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Development of the SMART Coprocessor for Fuzzy 
Matching in Bioinformatics Applications 

By Harrison B. Smith and Eric A. Stahlberg 
The Ohio Supercomputer Center, Columbus, Ohio 

 
ABSTRACT: Efficiently matching or locating small nucleotide sequences on large 
genomes is a critical step in the Serial Analysis of Gene Expression method. This 
challenge is made increasingly difficult as a result of experimental assignment errors 
introduced in the match and target sequence data. Early versions of SAGESpy were 
developed incorporating the Cray Bioinformatics Libraries to enable large scale pattern 
matching of this type. This presentation describes the design of an FPGA-based scalable 
fuzzy DNA sequence matching algorithm implemented specifically for the XD1. Results 
of this implementation will be compared to performance on earlier Cray SV1 and current 
Cray X1 systems. 
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Introduction 
Understanding the behavior of a complex 

biological system is a daunting prospect. Even with 
the availability of a well characterized genome, the 
defining genetic program for the organism, 
tremendous amounts of effort remain to characterize 
the overall behavior of these extremely complex 
systems. During the lifetime of the organism, 
different genes become active, or are expressed, in 
response to the natural aging of the cell and in 
response to stress including disease. The qualitative 
identification of the expressed genes combined with 
the quantitative measurement of levels at which 
these genes are expressed over time provides the 
insight into the behavior and response of the 
biological system. 

Several experimental methods have been 
developed to study the expression levels of genes. 
Sequencing of cDNA clones has enabled 
identification of the expressed genes (Adams et al 
1995). Subtractive hybridization and differential 
display (Hedrick et al 1984, Liang and Pardee 1992) 
have proved useful in identifying differences for 
sufficiently expressed genes. Arrays of large 
numbers of DNA oligonucleotides are also used to 
simultaneously compare the expression of 

thousands of genes (Lockhart et al 1996, 
Mahadevappa and Warrington 1999). Unfortunately 
these methods are limited to characterizing known 
genes and do not provide insight for 
uncharacterized sections of an organisms genome. 

The serial analysis of gene expression 
(SAGE) method (Velculescu et al 1995) has been 
developed to simultaneously analyze thousands of 
transcripts, including previously uncharacterized 
transcripts. The SAGE method was developed to 
study expression levels in multiple states of human 
pancreatic cells, including normal, developing and 
diseased. Over time, the SAGE method has been 
found to be a suitable method to study the effect of 
drugs on tissues, identification of disease related 
genes, characterization of disease pathways and 
investigations of other organisms (Madden et al 
2000; Saha et al 2002; Chen et al 2002, Fizames et 
al 2004). The SAGE method is based on two 
principals, the use of a short nucleotide sequence 
‘tag’ containing sufficient information to 
discriminate the transcript, and concatenation of 
these tags within a single clone to enable efficient 
sequencing. The concatenation of multiple tags into 
a combined clone, with a characteristic sequence 
serving as a sentinel separator, enables the capture 
and subsequent sequencing and characterization of 
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genes with even low expression levels. Originally 
defined for short sequence tags of 9-10 nucleotides, 
further enhancements of the SAGE method have 
been developed using longer sequence tags with 
stronger discriminating power. The Long Sage 
(Saha et al 2002) and RL-SAGE (Gowda et al 2004) 
extend the length of employed SAGE tags to 21 
nucleotides.  

An organism genome consists of several 
chromosomes, each comprised of DNA. The DNA 
in turn is comprised of linked nucleotides, 
substances cytosine, adenine, thyamine and 
guanine, connected in a double-helix arrangement 
on a phosphate sugar framework. (These sequences 
are frequently represented as strings comprised of 
the letters CATG, representing the individual 
nucleotides.) Both the sequencing of the 
experimental cDNA tags and the identification of 
candidate tags from the organism genome, defines 
strings of characters containing arrangements of 
letters CATG to be used for subsequent comparison. 

To identify and quantify the tags expressed 
in the cell, the cDNA sequence is analyzed for both 
tag composition and tag population. These tags are 
identified by comparing the character sequences for 
the experimental tag (query) to character sequences 
for the candidate tags (targets) derived from the 
organism genome, and associating these to specific 
genes or functional areas. Regularly, lists of 
thousands of experimentally characterized tags are 
compared against tens to hundreds of thousands of 
tags prepared from an organism genome. In more 
complex genomes, such as is the case for maize, the 
numbers can reach hundreds of thousands for each 
of the experimental and candidate tags. Adding to 
the complexity of the comparison is the need to 
account for sequencing errors, mis-assigned 
nucleotides, in both the experimental sequence tags 
and organism genome. It is this last requirement, the 
need to account for sequencing errors, which 
precludes the use of a basic substring search 
algorithm and necessitates the need for a ‘fuzzy’ 
matching algorithm. 

