
Cray User Group -1- May 2006

Development of the SMART Coprocessor for Fuzzy
Matching in Bioinformatics Applications

By Harrison B. Smith and Eric A. Stahlberg
The Ohio Supercomputer Center, Columbus, Ohio

ABSTRACT: Efficiently matching or locating small nucleotide sequences on large
genomes is a critical step in the Serial Analysis of Gene Expression method. This
challenge is made increasingly difficult as a result of experimental assignment errors
introduced in the match and target sequence data. Early versions of SAGESpy were
developed incorporating the Cray Bioinformatics Libraries to enable large scale pattern
matching of this type. This presentation describes the design of an FPGA-based scalable
fuzzy DNA sequence matching algorithm implemented specifically for the XD1. Results
of this implementation will be compared to performance on earlier Cray SV1 and current
Cray X1 systems.

KEYWORDS: SAGE, FPGA, CBL, fuzzy match, XD1, SAGESpy, bioinformatics

Introduction
Understanding the behavior of a complex

biological system is a daunting prospect. Even with
the availability of a well characterized genome, the
defining genetic program for the organism,
tremendous amounts of effort remain to characterize
the overall behavior of these extremely complex
systems. During the lifetime of the organism,
different genes become active, or are expressed, in
response to the natural aging of the cell and in
response to stress including disease. The qualitative
identification of the expressed genes combined with
the quantitative measurement of levels at which
these genes are expressed over time provides the
insight into the behavior and response of the
biological system.

Several experimental methods have been
developed to study the expression levels of genes.
Sequencing of cDNA clones has enabled
identification of the expressed genes (Adams et al
1995). Subtractive hybridization and differential
display (Hedrick et al 1984, Liang and Pardee 1992)
have proved useful in identifying differences for
sufficiently expressed genes. Arrays of large
numbers of DNA oligonucleotides are also used to
simultaneously compare the expression of

thousands of genes (Lockhart et al 1996,
Mahadevappa and Warrington 1999). Unfortunately
these methods are limited to characterizing known
genes and do not provide insight for
uncharacterized sections of an organisms genome.

The serial analysis of gene expression
(SAGE) method (Velculescu et al 1995) has been
developed to simultaneously analyze thousands of
transcripts, including previously uncharacterized
transcripts. The SAGE method was developed to
study expression levels in multiple states of human
pancreatic cells, including normal, developing and
diseased. Over time, the SAGE method has been
found to be a suitable method to study the effect of
drugs on tissues, identification of disease related
genes, characterization of disease pathways and
investigations of other organisms (Madden et al
2000; Saha et al 2002; Chen et al 2002, Fizames et
al 2004). The SAGE method is based on two
principals, the use of a short nucleotide sequence
‘tag’ containing sufficient information to
discriminate the transcript, and concatenation of
these tags within a single clone to enable efficient
sequencing. The concatenation of multiple tags into
a combined clone, with a characteristic sequence
serving as a sentinel separator, enables the capture
and subsequent sequencing and characterization of

Cray User Group -2- May 2006

genes with even low expression levels. Originally
defined for short sequence tags of 9-10 nucleotides,
further enhancements of the SAGE method have
been developed using longer sequence tags with
stronger discriminating power. The Long Sage
(Saha et al 2002) and RL-SAGE (Gowda et al 2004)
extend the length of employed SAGE tags to 21
nucleotides.

An organism genome consists of several
chromosomes, each comprised of DNA. The DNA
in turn is comprised of linked nucleotides,
substances cytosine, adenine, thyamine and
guanine, connected in a double-helix arrangement
on a phosphate sugar framework. (These sequences
are frequently represented as strings comprised of
the letters CATG, representing the individual
nucleotides.) Both the sequencing of the
experimental cDNA tags and the identification of
candidate tags from the organism genome, defines
strings of characters containing arrangements of
letters CATG to be used for subsequent comparison.

