

Performance Comparison of Cray X1E, XT3, NEC SX8, and AMD/IB

Hongzhang Shan Erich Strohmaier Lawrence Berkeley National Laboratory

Motivation

- XT3, X1E recently developed by Cray, need to understand their performance

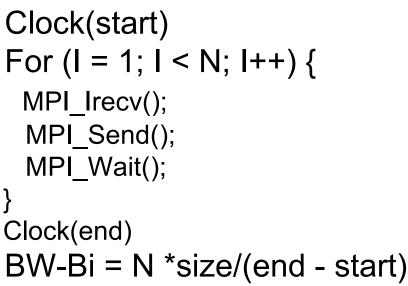
 Using synthetic benchmarks
 - Using scientific kernels or applications
- Relations between results of synthetic benchmarks and applications
 - Focus on communication

- Network Performance
 - Single Pair
 - Uni-directional
 - Bi-directional
 - Multi Pair
 - Bi-directional
- Application Performance
 - BeamBeam3D
- Modeling
 - Relations between benchmark results and application performance

Platform Highlights

		CPU		Mem	Network		
Platform	SMP	Туре	Peak	Peak	Туре	Topology	Peak*
Cray X1E	4 (MSP)	X1E 1.13GHz	18GF/s	34GB/s	Custom	4D-Hyper cube	25.6 GB/s
NEC SX8	8	SX8 2GHz	16GF/s	64GB/s	IXS	Crossbar	16GB/s
Cray XT3	1	Opteron 2.4GHz	4.8GF/s	6.4GB/s	SeaStar	Torus	3.8GB/s
AMD/IB	2	Opteron 2.2GHz	4.4GF/s	6.4GB/s	Infini- Band	Fat-tree	1GB/s

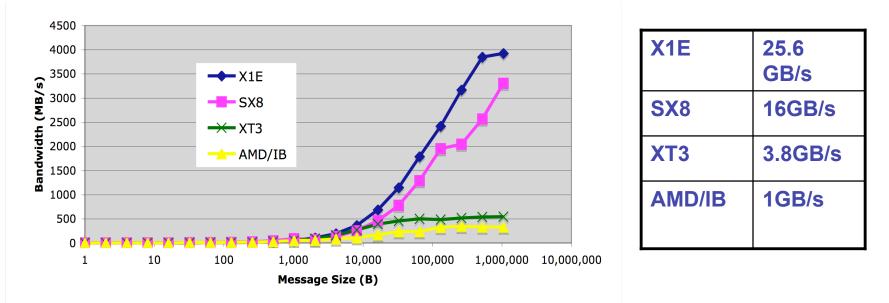
Peak: Unidirectional, per network link


Single Pair Unidirectional, Bidirectional Bandwidth Test

Unidirectional:

Bidirectional:

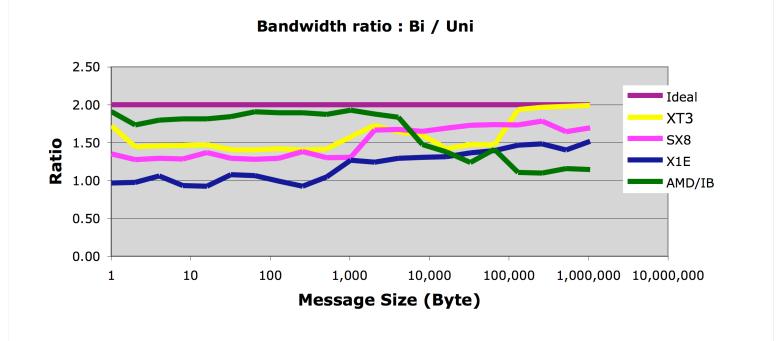
```
Clock(start)
For (I = 1; I < N; I++) {
 If (myid == 0) {
  MPI Send();
  MPI Recv();
 Else {
  MPI Recv()
  MPI Send();
Clock(end)
BW-Uni = N*size/(end - start)
```




```
Ideal : BW-Bi = 2 * BW-Uni
```