The SAGESpy application (Gowda et al 
2004) was developed specifically for SAGE 
analysis. The primary motivations for developing 

the SAGESpy application were computational 
efficiency and researcher flexibility. The common 
BLAST application, in addition to being 
computationally inefficient for SAGE analysis, also 
requires pre-staging of target sequences. 
Alternatives to BLAST, such as Smith-Waterman, 
while viable, would add unnecessary extra 
operations and subsequent computational cost of the 
analysis.  

Methodology 
The SAGESpy application was developed 

using the Cray Bioinformatics Library (CBL) and 
has shown good performance on the Cray SV1 and 
X1 platforms (Gowda et al 2004). The development 
of the SMART coprocessor is intended to provide a 
high-performance replacement for the cbsearchn() 
routine which is at the core of the SAGESpy 
application analysis. 

SAGE analysis of genetic material generates 
a large volume of textual data.  The strings 
generated by SAGE analysis represent specific base 
pair (bp) sequences located within the analysis. 
Results and are stored in FASTA format, with short 
character sequences comprised of characters A, T, 
C, and G each representing specific nucleotides.  In 
processing the data from SAGE, fuzzy matching 
operations take place between these various strings.  
Specifically, short, predefined strings are searched 
for in the longer SAGE generated strings.  The 
shorter strings will be referred to as query strings, or 
Q’s.  The longer string being searched will be 
referred to as the target, or T. 

This fuzzy matching can be accomplished in 
several ways.  The first is a brute-force permutation 
method wherein, a query search string (Q) is 
permuted into a series of all acceptably similar 
strings.  All of these permuted Q’s are then searched 
for within a target sequence (see Figure 1).   
 
  
 
 
In the case of SAGE analysis, allowing for a single 
error in a sequence of length n, this would result in 
an O(n) operation per match. 



Cray User Group -3- May 2006 

Allowing for two errors in a sequence increases this 
to an O(n2) operation per match, three errors 
increases this to O(n3), and so on.  The rate of 
increase in the number of acceptable strings makes 
anything more than single errors impractical except 
for exceedingly short search and target strings. 
 

 
Figure 1. Fuzzy matching via permutation. 

 

 
Figure 2. Fuzzy matching with popcount  

 
The second method for fuzzy matching is 

the population count or popcount method.  In this 
method the search string is compared to a substring 
of the target.  Each element of the search string is 
compared to a corresponding element in the target 
substring.  This comparison generates a bit array.  

Within the bit array, a match between elements is 
represented by a 0 and a mismatch by a 1.  This bit 
vector is then summed and if the sum is sufficiently 
small, it is considered a match (see Figure 2).  This 
results in n comparisons for vectors of length n, 
followed by a summation of n elements.  Note that 
the computational complexity of this method is 
O(n) independent of the allowed number of 
mismatches.  

A third possibility involves the use of a 
finite state machine (FSM).  In this method, a 
hardware machine keeps track of the incoming T 
(target) sequence and compares it serially to the 
stored Q (query) sequence.  This opens up 
possibilities for allowing for omission and additions 
to the fuzziness of the match.  However, 
computation time for an FSM implementation 
would be variable and require many concurrent 
FSMs to achieve throughput of one sequence per 
clock cycle.  In the case of additional string 
variability, a processor based on the Smith-
Waterman algorithm would be expected to provide 
a better solution allowing additional fuzziness in the 
match while maintaining predictable runtime. 

Of the three approaches, the second 
approach remains most optimal for the SAGE 
analysis on a reconfigurable platform. The first 
method presented is the brute-force approach and is 
computationally burdensome and inefficient. Yet, 
being a brute-force approach it may remain the only 
option for particular systems.  The third method has 
the potential to be quite powerful, but is also 
increasingly complex, require additional gate 
resources, and lead to overall poorer net 
performance for the simple fuzzy match.  The 
second approach, using the SMART processor, 
provides for a scalable parallel design suited for 
reconfigurable systems.  