To identify and quantify the tags expressed
in the cell, the cDNA sequence is analyzed for both
tag composition and tag population. These tags are
identified by comparing the character sequences for
the experimental tag (query) to character sequences
for the candidate tags (targets) derived from the
organism genome, and associating these to specific
genes or functional areas. Regularly, lists of
thousands of experimentally characterized tags are
compared against tens to hundreds of thousands of
tags prepared from an organism genome. In more
complex genomes, such as is the case for maize, the
numbers can reach hundreds of thousands for each
of the experimental and candidate tags. Adding to
the complexity of the comparison is the need to
account for sequencing errors, mis-assigned
nucleotides, in both the experimental sequence tags
and organism genome. It is this last requirement, the
need to account for sequencing errors, which
precludes the use of a basic substring search
algorithm and necessitates the need for a ‘fuzzy’
matching algorithm.

The SAGESpy application (Gowda et al
2004) was developed specifically for SAGE
analysis. The primary motivations for developing

the SAGESpy application were computational
efficiency and researcher flexibility. The common
BLAST application, in addition to being
computationally inefficient for SAGE analysis, also
requires pre-staging of target sequences.
Alternatives to BLAST, such as Smith-Waterman,
while viable, would add unnecessary extra
operations and subsequent computational cost of the
analysis.

Methodology
The SAGESpy application was developed

using the Cray Bioinformatics Library (CBL) and
has shown good performance on the Cray SV1 and
X1 platforms (Gowda et al 2004). The development
of the SMART coprocessor is intended to provide a
high-performance replacement for the cbsearchn()
routine which is at the core of the SAGESpy
application analysis.

SAGE analysis of genetic material generates
a large volume of textual data. The strings
generated by SAGE analysis represent specific base
pair (bp) sequences located within the analysis.
Results and are stored in FASTA format, with short
character sequences comprised of characters A, T,
C, and G each representing specific nucleotides. In
processing the data from SAGE, fuzzy matching
operations take place between these various strings.
Specifically, short, predefined strings are searched
for in the longer SAGE generated strings. The
shorter strings will be referred to as query strings, or
Q’s. The longer string being searched will be
referred to as the target, or T.

This fuzzy matching can be accomplished in
several ways. The first is a brute-force permutation
method wherein, a query search string (Q) is
permuted into a series of all acceptably similar
strings. All of these permuted Q’s are then searched
for within a target sequence (see Figure 1).

In the case of SAGE analysis, allowing for a single
error in a sequence of length n, this would result in
an O(n) operation per match.

Cray User Group -3- May 2006

Allowing for two errors in a sequence increases this
to an O(n2) operation per match, three errors
increases this to O(n3), and so on. The rate of
increase in the number of acceptable strings makes
anything more than single errors impractical except
for exceedingly short search and target strings.

Figure 1. Fuzzy matching via permutation.

Figure 2. Fuzzy matching with popcount

The second method for fuzzy matching is

the population count or popcount method. In this
method the search string is compared to a substring
of the target. Each element of the search string is
compared to a corresponding element in the target
substring. This comparison generates a bit array.

Within the bit array, a match between elements is
represented by a 0 and a mismatch by a 1. This bit
vector is then summed and if the sum is sufficiently
small, it is considered a match (see Figure 2). This
results in n comparisons for vectors of length n,
followed by a summation of n elements. Note that
the computational complexity of this method is
O(n) independent of the allowed number of
mismatches.

A third possibility involves the use of a
finite state machine (FSM). In this method, a
hardware machine keeps track of the incoming T
(target) sequence and compares it serially to the
stored Q (query) sequence. This opens up
possibilities for allowing for omission and additions
to the fuzziness of the match. However,
computation time for an FSM implementation
would be variable and require many concurrent
FSMs to achieve throughput of one sequence per
clock cycle. In the case of additional string
variability, a processor based on the Smith-
Waterman algorithm would be expected to provide
a better solution allowing additional fuzziness in the
match while maintaining predictable runtime.

Of the three approaches, the second
approach remains most optimal for the SAGE
analysis on a reconfigurable platform. The first
method presented is the brute-force approach and is
computationally burdensome and inefficient. Yet,
being a brute-force approach it may remain the only
option for particular systems. The third method has
the potential to be quite powerful, but is also
increasingly complex, require additional gate
resources, and lead to overall poorer net
performance for the simple fuzzy match. The
second approach, using the SMART processor,
provides for a scalable parallel design suited for
reconfigurable systems.

