

CUG 2006 Proceedings 1 of 8

Experiences with High-Level Programming of FPGAs
 on Cray XD1

Thomas Steinke, Alexander Reinefeld, Thorsten Schütt
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

ABSTRACT: We recently started to explore the potential of FPGAs for some
application kernels that are important for our most demanding supercomputer users at
ZIB. In this paper, we give an overview of our efforts and present current status achieved
so far on a Cray XD1 system using the Mitrion-C programming environment.

KEYWORDS: High-performance computing, Cray XD1, FPGA, Mitrion-C

1. Introduction
Konrad-Zuse-Zentrum für Informationstechnik Berlin

(ZIB) is a non-university research institute of the state of
Berlin. In close interdisciplinary cooperation with the
Berlin universities and scientific institutions it
implements research and development in the field of
information technology with a particular focus on
application-oriented algorithmic mathematics and
practical computer science. ZIB provides high-
performance computer capacity as an accompanying
service for researchers in Berlin, Germany and abroad.

Within the North-German HPC Consortium (HLRN),
ZIB operates an IBM p690 that consists of 16 p690
systems with 64Gbyte up to 256 Gbyte each, giving a
total of 512 processors and 1.25 Tbyte of memory with a
peak performance of 2.6 TFlops. Linked via dedicated
fibre optics to its peer-system in Hanover, the two super-
computers are operated as one virtual supercomputer.

FPGA-Based Computing at ZIB: The Cray XD1 System
With the procurement of an FPGA equipped Cray

XD1 system in September 2004, ZIB was the first site in
Germany to provide FPGA technology for its HPC users.
Partly funded by the BMBF for the BCB groups1 at ZIB,
the Cray XD1 system is primilary used for applications in
the area of bioinformatics and life sciences.

The motivation for exploring FPGA as application
accelerators results from the following technology trends:

1 BCB = Berlin Center for Genome Based Bioinformatics

� The predominant quantitative approach in major

HPC systems is accompanied by a sharp increase
in the running costs due to a less efficient power
utilization caused by increased processor
frequency and massive use of underutilized
commodity components. As an example, the
operation costs for power consumption of the
current HLRN system are in the range of EUR
250,000 per year plus running cost for cooling.

� The sustained performance of only about 10-
15% of the peak performance for cache-based
microprocessor architectures has been relatively
constant over the last years—at an irritatingly
low margin. Vector computers, on the other
hand, deliver a higher sustained performance,
but suffer from a decreasing application code
base, because of their incompatibility with PCs
and servers, on which code development is
usually performed.

� Physical considerations alone (heat dissipation
per Flop, increasing signal delays due to long
pathways between functional units, etc.) leads us
to believe that HPC with current microprocessor
designs is not feasible for petaflop computers at
reasonable operation costs.

The unsatisfactory application performance despite

increased peak performance and increased running costs
caused scientists to establish strategic partnerships with
HPC manufacturers like the “Blue Planet” partnership
between Lawrence Berkeley National Laboratory and
IBM, which resulted in a set of architectural extensions

referred to as ViVA (Virtual Vector Architecture) that
positively affected the architectural design of the ASCI
Purple system [1].

The lack of computer manufacturers in Europe forced
us to pursue another strategy, namely to optimally exploit
standard FPGA coprocessors as accelerator for the most
important HPC application kernels. Note that contrasting
other, more hardware-oriented research groups, we do not
have any expertise in hardware description languages,
neither do we want to dive into this subject. Instead, we
build on high-level programming languages (like Mitrion-
C) which allow us to focus on the development of highly
efficient application kernels without the burden of having
to implement highly specific VHDL code. Using Mitrion-
C has the additional advantage, that non-CS experts such
as our HPC users from various application domains may
improve the FPGA kernels without additional help.

Applications of Interest

CUG 2006 Proceedings 2 of 8

Compute intensive molecular simulations are one
major class of application on ZIB’s computing systems.
These simulations cover a wide range of molecular
systems and simulation techniques: from small molecules
to large biomolecules, from highly sophisticated
stationary or time-dependent electronic structure
calculations to molecular dynamics calculations based on
empirical potentials. The latter belongs to the class of
applications where the calculation of non-bonding
interactions is usually the most time consuming step.
Today, molecular dynamics calculations are performed
with optimized production code (e.g. NAMD, AMBER)
or in-house developed codes having specialized features
(e.g. hybrid Monte-Carlo).

