention 
from node adapters. Using their results to predict application communication time is much more accurate. 

 
The authors in [2] also used multi-pair benchmarks to compare the network performance of several 

different platforms. However, they have not tried to relate the benchmark results to application 
performance quantitatively.  A closely related work to ours is from [3]. The authors investigated how well 
the simple metrics can represent the HPC application performance. The approach is to apply the synthetic 



benchmark results, as the platform signature, together with application profiling data, into a framework to 
predict application performance. The major difference is that we depend on modeling technology and does 
not need any framework and application profiling. 

  
The rest of the paper is organized as follows:  The four platforms and their architectural highlights are 

described in Section 2. Section 3 will introduce the synthetic benchmarks and discuss their results. The 
performance of BeamBeam3D is analyzed in Section 4. Section 5 presents the modeling and the 
performance prediction results. Finally, in Section 6, we summarize our results. 

 
2. Platforms 
 
In addition to Cray X1E and XT3, we selected two other platforms, one is a vector platform SX8 from 

NEC and another is a commodity cluster built on AMD Opteron and Infiniband interconnects.  Table 1 
summarizes the main features of these four platforms. 

Table 1: Architectural Highlights of Different Platforms 

CPU Memory Network 

Platform SMP Type Speed Peak Peak Type Topology Peak1 

Cray X1E 4 
(SMP) 

X1E 1.13GHz 18GF/s 
 

34GB/s Custom 4D-Hyper 
cube 

25.6 
GB/s 

NEC SX8 8 SX8 2GHz 16GF/s 64GB/s IXS Crossbar 16GB/s 

Cray XT3 1 Opteron 2.4GHz 4.8GF/s 6.4GB/s SeaStar Torus 3.8GB/s 

AMD/IB  
 

2 Opteron 2.2GHz 4.4GF/s 6.4GB/s Infini-
Band 

Fat-tree 1GB/s 

 
3. Synthetic Benchmarks and Their Performance 
 
We first select two popular network benchmarks for this study, the single-pair unidirectional bechmark 

(PingPong) and bi-directional benchmark (PingPing). The implementation of these two benchmarks in MPI 
is shown in Table 2. They should be very similar to other implementations in spirit. The performance of the 
unidirectional bandwidth on the four platforms is shown in Fig. 1. The results are obtained by selecting one 
processor from each of the two SMP nodes so that the benchmark measures the bandwidth on the network 
link between two SMP nodes. We depend on the job scheduler to assign the processes to the corresponding 
SMP nodes and we measure several times to avoid the case that the two nodes need to go through several 
network links to communicate with each other. 

 
We can easily find that for large messages, the two vector platforms, X1E and SX8, deliver far 

superior performance than the two superscalar platforms, XT3 and AMD/IB.  The performance order of 
these four platforms correlates well with the order of the peak derived from manufacture specifications, 
with Cray X1E the best and the AMD/IB the worst. 

 
The ratio of the measured bi-directional bandwidth to unidirectional bandwidth is shown in Fig. 2. For 

networks that fully support bi-directional communication, in the ideal case, the bi-directional bandwidth is 
expected to double the performance of unidirectional bandwidth based on our calculation formula shown in 
Table 2.  However, in reality, the ratio is affected by many factors and becomes much more complicated. 
Fully understanding the ratios need to dig into the details of network protocols and MPI implementations. 
Currently we are investigating this issue. For example, on the AMD/IB cluster, for smaller message sizes, 
the ratio is close 2. But for larger message sizes, the ratio drops to close to 1. On this cluster the Infiniband 
interconnect connected with the PCI bus which severely limits the available bandwidth when message size 
goes larger.  
                                                
1 The peak is unidirectional peak bandwidth on a network link 



Table 2: The implementation of synthetic benchmarks in MPI 

Single-Pair 
Unidirectional: Bi-directional: 

Multi-Pair 

Clock (start) 
For (I = 1; I < N; I++) {   
  If (myid == 0) { 
    MPI_Send(); 
    MPI_Recv(); 
  } 
  Else { 
    MPI_Recv() 
    MPI_Send();  } 
  } 
Clock (end) 
BW-Uni =  
      N*size/(end - start) 
 

Clock (start) 
For (I = 1; I < N; I++) {             
    MPI_Irecv(); 
    MPI_Send(); 
    MPI_Wait(); 
 }  
Clock (end)  
BW-Bi =  
      N *size/(end - start) 