 

Implementation & Design 
The acceleration system is being 

implemented on the Cray XD1 at the Ohio 
Supercomputer Center (OSC), Springfield site.  The 
system at OSC Springfield (OSC-S) has Xilinx 
Virtex2Pro50 FPGAs attached to six of eighteen 
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nodes.  Cray provides a variety of hardware 
modules for the attached FPGA that allow for 
various functionality, including communication 
between the CPU and FPGA, decoding requests 
from the communication interface, allowing access 
to the FPGA attached QDRII memory system, 
allowing direct access to the CPU memory via 
DMA, and implementing a CPU interrupt.  These 
provided modules take care of some of the most 
difficult CPU to FPGA interfacing challenges, 
allowing the application developer to focus on the 
implementation of the actual solution to the 
problem.  However, at the same time, use of these 
modules ties an implementation explicitly to the 
XD1 system.  The Cray XD1 also has installed 
many Cray HPC libraries, including the CBL (Cray 
BioLib). 

Since the analysis of data is typically 
comparing thousands (of even hundreds of 
thousands) of Q’s to a single T, the application 
lends itself to parallelization with great ease.  The 
Cray XD1 provided several important advantages 
for this design. The cluster structure of the XD1 will 
easily accommodate high-level parallelization.  
Secondly, the available CBL provides an algorithm 
to both read the FASTA file format and compress 
the data to 2-bit values.  This reduces the amount of 
memory usage in the comparison process by a 
factor of four, and will reduce the required 
bandwidth to move data through the accelerator. 
 
Full System Overview 

The high level structure of the acceleration 
system is that of a serial string of custom designed 
popcount processors controlled by a single 
controller tied into the Cray provided hardware.  
The accelerator can accommodate multiple Q’s, 
dependent only upon the size of the FPGA provided 
with the XD1. Theoretically search rates of 180 
million bps per second for 60-80 Q’s can be 
attained with the six FPGAs currently part of the 
OSC-S XD1 system.  

The serial string of popcount processors 
design has several significant advantages.  The 
popcount processor is reasonably compact, highly 
efficient, and adapts well to a serial pipeline 

structure.  The pipeline structure itself works well 
because of both the embarrassingly parallel nature 
of the problem and the typical extent of T being 
many times larger than the number of Qs, meaning 
overhead to fill the pipeline is negligible relative to 
overall performance.  This allows a large number of 
Q’s to be compared to the same T while only 
needing to stream the T through the system 
minimally.  Additionally, the serial nature of the PE 
chain reduces fanout and eliminates any need for 
large, slow decoders. 

Processing Element 
The workhorse of the accelerator is the long 

chain of processing elements (Figure 3) that will 
take up the majority of FPGAs real estate.  Each PE 
in the chain passes along almost all the input it 
receives from either the previous PE or the system 
controller.  There is a wide bus to allow for the 
rapid passing of Q values, a number of streamed 
control signals, and a serial bus for the streaming of 
the T values.  The PE does one comparison per 
clock cycle by taking advantage of a six stage deep 
computational pipeline.  Each PE holds one 32 bp Q 
value and 32 bp of the T substring.  These values 
are fed into the fuzzy matching computational 
pipeline, and each clock cycle the 32 bp of the T 
substring are shifted.  Each PE has a small amount 
of dedicated memory within which it buffers the 
positions of the matches it finds.  These results are 
transmitted to the system controller over a bus  
shared by all the PEs. 
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Figure 3. Processor element design. 
 

The decisions contributing to the design of 
the processing element yielded many advantages 
that increase performance, decrease the FPGA real 
estate required, and decrease communication 
overhead.  The primary decision was to have the 
processors act as a serial chain with pipeline like 
features.  Because the length of the T string is 
typically in the millions of bps, overhead becomes a 
negligible portion of the overall comparison.  
Additionally, the approach allowed us to optimally 
design a single PE which would be replicated within 
the overall design.  Due to the pipeline like nature 
of the chain, getting one PE to run at full speed is 
enough ensures optimal performance designs for all 
PEs.  This also simplifies expansion of the system, 
allowing replication up to 1024 processors per 
FPGA.  This limitation could easily be loosened 
with little extra work.  Finally, the chain lends itself 
nicely to the bus based communication setup 
between the PEs and the main system controller. 

Early in the design, a bus dedicated to the 
transfer of Q’s was added to the PE.  This was done 
to help simplify PE logic as well as the main system 
controller logic, and reduce overhead of the full 
system.  Additionally, rather than have bps from T 
shifted all the way through the 32bp buffer within 
each PE, they are shifted back out again 

immediately as well as down the buffer.  In this 
way, all inputs to a processing element are outputs 
to the same PE the next clock cycle. 

The actual fuzzy matching engine is also 
deeply pipelined.  The first stage compares Q to the 
T substring and generates a bit vector of length 32.  
The subsequent stages sum this bit vector and 
generate control outputs that indicate if the result 
should be buffered.  Experimentation has shown 
that by collapsing some of the pipeline stages, 
resource usage goes down without effecting 
theoretical performance.  Plans are to add an earlier 
stage to the pipeline that can mask off a specific bit 
range, allowing for the searching of strings of less 
than 32bp. 

