
Development of the SMARTDevelopment of the SMART
Coprocessor for Fuzzy Matching inCoprocessor for Fuzzy Matching in

Bioinformatics ApplicationsBioinformatics Applications

Harrison B. Smith and
Eric A. Stahlberg

The Ohio Supercomputer Center
Columbus, Ohio



May, 2006

• OSC provides a reliable high-performance computing
and high-performance communications
infrastructure for a diverse, statewide/regional
community including education, academic research,
industry, and state government

• OSC promotes and stimulates computational
research in order to act as a key enabler for the state’s
aspirations in advanced technology, information
systems, and advanced industries, and,

• OSC acts as a catalytic partner of Ohio universities
and industries to enable Ohio to compete for
international, federal, and state funding, focusing on new
research and business opportunities in:

OSC MissionOSC Mission



    Networking     Computing

    Research

 Internet
 Internet2
 OARtech
 OSTEER
 Support
 TFN
 Training
 Videoconferencing
 91 Higher Education
    Institutions

 Access Grid
 BALE
 Cluster Ohio
 HPC Services
 ODCE
 Platform Lab
 SUG
 Summer Institute
 Support
 Training
 Young Women’s
    Summer Institute

 Bioinformatics
 Biomedical Applications
 Blue Collar Computing
 Data Intensive Computing
 Grid Computing
 HPC for Defense and
    Homeland Security
 Nanotechnology
 Networking and File Systems



May, 2006

OSC OARnet:  TFN Overview



May, 2006

• Columbus
 512p Intel Pentium 4 Xeon Cluster (2.5T)
 540p HP Intel Itanium2 Cluster (2.4T)
 32p SGI Altix (Itanium2) (.17T)
 3 16-way SGI Altix 350s (Itanium2 1.4GHz) (.27T)
 40p Sun SunFire 6800 (.07T)
 100p AMD Athlon Visualization Cluster (.3T)
 IBM FastT900 and FastT600 (.5 PetaBytes of disk)

• Springfield
 Cray X1 (.2T)
 Cray XD1 (.32T+FPGA)
 Apple Xserve G5 (.5T)

OSC HPC: SystemsOSC HPC: Systems



May, 2006

OSC and OSC and FPGAsFPGAs
• Began using FPGAs in 2001

 TimeLogic production system for bioinformatics
 Users were pleased with performance
 Wanted to program, but environment was closed

• Acquired XD1 in 2004
 Beta site for XD1
 Part of Data Intensive Computing Initiative
 FPGAs became available to program for applications
 Fortunate to have VHDL experience available
 Tools were in infancy, but potential was getting sorted out

• Demonstrated potential
 Papers at CUG 2005, FCCM 2006, etc.



May, 2006

What is SAGE?What is SAGE?
• SAGE = Serial Analysis of Gene Expression
• Originally developed in 1995 to study cancer
• Select for short unique segments that can be

readily extracted, characterized and located
• Primary use

 Transcriptome analysis – creating a physical map
of an organism’s genome

 Quantitative measurement of an organisms
response to events

 Alternative to gene expression micro-array
analysis



May, 2006

SAGE SchematicSAGE Schematic

…cattgacatcagatagtcaagtactagagacatgtacgatacagatatgagacagatagaagatagagcatag…

Enzyme

Enzyme

Sequencer catgactgctcgctagctggc|at…

Transcripted mRNA

Treated cell
of interest

Extracted tags Fused tags
(cDNA)

Sequence cDNA Tag Strings



May, 2006

Map Back to Known Genome RegionsMap Back to Known Genome Regions

catgactgctcgctagctggc
catgattcgctggcatgcagc
catgatttacgtagaccgata
…

SAGE tags from experiment
O(100k)

Full Genome Sequence Sets
O(1M)

Genome location and frequency amplitude

SAGESpy



May, 2006

CATG F INDER
A Java routine that calculates
the CATG locations in the
sequence and plots them  in a
HT M L form

OUTPUT SAX PARSER
A Java routine that parses the
output XM L hits file for
relevant inform ation that is
required

Initial Tag
Library

Sequences got
from  WANG lab

DITAG F INDER
A Java routine that generates
ditags (length 38-42) from  the
initial extracted sequences

SAGE TAG M AKER
A Java routine that generates
sage tags from  the ditag file
generated in the previous step

TARGET Sequences
(T IGR EST , KOM E,

Genom ic Sequences)

TARGET  SAGE T AG M AKER
A Java routine that generates
Sage T ags for Direct M atching.