Single-Pair Uni-directional Bandwidth

BERKELEY LAP


- The results are measured by selecting one processor from each of the two SMP nodes.
- The order correlates well with network link peak
 performance
- Vector platforms achieve significant higher bandwidth
 than superscalar platforms for large message sizes
- XT3 performs better than AMD/IB cluster

CRD

Single-pair Bidirectional Bandwidth

- For most cases, the ratio is well below ideal value of 2
- Different platforms show different pattern
- Performance on AMD/IB limited by PCI bus

CRD

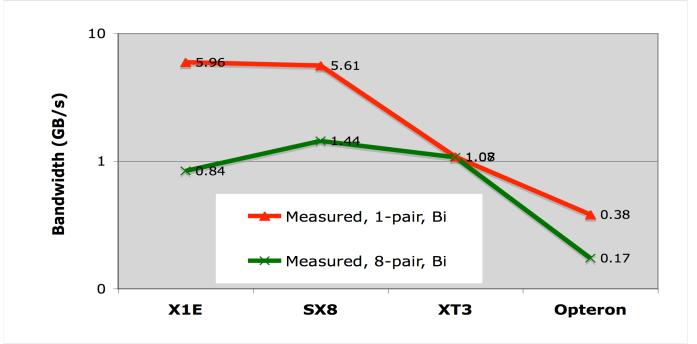
Multi-Pair Bandwidth Test

rrrr

BERKELEY LA

```
Find pair:
 Pair.first = my_rank
 Pair.second = my_rank .XOR. (nprocs -1)
Measure:
 Clock(start)
 For (I = 1; I < N; I++) {
       Uni-directional bandwidth test() or
       Bi-directional bandwidth test()
 Clock(end)
 Bandwidth = N*message size/(end - start)
```

SMP

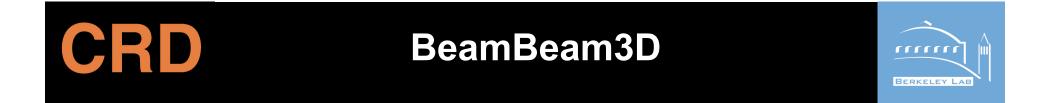

SMP

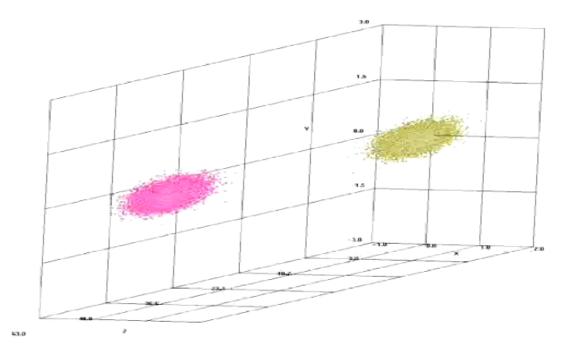
CRD Network Injection Contention

rrrr

BERKELEY LAP

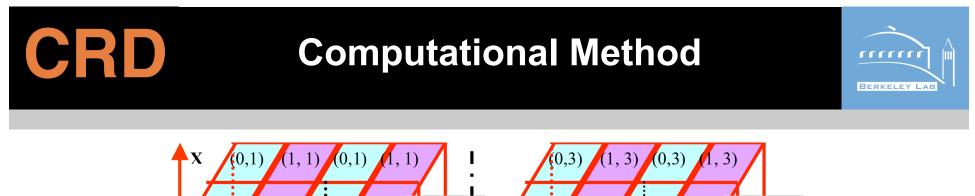
Contention is not an issue at the measured scale on XT3