2. Cray XD1 System with Attached FPGA
At ZIB, one XD1 chassis is installed. It contains 12

AMD Opterons at 2.2 GHz and 12 Gbyte of memory. The
12 CPUs are organized in 6 nodes connected by the Cray
RapidArray interconnect. Each node hosts one Xilinx
Virtex-II Pro XC2VP50 FPGA with 16 Mbyte of QDR
SRAM organized in 4 memory banks with 4 Mbyte each.
The FPGA has a maximal frequency of 197 MHz. It
comprises of

� 53136 logic cells,
� 4176 Kbits of block ram,
� 232 18x18 multipliers, and
� 2 PowerPC cores, which are not used with

Mitrion-C.

3. Non-Bonding Interactions: The Lennard-
Jones Potential
For a large ensemble of interacting particles the most

time-consuming step in the approximate evaluation of the
energy or mutual forces is the calculation of pairwise
interaction term. A fast calculation schema is needed to
simulate large particle ensembles. The Lennard-Jones
(LJ) potential is a commonly used equation that expresses
the non-bonding interaction of atomic or molecular
particles. Its has the advantage that the non-specific
attraction caused by the dispersion interaction and the
repulsion caused by the Pauli repulsion for short
distances are formulated in a compact equation.

For two particles, the energy U depends on the
distance r separating both particles:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= 14)(

66

rr
rU σσε

The parameters σ and ε, respectively, are specific for

each type of particle pair under consideration. The force
F acting on the first particle due to the presence of the
second particle at distance r:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= 1224)(

66

2 rrr
rF σσε

Related Work
The MD-GRAPE project [2] is one of the most

successful approaches which uses hardware acceleration
for n-body simulations. The MD-GRAPE system is based
on an ASIC design which comprises the implementation
of multiple pipelines for the calculation of non-bonding
interaction energies and forces. On the latest MD-
GRAPE-3 chip 20 pipelines for calculation of forces are
implemented. Operated with a clock rate of 300 MHz the
chip performs 660 operations per cycle and has a peak
performance of 198 GFlop/s [3].

A highly optimized VHLD design with two pipelines
using IEEE 754 double precision floating-point units for
the calculation of LJ potentials and forces on a Xilinx
Virtex-IIPro125 chip was recently presented by Scrofano
and Prasanna [4]. Their implementation achieves a
performance of 3.9 GFlop/s on the XCV2Pro125-7,
however, on a much larger FPGA than ours.

Recently, Kindratenko and Pointer [5] reported their
effort in porting the molecular dynamics code NAMD to
the SRC-6 platform. On the SRC-6 system, they achieved

an overall speedup of 3 compared to a 2.8 GHz x86-CPU
which is remarkable for a highly optimized production
code.

4. High-Level Algorithm Design for FPGA
with Mitrion-C
Traditionally, algorithms on FPGA are expressed by

the behaviour of the hardware and described by HDLs
such as VHDL or Verilog. Mitrion-C is a C-like high-
level language with certain properties known from
functional programming languages. We have choosen
Mitrion-C because of its attractive underlying concept of
hardware virtualization. Another issue was its earliest
possible availability on the Cray XD1 platform. Mitrion
currently supports Cray, Nallatech and SGI. Other C-to-
VHDL approaches, for example Handel-C or Impulse-C,
as well as other high-level approaches, e.g. from
DSPlogic will be considered shortly.

CUG 2006 Proceedings 3 of 8

Short Intro: Mitrion Programming Environment
We give an overview about the Mitrion programming

environment from the application programmer’s point of
view. The concept of hardware abstraction with the
Virtual Mitrion Processor are described in detail
elsewhere [6, 7].

The current Mitrion release [8] includes

� the Mitrion-C to VHDL compiler,
� the Data Dependency Graph visualizer,
� the Mitrion simulator server,
� the Mitrion Hardware Abstraction Layer library

(Mithal), and
� parcheck for summarizing and checking the

result of the place and route design process with
Xilinx ISE par [ise].