Target
SAGE

m aker is
bypassed for
>0 M ism atch

SAGE SPY

The SAGESPY program
helps to m atch the SAGE
tags with the target
sequences, M atch results
upto 2 m ism atches (0,1,2)
can be calculated

HITS.XML

Sagespy.out

Targethit.fsa

Taghit.fsa

TagReject.fsa

STAGE I
PREPROCESSING

STAGE II
MATCHING

STAGE III
RESULTS & ANALYSIS

VIRT UAL TAG GENERATOR
A Java routine that generates
virtual tags of required length
from  any target file

XSLT  TOOL
The input to this tool
is the XM L output,
The output is an
HTM L table
representation of
the sam e XM L data

Shell Scripting utilities like GREP, SED and AWK are used to analyse the sequences.
The results are added into a M ySQL database for later querying and presentation.
M icrosoft Excel is also used for plotting the graphs.

M ySQL

The CRAY Bioinform atics library
routines perform  searching, sorting,
low level bit m anipulation
operations useful in the analysis of
nucleotide and am ino acid
sequence data. These libs m ake
use of unique hardware features
and com pressed data form ats to
speed throughput and m inim ize
storage. Referenced through C /
Fortran

SV1

X1

JAVA

U
T
I
L
I
T
Y

P
R
O
G
R
A
M
S

FASTADETECT
A Java routine that detects
duplicates in a Fasta F ile. Also
has the ability to provide the
unique sequences along with
the copy num bers.

REVERSE COM PLIM ENTOR
A Java routine that generates
the reverse com plim ent of a
nucleotide sequence.

SEQUENCE SUBT RACTOR
A Java routine that subtracts
one Fasta file from  another.

SEQUENCE F INGERPRINT
A Java routine that gives
inform ation about the
sequence like GC%,
Character count etc...

SAGE ANALYSIS (OSC and Dept. of PLANT PATHOLOGY)



May, 2006

The ChallengeThe Challenge
• To create a highly efficient means to compare very

large quantities of short DNA sequences
 All short tags (limited by chemistry of enzyme)
 Theoretical limit for RL-SAGE: 417 unique tags
 Reality: millions matched against hundreds of thousands

• Scanning entire genomes for SAGE tag patterns
 Identify matching single and double mismatches

(compensate for experimental error)
 Identify reverse complement matches

ATGAGACAGACGTACGACATGACGTACGTATGGTTAATGGA



May, 2006

SAGE BackgroundSAGE Background
• Originally designed for lengths of 9-10

nucleotides
• Various extensions to improve discriminating

power when mapped back to original DNA
locations

• Extended to 21 nucleotides in RL-SAGE
• Current capabilities demand

 Files containing 3 million or more tags
 Searching against entire genomes
 Hit rates low in terms of absolutes



May, 2006

Motivations for Current WorkMotivations for Current Work

• Speed analysis of SAGE data
• Move analysis closer to experimental

benchtop
• Lower costs to compare while

maintaining turnaround time
• To determine if FPGA implementation

can be faster than fastest other
implementations



May, 2006

SMART SolutionSMART Solution
• SMART

 Sage Method Analysis with Reconfigurable Technology

• Guiding philosophy for the solution
 Fuzzy matching likely to be more efficient on FPGA
 Keep it simple (maximize parallel operations)
 Data flow choice

• Flow target more rapidly than query (each PE has a unique
pattern to capture)

• Rather than flowing query more rapidly than target
 Design for portability



May, 2006

SMART SolutionSMART Solution

• Major architectural features
 Processing Element (PE) – easily replicated

to achieve parallelism on larger FPGAs
 Controller to isolate machine dependence

and manage data flow

Controller

Cray Core :

rt_client

Cray Core :

dma_if

Cray Core :

rt_core

P

E

0

P

E

1

P

E

N

...



May, 2006

SMART Processing ElementSMART Processing Element

• Overall Design – Linear Array Element
 All data/control signals passed to next PE
 Allows for design expandability
 Three main subcomponents

• Component 1 - Dataflow Unit
 Handles the passing and buffering of all

data needed by the processor
 Simple but large unit to achieve high

buffering efficiency

Data Flow 
Unit

Popcount 

Unit

Saver 

Unit

Data In 

Serially

Results Out via 

Token Ring

Data Out

Serially



May, 2006

SMART Processing ElementSMART Processing Element
• Component 2 - Pop Count Unit

 Six level pipelined unit
 Actual “comparisons” done here
 Optimization possible by

collapsing pipeline stages

• Component 3 - Saver Unit
 Analyzes popcount output and

buffers hits
 Handles reporting results via

token ring bus

32 x 2-bit Comparator

32-bit Population Count

Q T

Overflow
Population 

(2-bit)

Buffer

Save Logic

Report Logic

ResultControl

Token IN Token OUT

Results Bus



May, 2006

SMART ControllerSMART Controller

• Single Controller Terminates
Chain of Processors
 Handles all communication

minimizing impact of changes
required for new environments

 Contains all state associated with
the system (control FSM)

 Whenever possible, functionality
moved from PEs to Controller

 Also three major subcomponents

Central Control 

Unit

Streamer Unit

Collector Unit

data IN

(from DMA)

data OUT

(to DMA)