Find pair:    
Pair.first  = myid 
Pair.second = myid .XOR. (np -1) 
 
Measure: 
Clock (start) 
For (I = 1; I < N; I++) { 
    Uni-directional test () or 
    Bi-directional test ()   
}   
Clock (end)   
BW =  
    N*message size/(end - start) 

Fig. 1: The measured single-pair unidirectional bandwidth between SMP 

Fig. 2: The ratio of single-pair bidirectional bandwidth to unidirectional bandwidth 



 
Fig.  3: The bidirectional bandwidth obtained by different benchmarks on the AMD/IB cluster 

 
Though it’s common to use single-pair benchmark results to compare performance, it is hard for the 

single-pair communication to capture the network contention. Therefore, we also developed the multi-pair 
benchmarks in which multi pairs communicate simultaneously. The implementation is shown in Table 2. It 
has two stages; the first stage is for each processor to find its partner. The algorithm to use could be 
different, but the partner should not stay in the same SMP node. The second stage is for multi pairs to 
communicate at the same time.  In Fig. 3, we present the results on the AMD/IB cluster. The two-pair 
benchmark only achieves half of the bandwidth obtained by single-par benchmark. Recall that each SMP 
has two processors inside on this platform. The two processors inside a SMP node have to compete the 
communication resources and therefore cause significant contention on the node adapter, leading to the 
performance degradation.  The results indicate that the multi-pair benchmarks could capture the network 
contention much better than the single-pair benchmarks. In addition, we also show the results for single-
pair benchmarks inside SMP. Due to the higher memory bandwidth than network bandwidth, the 
performance inside a SMP node is also much better than between SMP nodes. Fig. 4 exhibits the 
performance difference between single-pair and eight pairs on all four platforms. We can see the significant 
bandwidth drop on X1E, SX8, and AMD/IB. However, XT3 is different. Its eight-pair performance is very 
close to single-pair performance. This is probably because the peak network link bandwidth is much higher 
than the node to network injection rate. At this scale, the network contention seems not an issue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: The single and multi pair bi-directional bandwidth on all four platforms 

 
4. BeamBeam3D and its Performance 
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BeamBeam3D models the colliding process of two counter-rotating charged particle beams moving at 
close to the speed of light in a circular accelerator. Accurate modeling of the beam-beam interaction is 
essential to maximizing the luminosity in existing colliders and critical for building the next generation 
colliders such as Large Hadron Collider (LHC). Under the paraxial approximation, for the colliding beams, 
which move in the opposite directions, the electric forces and the magnetic forces add up. The resulting 
beam-beam force produces a strongly nonlinear interaction that can significantly affect the motion of the 
charged particles. We use a multiple slice model to calculate the electromagnetic forces. In this model, each 
beam bunch is divided into a number of slices along the longitudinal direction in the moving frame of 
reference. Each slice contains nearly the same number of particles at different longitudinal locations z. 
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Fig. 5: Illustration of the particle-field decomposition for eight processors. Each beam has four slices. The 

eight processors are divided into two groups and each group forms a 2x2 processor grid. 

Fig. 6: The BeamBeam3D performance and time breakdown on all four platforms 

There are two important domains in Beambeam3D, particle domain and field domain. The particle 
domain is the configuration space containing the charged particles, and the field domain is the space where 
the electric field is generated by the charged particles. BeamBeam3D adopts a novel particle-field 
decomposition approach to combine the advantages of both domain decomposition and particle 
decomposition, which has been demonstrated to deliver better performance than either particle 
decomposition or domain decomposition alone [4]. In this approach, each processor possesses the same 
number of particles and the same number of computational grid points, i.e., a spatial subdomain of the same 
size. Fig. 5 shows a schematic plot of the particle-field decomposition among eight processors. The total 
number of processors is divided into two groups, with each group responsible for one beam. We 



furthermore divide each beam longitudinally (z-direction) into a specified number of slices (Nslice=4 in 
Fig. 5). The processors in each group are arranged logically into a two-dimensional array Pz*Py to partition 
the computational domain, with each column (Py) of the array containing a number of slices which are 
assigned to this column of processors cyclically along the longitudinal direction. This gives a good load 
balance of slices among different column processors. Within each column, the computational grid 
associated with each slice is decomposed uniformly among all the column processors. This allows us to 
parallelize the solution of the Poisson equation. 

