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Abstract

The TAU performance system is an integrated performance instrumentation, measurement, and anal-

ysis toolkit offering support for profiling and tracing modes of measurement. This paper introduces

memory introspection capabilities of TAU featured on the Cray XT3 Catamount compute node kernel.

TAU supports examining the memory headroom, or the amount of heap memory available, at routine

entry, and correlates it to the program’s callstack as an atomic event.
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1 Introduction

With the development of new generations of large-
scale parallel machines comes the question of what
performance data is important to observe and how it
should be observed. While the increasing complex-
ity of high-performance systems suggests that new
machine features will require performance measure-
ment facilities different from existing tools, there is a
strong need to create empirical performance observa-
tion technologies that are cross-platform, reusable,
and open source. Robust performance technology
must address the dual goals of portability and speci-
ficity, providing for the latter means extending ex-
isting observation capabilities to support machine-
specific features, without sacrificing usability and ef-
ficiency in how the technology is applied.

In this paper we discuss how the TAU parallel
performance system contends with issues of system
diversity while maintaining a consistent performance
measurement model and observation flexibility. The
parallel machine environment we study is the Cray
XT3, in particular, the system interfaces for extract-
ing performance and memory information. We de-

scribe how TAU incorporates these interfaces in the
general TAU measurement facility. In Section §2 , we
describe in detail TAU’s instrumentation approach
and capabilities. TAU’s measurement options are
explained in Section §3. Section §4 shows how we
have enabled TAU to use the memory introspection
capabilities in the XT3 Catamount compute node
kernel. Results from experiments are shown. Con-
clusions are given in Seciton §5.

2 Instrumentation

Parallel performance evaluation tools typically em-
ploy either profiling or tracing modes of measure-
ment. While profiling records aggregate perfor-
mance metrics during program execution, tracing
relies on timestamped event logs to re-create the
temporal variation in performance, showing program
events along a global timeline. Instrumentation calls
are inserted in the program to activate events that
characterize actions that occur in a program. Sam-
pling and measured profiling are two common tech-
niques to activate the instrumentation. Sampling
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incurs a fixed measurement overhead and relies on a
periodic interrupt from the operating system based
on an interval timer or hardware performance coun-
ters. When an interrupt takes place, the program
state is recorded and at the end of execution, the tool
estimates the contribution of different routines and
statements based on the samples collected. Tools
such as SGI’s Open SpeedShop[27] and gprof [11, 10]
fall into this category. Tools based on measured in-
strumentation, on the other hand, insert hooks at
specific locations in the program, such as routines
and loops. At the entry and exit points of these
program entities instrumentation is activated and
measurements are performed.

2.1 TAU

The TAU performance system relies on measured in-
strumentation to support both profiling and tracing
performance models. The TAU framework architec-
ture is organized into three layers - instrumentation,
measurement and analysis - where within each layer
multiple modules are available and can be configured
to suit user needs. TAU supports a flexible instru-
mentation model that allows the user to insert per-
formance instrumentation using the measurement
API at different levels of program code representa-
tion, compilation, transformation, linking and exe-
cution. The key concept of the instrumentation layer
is the definition of performance events. It supports
several types of performance events to characterize
program performance. Events describing a region
of code such as routines, basic blocks or loops use
a pair of markers to start and stop timers. Atomic
user-defined events take place at a given point in the
code and are triggered with some application level
data (such as the size of message transmitted, the
size of memory allocated etc.).

2.2 Program Database Toolkit

Techniques to insert code annotations range from
manual instrumentation using the TAU API (avail-
able in C++, C, Fortran, Python and Java) to more
automated modes of inserting these annotations.
Using the Program Database Toolkit (PDT) [16],
the tau instrumentor tool can examine the source
code locations and re-write the original source code
with annotations for identifying regions of interest.
PDT comprises of modified commercial-grade com-
piler front-ends that emit program information in
the form of a program database (PDB) ASCII text

files. These are subsequently parsed by the DUC-
TAPE library. Currently, PDT provides the EDG
front-end for C++ and C and the GNU gfortran
[25], Cleanscape Flint, and Mutek Solutions front-
ends for Fortran. Using PDT, TAU supports auto-
matic instrumentation of C++, C and Fortran pro-
grams using interval events. There are several ways
to identify interval events and it is probably more
recognizable to talk about interval events as static
timers.