 In the following, we focus on the two most

important components of the Mitrion package.
The Mitrion simulator, introduced with rel. 1.1.0

(Feb 2006), substantially reduces the development time. It
acts as a virtual FPGA device when the host program is
linked with the simulator version of Mithal. In this way,
the process of the host program and the simulator process
interact logically in the same way as the host program
with the FPGA device. The validation of the
implementation (watch points in the Mitrion-C code) and
the monitoring of I/O operations to/from external memory
become fairly easy.

The Mithal interface, introduced with rel. 1.1.1 on
Cray XD1 (Mar 2006) improves the portability of the
implementation across different hardware platforms (e.g.
Cray XD1 and SGI RASC).

In Mitrion-C, the most important data structures are
collections. Collections are represented by two basic

types: lists and vectors. List collections are used for
streaming data and invoking pipeline parallelism. The
vector collection implicitly represents multiple instances
of the Virtual Mitrion Processor (processing elements)
and therefore data parallelism. Thus, to implement an
algorithm in Mitrion-C one needs to think in terms of
transforming collections by means of self-written
functions (of course, very short and biased view on the
potential of Mitrion-C).

The Brief History of FPGA Programming at ZIB
After its first release, the Mitrion-C package shows

an exceptional vivid life cycle (see “diary” in text box
below). Based on experiences and feedback from user
communities, several releases were made available in a
short frame of time. Most releases had a major impact on
the development either by introducing new functionality
or changes in the Mithal library.

Here is my (Th.St.) Mitrion-C release “diary”:

� 2005, Sept 28: got access to pre-release of

Mitrion
� 2005, Nov 9: got the first official Mitrion release

1.0.1 installed on our XD1, realized that we have
an old Cray release (1.1) which is not supported
by Mitrion 1.0.1

� 2005, November: Cray Inc announces availability
of Cray rel 1.3 at SC05, so it should be ready for
download but it is not, urgent contacts to Cray
Germany to solve the problem (students are
waiting…)

� 2005, Dec 20: Cray 1.3 finally installed with the
help of R. Pennarun (Cray French), run demos
from Mitrionics

� 2006, Feb 12: Mitrion 1.1.0: comes with the
simulator - great step forward!

� 2006, Mar 20: Mitrion 1.1.1: Mithal introduced
on Cray XD1

� 2006, Apr 3: Mitrion 1.1.4: Mithal changed,
explicit data transfer function removed from API,
data transfer trigger is now hidden (I don’t like
that)

� 2006, Apr 19: Mitrion 1.1.5: on XD1, access to
host DRAM via FTR possible

Bottleneck: Bandwith Host – FPGA
It is well documented that the quality of the host –

FPGA interface determines the resulting overall
performance improvement, and therefore, the acceptance
of using FPGAs as accelerating devices.

Proceedings 4 of 8

CUG 2006

Figure 1: Interface between FPGA and Opteron

Figure 1 illustrates the architecture of the functional

units within the FPGA expansion module and the
corresponding memory layout. To become familiar with
the Mitrion-C concept and the usage of the host API we
performed some bandwidth measurements. The program
codes were simple in their computational task, e.g. each
entity in a data stream is incremented by a fixed number.
They only differ in their kind of input/output interface to
the SRAM modules and later into the FTR. The FTR,
standing for FPGA Transfer Region, is the DRAM host
memory (accessible with Mitrion rel. 1.1.4).

Table 1 summarizes our performance results. The
first benchmark case shows the performance when the
Opteron triggers the data transfer between the SRAM and
its own (host) memory. Note the asymmetry: Reading
data from SRAM to the host is 156-times slower than
sending. When using the FPGA to trigger the data
transfer, see the next line, the results are only slightly
worse.

Table 1: In/Out Bandwidth Measured with Mitrion-C

Type/Mithal-
Version

Data Transfer Chain Bandwidth
[Mbytes/s]

host memory Æ SRAM 764.9
SRAM Æ host memory 4.9

stream/1.1.1

total throughput 9.2
dram/1.1.5 FPGA Æ host DRAM 675.1

Hardware Abstraction Layer: Extension to Support
Fortran

On the XD1 system, the API for resource allocation
and communication between the host and the FPGA is
provided by Cray’s ufplib [10]. On top of the Cray

API, Mitrionics implemented their own hardware
abstraction layer, named Mithal [11].