 
The time breakdowns of BeamBeam3D for different number of processors on these four platforms are 

displayed in Fig 6. The total running time has been divided into three categories: computation time, 
communication time, and I/O time. In terms of absolute performance, the SX8 performs best, followed by 
X1E. The two vector platforms deliver significantly better performance than the other two superscalar 
platforms.  The I/O time on the AMD/IB cluster is the best.  On other platforms, the I/O time is 
significantly worse. For example, the I/O time on SX8 takes almost 30% of the total running time when 
using 256 processors. This is mainly because the I/O frequency is very high. At the end of every turn, 
BeamBeam3D will output some data to multiple files. One way to reduce the I/O cost is to aggregate the 
data to reduce the output frequency. The experimental results show that this optimization works well on all 
platforms. Regarding the communication time, the AMD/IB cluster has the highest time. This is mainly due 
to its lowest network bandwidth. With the increase of the number of the processors, the communication 
time never decreases. This is also true on other platforms. The communication becomes scaling 
performance bottleneck and may take over 50% of the running time.  

Table 3: Six most important communication phases and their main characteristics.  Nx*Ny is the grid field 
size. Prow*Pcol is the processor grid as Pz*Py mentioned earlier. Nslice is the number of slices a beam has 

been divided into (Prow <= Nslice). 

Phase Name Pattern Direction Beam Size [Byte] # messages per turn 
1:  Greenf2D FFT 

Transpose 
Column Same (Nx/Pcol+1)* 

(Ny/Pcol)*16*2 
(Pcol-1)*(Nslice*2-1) 

2a:  Guardsum2D All-to-All 
Reduce 

Column Same Nx*Ny/Pcol*8 (Pcol-1)*Nslice*Nslice 

2b:  Guardsum2Drow All-to-All 
Reduce 

Row Same Nx*Ny/Pcol*8*I 
I = 1, Nslice/Prow 

(Prow-1)*MIN(2*Prow, 
CEILING(Nslice/I, 
1)*2-1) 

3:  Fieldsolver2D FFT 
Transpose 

Column Same (Nx/Pcol+1)* 
(Ny/Pcol)*16 

(Pcol-1)*Nslice*  
(Nslice+Prow-
1)/Prow*2 

4a:  Guardexch2Drow All-to-All 
Broadcast 

Row Same Nx*Ny/Pcol*8*I 
I = 1, Nslice/Prow 

(Prow-1)*MIN(2*Prow, 
CEILING(Nslice/I, 
1)*2-1) 

4b:  Guardexch2D All-to-All 
Broadcast 

Column Other Nx*Ny/Pcol*8 Pcol*Nslice*Nslice 

 
The BeamBeam3D’s dominant communication phases include a parallel grid reduction, during which 

each processor accumulates its local portion of a global, discretized charge density through a reduction of 
all its local grid elements from all other processors, a broadcast of electro-magnetic field to all other 
processors, and a forward-backward 2D FFT. All these phases represent different types of all-to-all 
personalized communication (AAPC). Furthermore, for most of these phases the communication volume 
per process stays constant in a strong scaling scenario, which results very fast in a communication bound 
execution with flat execution times at best. Table 3 lists the six dominant communication phases along with 
their major characteristics. The transposes of the 2D FFTs (phases 1 and 3) take place within processors 
columns only, which in a typical case might contain 16 processors each. The parallel global grid reductions 
involve only processors within one beam and are organized in two phases communicating in column (phase 
2a) or row (phase 2b) direction only. During the parallel global grid broadcast each processors has to send 
its part of the electromagnetic field to all members of the other beam. This is again organized in two 



phases, one in row direction within one beam (phase 4a) and the second one within column direction 
between beams (phase 4b).  The communication is implemented by point-to-point communication in MPI. 

 
5. Modeling 
 
In this section, we are going to examine whether the synthetic benchmark results can be used to predict 

the communication performance for BeamBeam3D. Note that the approach we used does not limit to 
BeamBeam3D and can be directly applied to other codes.  We chose a simple latency (L) and bandwidth 
(B) model for the time needed to exchange a single message of size s:  t = L + s/B and decided to measure 
the effective values of latency and bandwidth using the synthetic micro-benchmarks discussed in Section 3. 
We then estimate the communication time for each phase by summing up the individual message transfer 
times along its critical path, which is determined by the processor with the maximal volume of data and 
number of messages to send. We investigate a series of four performance models, which differ from each 
other by the type of micro-benchmark used to determine L and B, by separating different levels in the 
network hierarchy, and finally by replacing the linear timing model with the actual message transfer times. 