Implementation & Design
The acceleration system is being

implemented on the Cray XD1 at the Ohio
Supercomputer Center (OSC), Springfield site. The
system at OSC Springfield (OSC-S) has Xilinx
Virtex2Pro50 FPGAs attached to six of eighteen

Cray User Group -4- May 2006

nodes. Cray provides a variety of hardware
modules for the attached FPGA that allow for
various functionality, including communication
between the CPU and FPGA, decoding requests
from the communication interface, allowing access
to the FPGA attached QDRII memory system,
allowing direct access to the CPU memory via
DMA, and implementing a CPU interrupt. These
provided modules take care of some of the most
difficult CPU to FPGA interfacing challenges,
allowing the application developer to focus on the
implementation of the actual solution to the
problem. However, at the same time, use of these
modules ties an implementation explicitly to the
XD1 system. The Cray XD1 also has installed
many Cray HPC libraries, including the CBL (Cray
BioLib).

Since the analysis of data is typically
comparing thousands (of even hundreds of
thousands) of Q’s to a single T, the application
lends itself to parallelization with great ease. The
Cray XD1 provided several important advantages
for this design. The cluster structure of the XD1 will
easily accommodate high-level parallelization.
Secondly, the available CBL provides an algorithm
to both read the FASTA file format and compress
the data to 2-bit values. This reduces the amount of
memory usage in the comparison process by a
factor of four, and will reduce the required
bandwidth to move data through the accelerator.

Full System Overview

The high level structure of the acceleration
system is that of a serial string of custom designed
popcount processors controlled by a single
controller tied into the Cray provided hardware.
The accelerator can accommodate multiple Q’s,
dependent only upon the size of the FPGA provided
with the XD1. Theoretically search rates of 180
million bps per second for 60-80 Q’s can be
attained with the six FPGAs currently part of the
OSC-S XD1 system.

The serial string of popcount processors
design has several significant advantages. The
popcount processor is reasonably compact, highly
efficient, and adapts well to a serial pipeline

structure. The pipeline structure itself works well
because of both the embarrassingly parallel nature
of the problem and the typical extent of T being
many times larger than the number of Qs, meaning
overhead to fill the pipeline is negligible relative to
overall performance. This allows a large number of
Q’s to be compared to the same T while only
needing to stream the T through the system
minimally. Additionally, the serial nature of the PE
chain reduces fanout and eliminates any need for
large, slow decoders.

Processing Element
The workhorse of the accelerator is the long

chain of processing elements (Figure 3) that will
take up the majority of FPGAs real estate. Each PE
in the chain passes along almost all the input it
receives from either the previous PE or the system
controller. There is a wide bus to allow for the
rapid passing of Q values, a number of streamed
control signals, and a serial bus for the streaming of
the T values. The PE does one comparison per
clock cycle by taking advantage of a six stage deep
computational pipeline. Each PE holds one 32 bp Q
value and 32 bp of the T substring. These values
are fed into the fuzzy matching computational
pipeline, and each clock cycle the 32 bp of the T
substring are shifted. Each PE has a small amount
of dedicated memory within which it buffers the
positions of the matches it finds. These results are
transmitted to the system controller over a bus
shared by all the PEs.

Cray User Group -5- May 2006

Figure 3. Processor element design.

The decisions contributing to the design of
the processing element yielded many advantages
that increase performance, decrease the FPGA real
estate required, and decrease communication
overhead. The primary decision was to have the
processors act as a serial chain with pipeline like
features. Because the length of the T string is
typically in the millions of bps, overhead becomes a
negligible portion of the overall comparison.
Additionally, the approach allowed us to optimally
design a single PE which would be replicated within
the overall design. Due to the pipeline like nature
of the chain, getting one PE to run at full speed is
enough ensures optimal performance designs for all
PEs. This also simplifies expansion of the system,
allowing replication up to 1024 processors per
FPGA. This limitation could easily be loosened
with little extra work. Finally, the chain lends itself
nicely to the bus based communication setup
between the PEs and the main system controller.