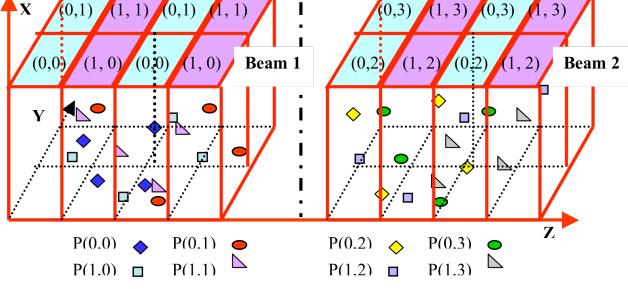



- Network Performance
 - Single Pair
 - Uni-directional
 - Bi-directional
 - Multi Pair
 - Bi-directional

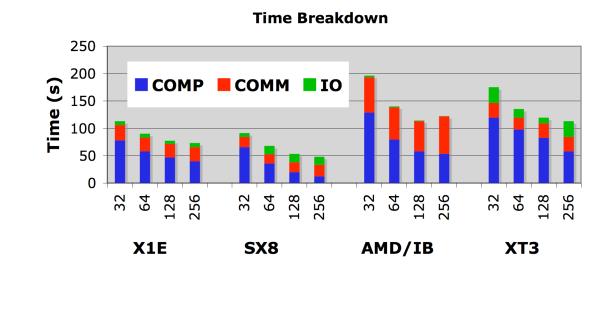
Application Performance

- BeamBeam3D
- Modeling
 - Relations between benchmark results and application performance

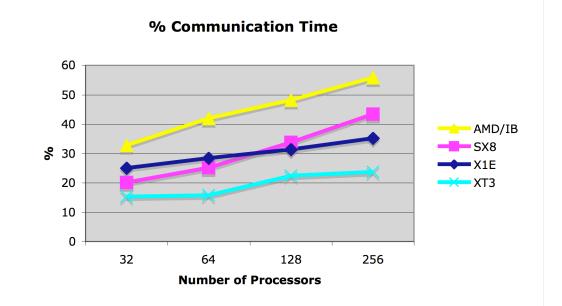




- Simulate Beam-Beam Colliding
 Process in Ring Colliders
- Important SciDAC application



- Particle-in-cell method with two main data structures, particles and field domain
- Using Particle-field decomposition, field grids are partitioned in 2D: Pz * Py



- I/U time on opteron is best
- I/O time on other systems could be reduced by aggregation
- Computation time scales best on the SX8
- Communication time on Infiniband is worst

 With the increase in the number of processors, the communication volume keeps constant, leading to higher % of communication time

Outline

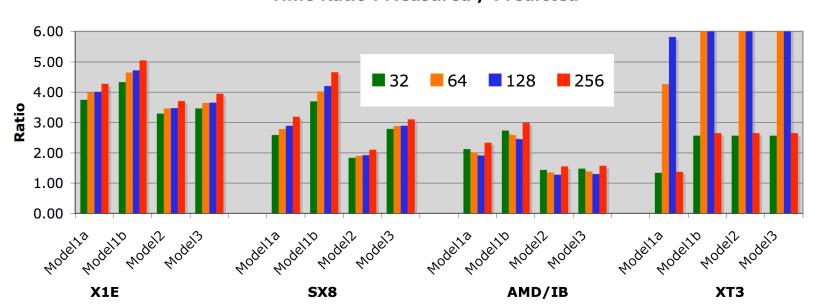
- Network Performance
 - Single Pair
 - Uni-directional
 - Bi-directional
 - Multi Pair
 - Bi-directional
- Application Performance
 - BeamBeam3D
- Modeling
 - Relations between benchmark results and application performance