  

 
 

Figure 4. System controller design schematic 
 

Another optimization made was the small 
buffers in the PEs.  Given the relatively short length 
of search strings and the threshold level of the fuzzy 
matching allowing for only 2 errors, the statistical 
frequency of matches is extremely low.  This allows 
the buffers to be relatively small when compared to 
the available block RAM built into the FPGA.  Each 
PE was given a circular buffer capable of storing 
128 matches. A design decision was made to simply 
note buffer overflow and continue processing in the 
event a buffer becomes overfilled. The indication of 
overflow allows the application developer to 
respond accordingly. Also, the relatively low match 
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rate enabled use of a single bus to connect the 
controller to all PEs. Control of the bus is granted 
by a token originated at the system controller, and 
passed between the PEs.  This allows for PEs to 
further reduce their dependence on their buffers by 
providing a low-overhead means to empty buffers.  

System Controller 
The most complex component of the fuzzy 

matching system is the main system controller 
(Figure 4).  This controller consolidates the 
interfaces with both the portably designed PEs and 
Cray specific modules employed.  The controller is 
responsible for providing configuration, a constant 
stream of input data, as well as collecting results 
from the PEs during the course of execution.  The 
controller is responsible for responding 
appropriately to initialization and configuration 
data, requesting reads and writes to and from CPU 
memory space, and alerting the CPU when the 
computation is completed, interfacing via the 
hardware modules provided by Cray.  The 
controller makes use of several Cray modules to 
achieve these objectives.  The system controller is 
composed of three subsystems each of which handle 
a specific function.  These three subsystems are the 
Data Collector, the Data Streamer, and the main 
Controller.  These three components will be 
discussed in detail later. 

In designing the system controller, Cray 
modules were critical.  Use of the Cray provided 
modules ensured us of properly working, highly 
tested components.  Nearly as important, these 
components implemented the most challenging 
hardware elements in the design in an efficient and 
general way.  They are highly reliable, easy to use, 
and do not present a bottleneck in the system.  All 
communication and routing systems were 
essentially handled by Cray modules.  We also 
divided the system controller into three 
subcomponents to help simplify and 
compartmentalize the design.  Each subcomponent 
could be independently optimized, debugged, and 
verified which helped simplify and speed up 
development.  

System Controller: Data Streamer 
The Data Streamer unit (Figure 5) is a smart 

serializer that keeps the PEs supplied with elements 
of the target sequence at a rate of one bp per clock 
cycle.  It relies on the Main Controller for parallel T 
data retrieved from the CPUs memory space.  Its 
smartness comes from its awareness data.  Rather 
than a simple shift register, the Data Streamer tracks 
where valid and invalid data are within its 32 bp 
buffer.  The Data Streamer commences requesting 
data from the Main Controller when less than half 
the buffer is valid. Should the buffer ever empty 
completely, the Data Streamer asserts the global 
pause signal, sending the PEs into a suspended 
state, awaiting new data. 

The Data Streamer was created to be as 
small as possible while still providing a limited 
awareness of its own state.  The simplest way to 
achieve this was with a 64-bit (32 bp) buffer and a 
5-bit counter.  As the buffer empties, the counter 
counts down.  Some simple logic makes up the rest 
of the unit, asserting and de-asserting lines as 
needed. 
 

 
 

Figure 5. Data Streamer Design Schematic 
 

System Controller: Data Collector 
The Data Collector (Figure 6) is a simple 

token generator and a circular data buffer system.  It 
creates the initial token that is passed between the 
PEs and monitors the bus connecting the PEs for 
data.  When data is present on the bus, the Data 
Collector records the data into its own data buffer.  
The Data Collector keeps the Main Controller 
informed whenever it has any collected data and 
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passes on data whenever the Main Controller 
requests it. 

As before, the design goal was to keep the 
subcomponent as simple as possible while 
providing only the minimum necessary 
functionality.  The single bus with an access token 
was used because it could be implemented 
independent of the number of PEs allowing for 
simple expansion and contraction of the system as 
needed for new hardware.  A circular buffer was 
used to simplify control logic, where the total 
quantity of reported matches would not be limited 
by buffer size.   The Data Collector will signal to 
the Main Controller whenever it has any data to 
keep the buffer as empty as possible.  In all 
probability the Data Collector will keep both the 
buffers in the PEs and its own buffer from ever 
overflowing for most encountered situations.   