2.3 Timers and Phases

Static timers store the name of a program entity and
its performance data and are constructed only once.
When we aggregate the cost of each routine invoca-
tion, we use static timers (e.g. the time spent in 100
invocations of MPI Send is 100 seconds. TAU also
supports dynamic timers that are constructed each
time with a unique name. Dynamic timers are useful
for capturing the cost of execution of program enti-
ties that have different cost for each invocation. By
embedding an iteration count in a routine name, we
can invoke a dynamic timer and provide a unique
instance specific name to it (e.g. the time spent
in the second invocation of routine foo was 12 sec-
onds). Sometimes, it is useful to characterize the
program performance based on higher user-level ab-
stractions such as application phases. TAU supports
both static and dynamic phases. Phases record the
time spent in a given region as well as the time spent
in all program entities called directly and indirectly
in a given phase. Phases may be nested but may not
overlap. Static phases, like static timers aggregate
performance data for all invocations (e.g. the total
time spent in MPI Send when it was called by all
instances of the IO phase was 10 seconds). Dynamic
phases can associate an instance specific name with
the phase performance data (e.g., the time spent in
MPI Send when it was called by the fourth iterate
phase was 4 seconds).

2.4 Preprocessor-Based Memory In-

strumentation

Besides source-level instrumentation, TAU supports
pre-processor based replacement of routines. We
have implemented a memory tracking package that
includes a wrapper library for malloc and free calls in
C and C++. By re-directing references to these calls
and extracting the source line number and file name,
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TAU computes the sizes of memory allocated and de-
allocated at different locations in the source code.
Performance data is stored in atomic user-defined
events that track statistics such as the number of
samples, maximum, minimum, mean and standard
deviation of the memory size. This data helps locate
potential memory leaks. Tools such as dmalloc[26]
employ similar instrumentation techniques for auto-
mated memory leak detection.

2.5 OpenMP Instrumentation

TAU can also invoke an OpenMP directive re-
writing tool such as Opari[12] to re-write the
OpenMP directives and insert hooks in the pro-
gram prior to instrumentation. Opari relies on a
fuzzy parser and has some restrictions such as re-
quiring OpenMP end directives to be placed at the
appropriate locations in the source code. To help
this instrumentation process, we have developed the
tau ompcheck tool that examines the locations of
loops using PDT and inserts the missing OpenMP
directives and helps the Opari tool in instrumenting
the source.

2.6 MPI and SHMEM Library In-

strumentation

MPI provides a name-shifted interface that allows
a performance tool to intercept any MPI call in a
portable manner without requiring a vendor to sup-
ply the proprietary source code of the library and
without requiring any modifications to the source
code. This is provided by providing hooks into the
native MPI library with a name-shifted PMPI in-
terface and employing weak bindings. We have de-
veloped a TAU MPI wrapper library that acts as
an interposition library that internally invokes the
name-shifted MPI interface. Wrapped around the
call, before and after, is TAU performance instru-
mentation. TAU and several other tools such as
Upshot[29], VampirTrace, and EPILOG [12] use this
approach.

Cray Inc. provides similar profiling interfaces
to its SHMEM interface. We have created a TAU
wrapper library for the Cray XT3 that targets its
PSHMEM interface for profiling all SHMEM calls.
In both cases, an application needs to be re-linked
with the TAU MPI or SHMEM wrapper library.

2.7 Library Pre-loading

Operating systems such as Linux provide an
LD PRELOAD environment variable that specifies
the name of a dynamic shared object that is loaded
in the context of an application prior to execution.
Using this scheme, TAU can preload the MPI wrap-
per interposition library on systems such as the Cray
XD1 using the tau load.sh shell script that ships with
TAU. Cray XT3 does not support shared objects on
the quintissential compute node kernel - Catamount.
Hence, we need to re-link with the TAU MPI wrap-
per library.

2.8 Binary Instrumentation

TAU uses DyninstAPI [20] for instrumenting the ex-
ecutable code of a program. DyninstAPI is a dy-
namic instrumentation package that allows a tool to
insert code snippets into a running program or to re-
write a binary, using a portable C++ class library.
TAU’s mutator program tau run loads a TAU dy-
namic shared object in the address space of the mu-
tatee (the application program) and instruments it
at the level of routines. The Cray Apprentice2 [28]
tool also uses binary rewriting mechanism to insert
instrumentation in the application.