CRD Communication Characteristics

Phase	Name	Pattern	Direction	Beam	Size [Byte]	# messages per turn
1:	Greenf2D	FFT Transpose	Column	Same	(Nx/Pcol+1)* (Ny/Pcol)*16*2	(Pcol-1)*(Nslice*2-1)
2a:	Guardsum2D	All-to-All Reduce	Column	Same	Nx*Ny/Pcol*8	(Pcol-1)*Nslice*Nslice
2b:	Guardsum2Drow	All-to-All Reduce	Row	Same	Nx*Ny/Pcol*8*I I = 1, Nslice/Prow	(Prow-1)*MIN(2*Prow, CEILING(Nslice/I, 1)*2-1)
3:	Fieldsolver2D	FFT Transpose	Column	Same	(Nx/Pcol+1)* (Ny/Pcol)*16	(Pcol-1)*Nslice* (Nslice+Prow- 1)/Prow*2
4a:	Guardexch2Drow	All-to-All Broadcast	Row	Same	Nx*Ny/Pcol*8*I I = 1, Nslice/Prow	(Prow-1)*MIN(2*Prow, CEILING(Nslice/I, 1)*2-1)
4b:	Guardexch2D	All-to-All Broadcast	Column	Other	Nx*Ny/Pcol*8	Pcol*Nslice*Nslice

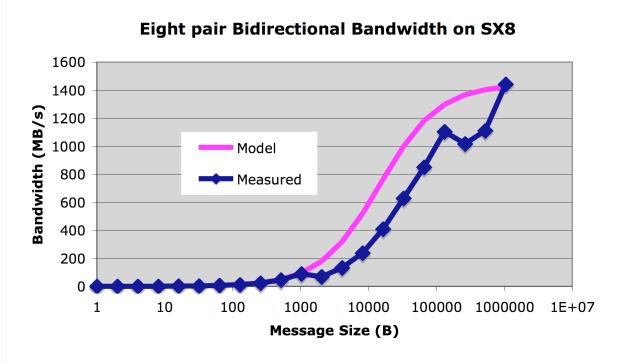
Nx*Ny is the field grid size, Nslice is the number of slices per beam Pcol*Prow is the processor grid

T = L + S/B


T: time, L: latency, S: Message Size, B: bandwidth

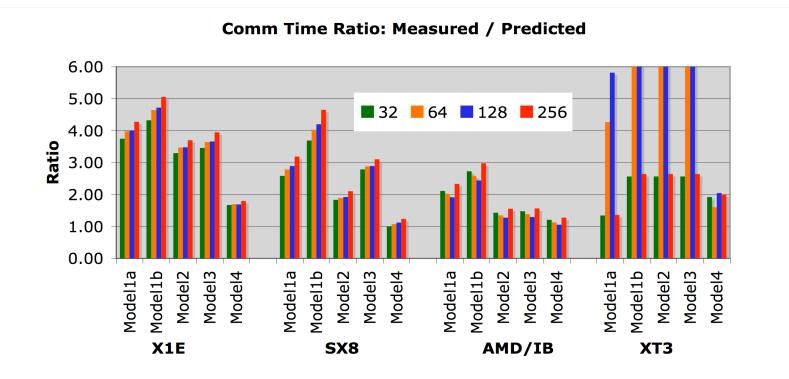
• Single layer:

- Model 1a: Single pair, Uni, between SMP nodes
- Model 1b: Single pair, Bi, between SMP nodes
- Model 2 : Multi pair (# processors in a SMP), Bi, between SMP nodes
- Multi Layer:
 - Model 3 : Multi pair, Bi, inside SMP and between SMP


Time Ratio : Measured / Predicted

- Model 1a, 1b do not correlate well with application performance
- Model 2, Multi-pair Bidirectional results is better than single-pair bi-directional results

Model 3, multi-layer does not work well



- Linear model does not fit well
- Using measurement number for each message size directly (Model 4)

- Using measurement number directly (Model 4) works much better
- X1E, XT3 need more complex benchmarks
 - due to network topology (HPCC ?)

Summary

Network:

 Multi pair benchmark captures contention from node adapter much better than single pair measurement

Application

Vector platforms perform much better than superscalars

• Modeling:

- Big gap between effective bandwidth on applications and the peak measured by single pair benchmarks
- Multi pair results capture contention from node adapter much better than single pair
- Using microbenchmark timings directly is more accurate than using a linear timing model
- On X1E, XT3, synthetic benchmarks sensitive to network link contention are needed

 Thank Oak Ridge National Laboratory, NERSC, the High Performance Computing Center Stuttgart (HLRS) to provide the platforms.