Most of the important applications considered here
are implemented in Fortran. Both APIs, the one for host-
to-FPGA communication and Mithal have a C interface.
Especially the Mithal interface is not directly accessible
from Fortran due to the use of character string arguments
for SRAM and DRAM bank identification. Since the
large majority of our HPC applications use Fortran, we

implemented a thin wrapper around both APIs and made
them accessible to Fortran as subroutine calls. [12], see
Figure 2.

With the ffpga functions, we hide any FPGA specific
data structures and housekeeping functions from the
Fortran application programmer. A summary of our
Fortran interface can be found in Table 2.

Table 2: Fortran ffpga interface: API definition and
short functional description
ffpga_init (bitfile, stat) allocate the FPGA device, load

bitfile into FPGA
ffpga_reg_buffer(id, nbytes,
mode, stat)

returns an address of registered
buffer space in host memory

ffpga_start (stat) start the FPGA
ffpga_wait (stat) wait for FPGA finalization
ffpga_close (stat) close the FPGA device
ffpga_wrreg (id, ptr, stat) write data to FPGA register
ffpga_wdta (id, ptr, offset,
nbytes, stat)

transfer data from registered
buffer to SRAM

ffpga_rdta (id, ptr, offset,
nbytes, stat)

transfer data from SRAM to
host buffer

The bottom two API functions are available for

Mithal releases up to 1.1.4. They trigger the explicit data
transfer to/from SRAM banks from/to pre-registered host
memory space. With the ffpga layer one can easily
switch between the two FPGA vendor API without re-
coding the host program. We take advantage of this in
some phases of the development process.

RapidArray
Transport

Hyper
Transpor

t

4

FPGA
App.
Accel.

Processor

QDR

RAP-2

FPGA Expansion

RAP-1

AMD
Opteron

RAM

AMD
Opteron

RAM

Hyper Hyper

FTR

hardware

ffpgaMithal

Cray API (ufplib)

Figure 2: Thin Fortran API layer ffpga
wrapping the Mithal and the Cray API.

p1MD Profile

CUG 2006 Proceedings 5 of 8

Reconfigurable Computing Taken Seriously
One outstanding feature of reconfigurable computing

devices is its ability to reconfigure functional units at
different levels between jobs, processes, and during
runtime.

44,35

0,93

0,10

0,03
nforce
force

One possible approach is to migrate a part of an
algorithm onto the reconfigurable device. Then only one
computational functionality of a given application can be
used at runtime.

move54,56
analysis
starts

Another approach is to reconfigure the device on-the-
fly during job or process execution. This is attractive for
multi-step applications, because the limited space
resources on todays FPGA restrict the size of the
application kernels that can moved onto the FPGA. The
frequency of FPGA reconfigurations, however, is limited
by the time needed for loading the bitfile into the FPGA.

Figure 3: Timing profile for benchmark
p1MD, 1000 steps for 1000 particles on
standard processor.

The Cray XD1 ufplib supports only files as a source
for the bitfile while other vendors support memory access
as well [13]. On the Cray, the average loading time from
disk is about 1.68 s for a 2.27 MB bitfile, corresponding
to 3.7E+9 cycles on the 2.2 GHz Opteron CPU. Note that
the load time is not limited by the disk access time:
Loading the bitfile from RAM disk we measured slightly
larger loading times of about 1.82 s. The time to load the
FPGA is limited by the I/O interface between the Opteron
CPU and the programming port of the FPGA (LPC bus
performance bottleneck [14]).

Therefore, on-the-fly reconfiguration of FPGAs
during is only useful when the time period between the
execution of different computational functions on the
FPGA is in the order of minutes.

5. Mitrion-C Implementation of LJ Force
Calculation

Test and Benchmark Environment
For testing as well as benchmarking our Lennard-

Jones implementation, we choose to use a very simple
scenario. We implemented the LJ particle code in Fortran
as described by Haberlandt et. al. [15]. Our p1MD
implementation acts as our host program for subsequent
FPGA implementations. The implementation is reduced
to the core functionality found in most applications
dealing with empirical force-fields.