However, this is of course dependent on 
both the number of PEs and the data sets processed.  
It was decided, as with the PEs, that in any instance 
of the buffer overflowing it was sufficient to simply 
signal the user.  
 

 
Figure 6: Data collector design schematic 

System Controller: Main Controller 
The main system controller (Figure 8) is a 

complex collection of sub-controllers that is 
responsible for interlinking the Cray modules and 
our custom modules.  There is a controller that 
keeps the read request buffer of the Cray DMA 
module full at all times.  The second of these 
subsystems uses data from the DMA read interface 
to keep the Data Streamer supplied with the bps of 

T.  Another controller takes data from the Data 
Collector and uses it to make DMA write requests.  
There are two controllers that handle the reception 
of configuration data from the rt_client module.  A 
final controller configures and coordinates the 
actions of the PEs and other sub-controllers. 

The division of the Main Controller into a 
series of sub-controllers again served the purpose of 
helping to simplify overall design and achieve 
maximum performance.  The DMA read controller 
ensures that as much data as possible is transferred 
to the FPGA before it is needed.  This should keep 
the FPGA well supplied with data and help to avoid 
the need for system pauses.  The controller 
connecting the Data Collector and the DMA write 
interface works to keep the Data Collector buffer 
empty as much as possible.  This helps to further 
reduce the already small probability of and buffer 
overflows. 

Performance 
Having completed all of the above 

mentioned modules, full system testing and 
evaluation have begun.  We are confident that all 
modules will be able to run at the highest possible 
clock speed allowed by the current FPGA, 
200MHz.  We include below a table of predicted 
clock speeds and area usages of modules.  Each PE 
will process one bp of the target sequence per clock 
cycle.  This leads to a predicted performance of 200 
million bp every second.  We also predict a final 
version of the accelerator will include between 80 
and 100 PEs.  This yields an estimated processing 
power of 20 billion bp per second.  Shortly, the 
Virtex4 will be available.  This FPGA has twice the 
clock speed, and 4 times the area of the Virtex2Pro 
FPGA.  The increased capability of the Virtex4 will 
raise predicted performance levels to 160 billion bp 
per second.  These predicted performances are very 
competitive with current systems as can be seen in 
Table 1.  Performance data in Table 1 was taken 
from work done previously at the Ohio 
Supercomputer Center (Gowda et al 2004).  Our 
design estimates are included for the current XD1 
equipped with the Virtex2Pro and the theoretical 
scaling were the system equipped with a Virtex4.  



Cray User Group -8- May 2006 

Performance listings for the design do not include 
an estimate for I/O.   

While very attractive performance is 
achieved, further work remains to increase overall 
performance.  First and foremost, the fuzzy 
matching pipeline can be collapsed slightly.  This 
will not increase clock speed but will serve to 
reduce the area each PE requires on the FPGA 
enabling more PEs per given FPGA. 

Another modification would be the addition 
of a second comparator and popcount unit to the PE 
to allow for both forward and backward searching 
in the target string to take place simultaneously, 
reducing the need to stream T data through in both 
its direct and reverse complement form. Lastly, 
compression of the ASCII sequence data could be 
moved from CPU computation to onboard the 
FPGA.  This could potentially save a large amount 
computation time on the CPU side by adding one 
more stage in the pipeline of the processing 
accelerator, effectively adding no time to execution 
but with a trade-off in I/O demands. 

Conclusions 
This project further illustrates an advantage 

FPGA hardware has over traditional hardware for 
processing bioinformatics data. Specialized 
hardware available on commodity processors today, 

such as floating point units, vector units, generally 
do not contribute to problems involving sequence 
comparison.  The impact and potential value of 
reconfigurable computing hardware in these 
situations is emphasized not only by our predicted 
performance results, but also by the fact that such 
performance could be achieved on a modern 
desktop computer with a specialized FPGA board at 
a fraction of the cost and energy usage of a modern 
supercomputer. 
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Figure 7. System design schematic 

 

 
 

Figure 8. Main controller design schematic. 
 
 

 
Computation time in seconds   

Number of 
target bps 

SV1 X1 XD1 w V2P 
(estimated) 

XD1 w V4 
(theoretical) 

 
Number of 

Hits 

Chrom1 13333992 1.35 0.36 0.066 0.0165 29 
Chrom4 9923256 1.00 0.27 0.049 0.0124 34 

Chrom10 5964420 0.61 0.16 0.030 0.0074 8 
TIGR(EST) 9889404 1.00 0.26 0.049 0.0124 333 

Table 1. Performance of SAGESpy XOR comparison approach relative to estimates for 
SMART  co-processor. Speed was measured for one hundred query tags with a two 
mismatch threshold.  
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