Early in the design, a bus dedicated to the
transfer of Q’s was added to the PE. This was done
to help simplify PE logic as well as the main system
controller logic, and reduce overhead of the full
system. Additionally, rather than have bps from T
shifted all the way through the 32bp buffer within
each PE, they are shifted back out again

immediately as well as down the buffer. In this
way, all inputs to a processing element are outputs
to the same PE the next clock cycle.

The actual fuzzy matching engine is also
deeply pipelined. The first stage compares Q to the
T substring and generates a bit vector of length 32.
The subsequent stages sum this bit vector and
generate control outputs that indicate if the result
should be buffered. Experimentation has shown
that by collapsing some of the pipeline stages,
resource usage goes down without effecting
theoretical performance. Plans are to add an earlier
stage to the pipeline that can mask off a specific bit
range, allowing for the searching of strings of less
than 32bp.

Figure 4. System controller design schematic

Another optimization made was the small
buffers in the PEs. Given the relatively short length
of search strings and the threshold level of the fuzzy
matching allowing for only 2 errors, the statistical
frequency of matches is extremely low. This allows
the buffers to be relatively small when compared to
the available block RAM built into the FPGA. Each
PE was given a circular buffer capable of storing
128 matches. A design decision was made to simply
note buffer overflow and continue processing in the
event a buffer becomes overfilled. The indication of
overflow allows the application developer to
respond accordingly. Also, the relatively low match

Cray User Group -6- May 2006

rate enabled use of a single bus to connect the
controller to all PEs. Control of the bus is granted
by a token originated at the system controller, and
passed between the PEs. This allows for PEs to
further reduce their dependence on their buffers by
providing a low-overhead means to empty buffers.

System Controller
The most complex component of the fuzzy

matching system is the main system controller
(Figure 4). This controller consolidates the
interfaces with both the portably designed PEs and
Cray specific modules employed. The controller is
responsible for providing configuration, a constant
stream of input data, as well as collecting results
from the PEs during the course of execution. The
controller is responsible for responding
appropriately to initialization and configuration
data, requesting reads and writes to and from CPU
memory space, and alerting the CPU when the
computation is completed, interfacing via the
hardware modules provided by Cray. The
controller makes use of several Cray modules to
achieve these objectives. The system controller is
composed of three subsystems each of which handle
a specific function. These three subsystems are the
Data Collector, the Data Streamer, and the main
Controller. These three components will be
discussed in detail later.

In designing the system controller, Cray
modules were critical. Use of the Cray provided
modules ensured us of properly working, highly
tested components. Nearly as important, these
components implemented the most challenging
hardware elements in the design in an efficient and
general way. They are highly reliable, easy to use,
and do not present a bottleneck in the system. All
communication and routing systems were
essentially handled by Cray modules. We also
divided the system controller into three
subcomponents to help simplify and
compartmentalize the design. Each subcomponent
could be independently optimized, debugged, and
verified which helped simplify and speed up
development.

System Controller: Data Streamer
The Data Streamer unit (Figure 5) is a smart

serializer that keeps the PEs supplied with elements
of the target sequence at a rate of one bp per clock
cycle. It relies on the Main Controller for parallel T
data retrieved from the CPUs memory space. Its
smartness comes from its awareness data. Rather
than a simple shift register, the Data Streamer tracks
where valid and invalid data are within its 32 bp
buffer. The Data Streamer commences requesting
data from the Main Controller when less than half
the buffer is valid. Should the buffer ever empty
completely, the Data Streamer asserts the global
pause signal, sending the PEs into a suspended
state, awaiting new data.

The Data Streamer was created to be as
small as possible while still providing a limited
awareness of its own state. The simplest way to
achieve this was with a 64-bit (32 bp) buffer and a
5-bit counter. As the buffer empties, the counter
counts down. Some simple logic makes up the rest
of the unit, asserting and de-asserting lines as
needed.