2.9 Runtime Instrumentation for

Python, Java and Component

Software

TAU also supports instrumentation at the Python
interpreter level and Java Virtual machine-based
runtime instrumentation. Also, TAU’s component
[13, 15] interface for the Common Component Ar-
chitecture (CCA) permits us to create proxy com-
ponents that are placed between caller and callee
ports. The port proxies are created using PDT to
parse the source code. All these approaches load the
TAU shared object in the context of the executing
application for instrumentation.

As the source code undergoes a series of transfor-
mations in the compilation process, it poses several
constraints and unique opportunities for program in-
strumentation. Instead of restricting the choice of
instrumentation to one layer, TAU permits multi-
ple instrumentation interfaces to be deployed con-
currently for better coverage. It taps into perfor-
mance data from multiple levels and presents it in a
consistent and a uniform manner.
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2.10 Instrumentation Optimization

TAU differs from other tools that provide auto-
matic instrumentation capabilities in the way it
addresses the issue of instrumentation optimiza-
tion. To improve accuracy of performance mea-
surements, instrumentation of low-level lightweight
routines that are invoked frequently must be dis-
abled. When the user defines an environment vari-
able TAU THROTTLE to control instrumentation over-
head, it throttles and disables instrumentation in
routines that are called over 100000 times and take
less than 10 microseconds per call. These default val-
ues may be modified by the user by setting other en-
vironment variables (TAU THROTTLE NUMCALLS and
TAU THROTTLE PERCALL respectively). This feature
can reduce profiling overhead significantly. When
tracing is chosen, it reduces the volume of trace data
generated. Other forms of instrumentation opti-
mization include the use of the tau reduce tool [14, 4]
that generates a selective instrumentation file from
a profile dataset. This file contains a list of routines
that should be excluded from instrumentation. The
source instrumentor uses it to re-instrument the pro-
gram. Other approaches include removing instru-
mentation overhead from the performance data by
measuring the timer overhead during the measure-
ment phase [6, 7, 8].

3 Measurement

TAU provides a range of measurement options that
extend from the default option of flat profiles at one
end to event tracing at the other. Between these two
extremes, the user can choose phase-based profiling,
memory profiling, memory headroom profiling, call-
path profiling, calldepth profiling, and use dynamic
timers, phases and context events to extend the pro-
filing information. Phase based profiles allow the
user to choose a set of representative phases in an
application. Timers and phases that are invoked di-
rectly or indirectly by this phase are recorded [3].
Callpath profiles highlight the parent-child relation-
ship between events and allow the user to set a run-
time parameter (TAU CALLPATH DEPTH) to truncate
its depth. The profiles show the timings along a
branch of the program callgraph based on the leaf
node. Call depth profiling allows the user to disable
the instrumentation in timers that are a certain dis-
tance away from the root node. This is specified us-
ing an environment variable (TAU DEPTH LIMIT) and

it works with all flat profiles, callpath profiles and
traces. When callpath and depth profiling are en-
abled simultaneously and set to the same depth (k),
we can see the contribution of all edges of the call-
graph that are k deep from the root (instead of the
leaf). Both Kojak’s CUBE [9] and TAU’s ParaProf
[5] profile browsers support expansion and contrac-
tion of calltrees.

3.1 High Resolution Timers

TAU employs low-overhead high-resolution timers
for performance measurements on several systems.
On Cray XD1, TAU uses the high resolution time
stamp counter register. On Cray X1, it uses the
rtc() call to measure clock ticks. On Cray XT3,
it uses the dclock() call. By default, the ubiquitous
gettimeofday() call is used. Profiling does not need
a globally synchronized real-time clock like tracing.
Thus, it is better to use the free-running timers on
individual cpus for profiling and to use the default
synchronized clocks for tracing program executions.
The user can choose these high resolution timers
during configuration by specifying the -CRAYTIMERS

configuration option.

3.2 Multiple Metric Measurement

Tracing and profiling use a single metric for per-
formance measurements by default. During profil-
ing, TAU measures inclusive and exclusive time, the
number of calls, and the child calls for each routine.
However, there are cases where the user may want
to measure more than one metric. In addition to the
wallclock time, counts of hardware performance met-
rics and message sizes may be useful. TAU supports
access to hardware performance counters using the
PAPI interface [19]. The user can configure TAU us-
ing the -MULTIPLECOUNTERS option and set environ-
ment variables COUNTER1-N to specify the nature of
performance metrics that should be recorded. The
user can set these counters by choosing from pre-
set events provided by PAPI e.g., PAPI FP INS for
floating point instructions as well as native events
that are processor specific e.g., PAPI NATIVE event

name.