 
For our first model we choose latency and bandwidth values measured with single-pair benchmarks 

between two processors on different nodes (Model 1a: unidirectional, Model 1b: bi-directional). In Fig. 7, 
we show the ratios of measured and predicted total communication times based on our different models. 
Both Model 1a and Model 1b substantially underestimate the application communication time. In the worst 
case on XT3, the predicted time is ten times faster than the measured communication time of 
BeamBeam3D. For any model based on values measured with micro-benchmarks it is crucial that its 
parameters are chosen and measured in a fashion appropriate for the communication pattern in question. 
For all our communication phases (Error! Reference source not found.) all processors are 
communicating in pairs simultaneously. This implies that we cannot use latency and bandwidth numbers 
measured with single-pair benchmarks, but that we have to use benchmarks, which replicate this pattern by 
using a sufficient number of communicating pairs of processors. For SMP based systems we typically have 
all processors of one SMP communicate with processors in a second SMP, which represent the largest load 
on the network between them possible and actually generated during the execution of BeamBeam3D. If we 
use parameters based on multi-pair benchmark for long-range communication (inter-SMP), the model 
prediction in Fig. 7 (Model 2) improves substantially (XT3 has only one processor in a node, so Model 2 
and 3 do not apply there), but the errors of the model are still large. Using the multi-layer model (Model 3) 
to differentiate inside SMP and between SMP performances does not help at all (on some other platforms 
not used in this study, Model 3 actually works quite well).  

Fig. 7: Ratio of measured to predicted total communication times of our performance models 



 
Further investigation reveals, that the approximation of message transfer times by a linear function in 

message sizes in not accurate enough to provide acceptable model predictions. Fig. 8 shows that the actual 
transfer times for message sizes of interest between 4kB and 128kB are substantially different due to 
message protocol changes. If we replace our linear latency-bandwidth model of transfer times by the actual 
achieved bandwidth values (Model 4), prediction on SX8 and the AMD/IB cluster improves to within a few 
percent of measurement for concurrencies up to 128 processors and around 20% for 256 processors; 
prediction on X1E and XT3 improves from 5 – 10 times difference to within two times difference.  The 
Cray X1E uses a 4D hypercube network topology and XT3 uses a 3D torus topology that are quite different 
from the fat-tree networks on AND/IB cluster and the crossbar on SX8. Networks with such topology are 
more sensitive to network contention as long-range messages traverse multiple links and increase network 
load over-proportional. Capturing contention effects in these networks is difficult and requires more 
sophisticated models and/or benchmarks, which are sensitive to the average distance of processor in the 
typical communication patterns.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Message transfer times for the multi-pair (8) benchmark on SX8 

 
6. Summary 
 
In this paper, we examined the performance of Cray X1E and XT3, together with NEC SX8 and the 

AMD/IB cluster.  The two vector platforms delivered much superior performance than the two superscalar 
platforms for both the synthetic network benchmarks used and the BeamBeam3D application. Furthermore, 
we examined the methodology to correlate the synthetic network benchmark results to application 
communication performance. We find that the single pair benchmarks are often failed to capture the 
network contention and therefore may significantly underestimate the communication time. The multi-pair 
benchmarks perform substantially better, especially for the networks with either crossbar or fat-tree 
topology.  On network, such as torus or 4D hypercube, which are more sensitive to network contention as 
long-range messages traverse multiple links and increase network load over-proportional, more 
sophisticated model or benchmarks are needed. 

 
References 
 
1.  XT3 Overview,  http://www.cray.com/products/xt3/ 
2.    P. H. Worley, S. Alam, T.H.Dunigan, Jr M.R. Fahey, and J.S. Vetter, “Comparative Analysis of 

Interprocess Communication on the X1, XD1, and XT3”, in Proceedings of the 47th Cray User 
Group Conference, Albuquerque, NM, May, 2005.  

3. Laura C. Carrington, Roy L. Campbell Jr., Lary P. Davis, “How Well Can Simple Netrics 
Represent the Performance of HPC Applications? ”, Proceedings of SC05, 2005. 



4. J. Qiang, M.A. Furman, R.D.Ryne, “A parallel particle-in-cell model for beam-beam interaction in 
high energy ring colliders”, J. Comput. Phys. 198 (2004) 278-294. 

 
Acknowledgements 
 
We would like to thank NERSC, Oak Ridge National Laboratory, and te High Performance Computing 
Center Stuttgart (HLRS) of the University of Stuttgart to provide the platforms. 