Figure 5. Data Streamer Design Schematic

System Controller: Data Collector
The Data Collector (Figure 6) is a simple

token generator and a circular data buffer system. It
creates the initial token that is passed between the
PEs and monitors the bus connecting the PEs for
data. When data is present on the bus, the Data
Collector records the data into its own data buffer.
The Data Collector keeps the Main Controller
informed whenever it has any collected data and

Cray User Group -7- May 2006

passes on data whenever the Main Controller
requests it.

As before, the design goal was to keep the
subcomponent as simple as possible while
providing only the minimum necessary
functionality. The single bus with an access token
was used because it could be implemented
independent of the number of PEs allowing for
simple expansion and contraction of the system as
needed for new hardware. A circular buffer was
used to simplify control logic, where the total
quantity of reported matches would not be limited
by buffer size. The Data Collector will signal to
the Main Controller whenever it has any data to
keep the buffer as empty as possible. In all
probability the Data Collector will keep both the
buffers in the PEs and its own buffer from ever
overflowing for most encountered situations.

However, this is of course dependent on
both the number of PEs and the data sets processed.
It was decided, as with the PEs, that in any instance
of the buffer overflowing it was sufficient to simply
signal the user.

Figure 6: Data collector design schematic

System Controller: Main Controller
The main system controller (Figure 8) is a

complex collection of sub-controllers that is
responsible for interlinking the Cray modules and
our custom modules. There is a controller that
keeps the read request buffer of the Cray DMA
module full at all times. The second of these
subsystems uses data from the DMA read interface
to keep the Data Streamer supplied with the bps of

T. Another controller takes data from the Data
Collector and uses it to make DMA write requests.
There are two controllers that handle the reception
of configuration data from the rt_client module. A
final controller configures and coordinates the
actions of the PEs and other sub-controllers.

The division of the Main Controller into a
series of sub-controllers again served the purpose of
helping to simplify overall design and achieve
maximum performance. The DMA read controller
ensures that as much data as possible is transferred
to the FPGA before it is needed. This should keep
the FPGA well supplied with data and help to avoid
the need for system pauses. The controller
connecting the Data Collector and the DMA write
interface works to keep the Data Collector buffer
empty as much as possible. This helps to further
reduce the already small probability of and buffer
overflows.

Performance
Having completed all of the above

mentioned modules, full system testing and
evaluation have begun. We are confident that all
modules will be able to run at the highest possible
clock speed allowed by the current FPGA,
200MHz. We include below a table of predicted
clock speeds and area usages of modules. Each PE
will process one bp of the target sequence per clock
cycle. This leads to a predicted performance of 200
million bp every second. We also predict a final
version of the accelerator will include between 80
and 100 PEs. This yields an estimated processing
power of 20 billion bp per second. Shortly, the
Virtex4 will be available. This FPGA has twice the
clock speed, and 4 times the area of the Virtex2Pro
FPGA. The increased capability of the Virtex4 will
raise predicted performance levels to 160 billion bp
per second. These predicted performances are very
competitive with current systems as can be seen in
Table 1. Performance data in Table 1 was taken
from work done previously at the Ohio
Supercomputer Center (Gowda et al 2004). Our
design estimates are included for the current XD1
equipped with the Virtex2Pro and the theoretical
scaling were the system equipped with a Virtex4.

Cray User Group -8- May 2006

Performance listings for the design do not include
an estimate for I/O.

While very attractive performance is
achieved, further work remains to increase overall
performance. First and foremost, the fuzzy
matching pipeline can be collapsed slightly. This
will not increase clock speed but will serve to
reduce the area each PE requires on the FPGA
enabling more PEs per given FPGA.

Another modification would be the addition
of a second comparator and popcount unit to the PE
to allow for both forward and backward searching
in the target string to take place simultaneously,
reducing the need to stream T data through in both
its direct and reverse complement form. Lastly,
compression of the ASCII sequence data could be
moved from CPU computation to onboard the
FPGA. This could potentially save a large amount
computation time on the CPU side by adding one
more stage in the pipeline of the processing
accelerator, effectively adding no time to execution
but with a trade-off in I/O demands.