3.3 Memory Profiling

At the entry of each routine, TAU can inspect
the heap memory used and trigger this value us-
ing user-defined events that tie it to the routine
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Figure 1: Performance data for memory headroom analysis

name. This generates performance data that in-
cludes statistics such as the number of samples,
maximum, minimum, mean, and standard deviation
of the value. The user must configure TAU with
the -PROFILEMEMORY configuration option to record
heap memory utilization in this manner. TAU also
supports tracking memory headroom, or the amount
of memory available on the heap before the pro-
gram runs out of memory. Again, an event corre-
lates this value with the routine name, and gener-
ates these statistics as shown in Figure 1. To enable
collection of this information, the user must choose
the -PROFILEHEADROOM option during configuration.
On the Cray XT3, TAU uses the heap info() sys-
tem call to extract the heap memory utilization and
memory headroom available. On other systems, it
computes the headroom available using a series of
malloc() calls that allocate chunks of memory. The
amount of memory requested at each call is twice
the amount requested in the previous call. When
the system runs out of memory, it requests for the
smallest chunk and if it successful in allocating it,
it requests twice as much until it cannot allocate
even the smallest amount. At that point, all mem-
ory is exhausted and TAU computes the memory
headroom in this manner. Thereafter, it frees up all
the memory blocks allocated in this manner and as-
sociates this data with the currently executing rou-
tine. Clearly, the presence of the heap info() sys-

tem call helps us develop memory introspection tools
and it would help tool developers if such library rou-
tines were available on other systems as well. TAU
uses system specific interfaces where available and
portable mechanisms elsewhere.

TAU also supports tracking heap and headroom
using timer interrupts for a single global event.
Headroom can be associated with the currently ex-
ecuting callpath as well. However, these calls need
special annotations in the source code, unlike the
two configuration options described above.

3.4 Integration in Application Build

Environments

Each configuration and build of TAU results in a
TAU library and a stub makefile that stores con-
figuration parameters as makefile variables. Each
stub makefile has a unique name that includes the
compiler name (-pgi), the runtime system chosen
(-mpi or -shmem), the measurement modules cho-
sen (-profile, -trace, -memory, -headroom,

-callpath, -phase, -depth, etc.) and the in-
strumentation mechanism (-pdt). TAU’s auto-
mated source-level instrumentation using PDT is
currently the most robust mechanism for portable
performance evaluation and is available on most
systems. To help integrate TAU in the build pro-
cess, we have developed a compiler shell script

5



Thread: n,c,t 0,0,0
Value Type: Min Value

MFIX   - Memory Headroom Available (MB)   655
MPI_Init()   - Memory Headroom Available (MB)   655
DES_INIT_NAMELIST   - Memory Headroom Available (MB)   589
GET_DATA   - Memory Headroom Available (MB)   589
GET_RUN_ID   - Memory Headroom Available (MB)   589
INIT_NAMELIST   - Memory Headroom Available (MB)   589
MACHINE_CONS   - Memory Headroom Available (MB)   589
READ_NAMELIST   - Memory Headroom Available (MB)   589
CHECK_DATA_00   - Memory Headroom Available (MB)   577
GRIDMAP::GRIDMAP_INIT   - Memory Headroom Available (MB)   577
GRIDMAP::PARTITION   - Memory Headroom Available (MB)   577
MPI_Comm_rank()   - Memory Headroom Available (MB)   577
MPI_Comm_size()   - Memory Headroom Available (MB)   577
ALLOCATE_ARRAYS   - Memory Headroom Available (MB)   575
BLANK_LINE   - Memory Headroom Available (MB)   575
LINE_TOO_BIG   - Memory Headroom Available (MB)   575
MAKE_UPPER_CASE   - Memory Headroom Available (MB)   575
MPI_Recv_init()   - Memory Headroom Available (MB)   575
MPI_Send_init()   - Memory Headroom Available (MB)   575
PARSE_LINE   - Memory Headroom Available (MB)   575
REMOVE_COMMENT   - Memory Headroom Available (MB)   575
REPLACE_TAB   - Memory Headroom Available (MB)   575
SEEK_COMMENT   - Memory Headroom Available (MB)   575
OPEN_FILES   - Memory Headroom Available (MB)   530
OPEN_FILE   - Memory Headroom Available (MB)   528
CHECK_DATA_01   - Memory Headroom Available (MB)   526
CHECK_DATA_02   - Memory Headroom Available (MB)   526
CALC_CELL   - Memory Headroom Available (MB)   525
CHECK_DATA_03   - Memory Headroom Available (MB)   525
CHECK_DATA_04   - Memory Headroom Available (MB)   525
CHECK_DATA_05   - Memory Headroom Available (MB)   525
CHECK_DATA_06   - Memory Headroom Available (MB)   525
CHECK_DATA_07   - Memory Headroom Available (MB)   525
CHECK_DATA_08   - Memory Headroom Available (MB)   525
CHECK_DATA_09   - Memory Headroom Available (MB)   525
CHECK_ONE_AXIS   - Memory Headroom Available (MB)   525
CHECK_PLANE   - Memory Headroom Available (MB)   525
FLOW_TO_VEL   - Memory Headroom Available (MB)   525
GET_BC_AREA   - Memory Headroom Available (MB)   525
GET_FLOW_BC   - Memory Headroom Available (MB)   525