Input 

Data

Result

Data

Control

Control

Result

Bus

Control

to PEs

Data

to PEs



May, 2006

SMART ControllerSMART Controller
• The Data Streamer

 Requests DMA reads from the
Central Control Unit

 Passes characters to the PE
chain serially

• The Data Collector
 Monitors the reporting token

ring for results
 Requests DMA writes from the

Central Control Unit

Smart Buffer

Data Request Logic

StateData

Parallel Data IN

Serial Data OUT

Buffer

Collection 

Logic

DMA Request 

Logic

Results Bus

Data To Central 

Controller



May, 2006

SMART ControllerSMART Controller

• Central Control Unit
 Contains FSM that runs the whole show
 Provides monitored access to the Cray

provided DMA read/write core
 Passes state information to the PEs via

control lines
 Contains all configuration information



May, 2006

SMART Solution Design ElementsSMART Solution Design Elements
• Design uses preexisting Cray provided IP

cores for data transfer

• DMA used for bulk of sequential data transfer

• Solution utilizes duplex nature of interconnect

• Configuration and input data contained in
same memory space



May, 2006

Design Elements ContinuedDesign Elements Continued
• Token ring / results bus combination provides

efficient data reporting

• Linear array allows for scaling, efficient usage
of resources

• PEs can be expanded to accommodate
additional functionality easily



May, 2006

Development OverviewDevelopment Overview
• Development Stages

1. System Design
2. System Implementation
3. System Simulation
4. System Synthesis

• Software Interface
 Lightweight – reads file, compresses

data, sets up DMA regions
 In development



May, 2006

SMART Design andSMART Design and
ImplementationImplementation

• Initial Design Strategy
 Space scalability was important
 Influenced by other OSC/XD1 work
 Objective: exceed performance of Opteron

and X1 version of SAGESpy
• The Implementation/Redesign Cycle

 Standard practice



May, 2006

SMART Solution StatusSMART Solution Status
• Unit Testing [done]

 Testing functionality of individual components
• Data Path Testing [done]

 Testing functionality of strings of components
• Full Controller/Full PE Testing [done]

 Testing of our complete unit
• Full Unit Testing [simulation in process]

 Testing of the full hardware



May, 2006

SMART SynthesisSMART Synthesis
Synthesis results

 Single Virtex2Pro
FPGA will hold up to
60 PEs running at
180MHz at least

 Virtex4 could
possibly hold 300
PEs running at an
estimated 350MHz

280102Processing Element -
Saver Unit

30765Processing Element -
Popcount

344119Processing Element -
Dataflow

270468rt_client (Cray) –
Data Collector

190727dma_if (Cray) –
Full Unit

240299Controller –
Full Unit

MHzSlicesUnit



May, 2006

SMART SoftwareSMART Software
• Software development and specification

 All efforts were made to keep software simple
 Target use within SAGESpy application and OBL
 Cray BioLib used in FASTA file read and

compression
 Program arranges data in DMA memory space,

then signals FPGA and waits
 Program outputs results in simple ASCII.

• XML, other formats planned



May, 2006

SMART ResultsSMART Results

• SMART Raw number projections:
 Will be able to perform 10.8B comparisons

per second (Virtex2Pro)
• 60 processors
• 180 MHz clock rate
• One compare per clock

 Not as compelling as hoped for



May, 2006

Performance ComparisonPerformance Comparison

• Assumptions:
 200 MHz speed of FPGA (Virtex2Pro)
 100 processing elements per FPGA (Virtex2Pro)
 20 billion comparisons/second/FPGA



May, 2006

SMART FutureSMART Future
• SMART not yet finished – expecting to:

 Enhance functionality
• Simultaneous reverse string comparison
• Variable sizes for queries/tags
• Decode output into standard C types

 Improve performance
• Use increasing memory on FPGA more effectively
• Internal buffer overflow protection
• Consolidate compression with reading of original data
• Multiple FPGA implementation



May, 2006

What We Learned Along the WayWhat We Learned Along the Way
• Writing hardware is a more dynamic experience than

writing software
• Don’t grow attached to your initial ideas.  If something

isn’t working, find another way!
• Reduce communication protocols between functional

units as much as possible
• Naming conventions are very, very important
• Keep detailed development logs
• Unit testing will save you time and frustration



May, 2006

ConclusionConclusion
• Reconfigurable computing application

development still hard with VHDL
• Virtex2Pro is good, but isn’t quite compelling
• Virtex4 becomes compelling
• I/O is still a major factor
• Anxious to compare with C-based solutions to

FPGA algorithm specification



May, 2006

AcknowledgementsAcknowledgements

• US DOE for funding support
• OSC FPGA team for initial guidance
• Wang Lab (OSU) for motivation and

sources of data



May, 2006

Thank you.Thank you.
Contact informationContact information

 Ben -  Ben - bsmith@osc.edubsmith@osc.edu
Eric - Eric - eas@osc.edueas@osc.edu