Conclusions
This project further illustrates an advantage

FPGA hardware has over traditional hardware for
processing bioinformatics data. Specialized
hardware available on commodity processors today,

such as floating point units, vector units, generally
do not contribute to problems involving sequence
comparison. The impact and potential value of
reconfigurable computing hardware in these
situations is emphasized not only by our predicted
performance results, but also by the fact that such
performance could be achieved on a modern
desktop computer with a specialized FPGA board at
a fraction of the cost and energy usage of a modern
supercomputer.

About the authors:

Harrison (Ben) Smith is an Computer Science -
Electrical Engineering graduate student at the Ohio
State University in Columbus, Ohio. Ben may be
reached at bsmith@osc.edu.

Eric Stahlberg is a senior systems manager a the
Ohio Supercomputer Center (Columbus, Ohio)
leading efforts in bioinformatics and FPGA
application development. Eric may be reached at
eas@osc.edu.

Both Ben and Eric may be reached at the Ohio
Supercomputer Center, 1224 Kinnear Road,
Columbus, OH, 43212

Cray User Group -9- May 2006

Figure 7. System design schematic

Figure 8. Main controller design schematic.

Computation time in seconds

Number of
target bps

SV1 X1 XD1 w V2P
(estimated)

XD1 w V4
(theoretical)

Number of

Hits

Chrom1 13333992 1.35 0.36 0.066 0.0165 29
Chrom4 9923256 1.00 0.27 0.049 0.0124 34

Chrom10 5964420 0.61 0.16 0.030 0.0074 8
TIGR(EST) 9889404 1.00 0.26 0.049 0.0124 333

Table 1. Performance of SAGESpy XOR comparison approach relative to estimates for
SMART co-processor. Speed was measured for one hundred query tags with a two
mismatch threshold.

Cray User Group -10- May 2006

References

Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ (1995),

“Initial assessment of human gene diversity and expression patterns based on 83 million
nucleotides of cDNA sequence”, 1995, Nature 377(Supplement):.3

Chen J, Sun M, Lee S, Zhou G, Rowley JD, Wang SM (2002), “Identifying novel

transcripts and novel genes in the human genome by using novel SAGE tags”,
Proceedings of the National Academy of Science USA 99: 12257

Fizames C, Munos S, Cazettes C, Nacry P, Boucherez J, Gaymard F, Piquemal D,

Delorme V, Commes T, Doumas P, Cooke R, Marti J, Sentenac H, and Gojon A (2004),
“The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression. Gene
Identification Using the Genome Sequence. Plant Physiology”, 134(1):67.

Gowda M, Wang GL, Doak J, Manikantan S, Stahlberg E (2004), “High

Performance Genome Scale Comparisons for the SAGE Method Utilizing Cray
Bioinformatics Library (CBL) Primitives”, Proceedings of Cray User Group 2005

Gowda M, Jantasuriyarat C, Dean RA, Wang GL (2004), “Robust-LongSAGE

(RL-SAGE): A Substantially Improved LongSAGE Method for Gene Discovery and
Transcriptome Analysis”, Plant Physiology 134(3):890

Hedrick SM, Cohen DI, Nielsen EA, Davis MM (1984), “Isolation of cDNA

clones encoding T-cell specific membrane-associated proteins”, Nature 308:149

Liang P and Pardee AB (1992), “Differential display of eukaryotic messenger

RNA by means of the polymerase chain reaction”, Science 257:967

Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, et al. (1996),

“Expression monitoring by hybridization of high-density oligonucleotide arrays”, Nature
Biotechnology 14:1675

Madden SL, Wang CJ, Landes G (2000), “Serial analysis of gene expression:

from gene discovery to target identification”, Drug Discovery Today 5:415

Mahadevappa M, Warrington JA (1999), “A high density probe array sample

preparation method using 10- to 100-fold fewer cells”, Nature Biotechnology 17:1134

Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW

(2002), “Using the transcriptome to annotate the genome”, Nature Biotechnology 20: 508

Veluculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995), “Serial Analysis of

Gene Expression”, Science 270: 484