Figure 2: Memory headroom available on node 0

(tau compiler.sh) that invokes a series of tools
that finally create an instrumented object code.
These include the C pre-processor, an optional
OpenMP directive rewriter (tau ompcheck followed
by opari), the PDT parsers (gfparse, f95parse,

cparse, and cxxparse) that emit a common PDB
format, the TAU instrumentor (tau instrumentor)
that examines the PDB file, the source file, an op-
tional instrumentation specification file, and writes
the instrumented source file, and finally the compiler
that compiles the instrumented source code to gen-
erate the object code. While linking, it takes care of
supplying the appropriate TAU and MPI wrapper
libraries along with system specific libraries such
as the Fortran or C++ runtime libraries to create

the executable. We provide the compiler wrapper
scripts tau f90.sh, tau cc.sh, and tau cxx.sh

that can replace full fledged compilers in any build
system. These scripts hide the multi-stage compi-
lation process. By setting a pair of environment
variables (TAU MAKEFILE and TAU OPTIONS as shown
in Figure 3, the user may specify the measurement
options chosen, and the optional parameters that
are propagated to the source transformation phases,
respectively.
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Figure 3: Modifications to the application makefile to use TAU are minimal

4 Case Study: MFIX

To illustrate the use of memory headroom analy-
sis and phase-based profiling, we instrumented the
Multiphase Flow with Interphase eXchanges (MFIX
[21, 22, 23]) application. MFIX is developed at the
National Energy Technology Laboratory (NETL)
and is used for studying hydrodynamics, heat trans-
fer and chemical reactions in fluid-solid systems. We
ran a simulation modeling the Ozone decomposition
in a bubbling fluidized bed [24].

After instrumenting and running the application
on 128 processors of the Cray XT3 at the Pitts-
burgh Supercomputing Center, we analyzed the per-
formance data using the ParaProf profile browser.
Figure 4 shows the aggregate profile of the applica-
tion across all nodes. Figure 5 shows the average
time spent in different routines and phases for all
nodes. Figure 2 shows the minimum memory head-
room available to each routine on node 0. This data
reveals that when the MFIX application is loaded, 655
MB of memory headroom is available, this shrinks
to 525 MB at the entry of the CALC CELL routine.

Figure 1 also highlights the memory headroom avail-
able. Figure 6 shows the relationship of the exclusive
time spent in four routines for all processes in a four
dimensional scatter plot. Each dimension in this
scatter plot corresponds to a routine, metric pair.
Each process is plotted with co-ordinates based on
its values in these four routine metric pairs. We use
this display to identify basic process clustering and
patterns among processes. Using a combination of
callpath profiles and memory headroom analysis, we
are able to identify where the memory availability
shrinks or grows to its lowest and the highest value.
The parent of the given routine is responsible for
memory allocation or de-allocation.

5 Conclusion

The integration of TAU in the Cray XT3 environ-
ment was a successful endeavor and demonstrated
the ability to incorporate system-specific features
for performance observation in TAU’s portable and
configurable measurement facility. In particular,
the leverage we gained from the memory introspec-
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Figure 4: ParaProf main window shows the time spent in different routines

tion mechanisms in Cray’s Catamount node kernel
was significant and highlights how portable tech-
niques provided by TAU can be improved by system-
provided support. Certainly, we have witnessed such
integration benefits on other platforms as well, but
are especially satisfied with the range of integration
specialization we achieved for the XT3. The work
we have discussed is available as part of the latest
TAU performance system distribution.
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Figure 5: The ParaProf mean profile window shows the average time spent in all routines
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