The timing profile in Figure 3 illustrates that the time
consuming step, i.e. the calculation of the forces between
interacting particles, is represented by the two dominating
subroutines nforce and force, respectively: both
subroutines consume over 90% of the computational time
in this test scenario (again we point out, this profile is
measured for the test case under investigation; in a

practical scenario the proportion will be lower, still the
qualitative picture will not change).

Design Principles
Our design/implementation of the LJ was guided by

the following principles:

� Stream data directly from/to RAM modules.
� Use deep as pipelines as possible.
� Support maximal data input/output bandwidth.
� Keep it simple.

32bit Implementation
Some of the empirical force-field implementations

are based on 32bit processing. This is motivated by the
fact, that the simulation of molecular dynamics by
integrating Newtons equation of motion is a chaotic
process. The numerical noise caused by the physics
overlaps the noise caused by rounding errors, therefore
some implementations prefer a 32bit implementation with
short trajectories (for example in hybrid Monte-Carlo
approaches).

We started with the implementation of an IEEE 32bit
version for the calculation of the Lennard-Jones potential
and forces. We noticed soon that in our first naïve
approach the number of required flip-flops, multipliers
and subsequently slices exceeded the available resources
on the XC2VP50. Since floating point division and
square root operations are resource demanding, we put
these operations into the host program. Later, we will try
to perform the division in the FPGA.

The memory interfaces to SRAM banks and DRAM
is 64bit wide on the Cray XD1. At each cycle we read or
write a full 64bit word per RAM bank. After reading, this
word is transformed into a list of two 32bit members. For
both the read and write operations simple I/O functions
are written in Mitrion-C.

The core of the computational engine on FPGA is
designed to calculate the LJ energy part as well as the
force factor for a given particle pair. The three data input
streams deliver the distance (or reciprocal distance) and
the pair-specific parameters ε and σ. These three data
streams are fed into the function which computes the
energy part and the force factor. Both 32bit results are
packed into 64bit words and the later are streamed out to
SRAM or DRAM. This described procedure represents
one pipeline. Depending on the number of functional
components on the FPGA chip it is easily extensible to
more pipelines in Mitrion-C by introducing a vector
collection.

CUG 2006 Proceedings 6 of 8

The host program generates the pair list based on a
given cutoff distance criterion, which is common practice
in particle simulations to decrease the complexity from
O(N2) to O(N log N). The host gathers the pair parameters
ε and σ and stores the three objects in a buffer. Then the
FPGA is started by an asynchronous thread and it is
waited for the finalization of the FPGA. Our current
implementation does not support the overlapping of data
processing on the host site with the computation on the
FPGA. This is planned for a forthcoming version.

Based on our simulations with the Mitrion simulator,
the startup latency for reading the first word is 5 cycles,
with the 14 cycle the first datum arrives at the efALJ-
function. The fA-function is 16 cycles deep so that after
29 cycles, the first result is passed to the output. Finally,
after 35 cycles, the first result is written to the FTR
interface. This pipeline involves 15 IEEE single precision
floating-point operations (multiply, add). After the
pipeline is filled, it will provide a sustained performance
of 1.5 GFlop/s (single precision).

64bit Implementation
Furthermore, we implemented one pipeline for the

calculation of the force factor with full IEEE 64bit
support. The implementation involves 10 floating point
operations (add, multiply) and one division. After the
pipeline is filled, it will provide a sustained performance
of 1.1 GFlop/s.

For each cycle, the three operands: The distance (r)
and the interaction parameters ε (eps) as well as σ
(sig) are each read from one of the SRAM banks A, B,
and C, respectively. After the pipeline is filled, in each
cycle one 64bit results is written into the FTR interface2.

Based on our simulations with the Mitrion simulator,
the startup latency for reading the first word is 4 cycles,
after 11 cycles the first datum arrives at the fA-function
pipe. The fA-function is 15 cycles deep so that after 25
cycles, the first result is passed to the output. Finally,
after 27 cycles, the first result is written to the FTR

2 1 cycle corresponds to 10 ns in Mitrion based 100 MHz
designs.

interface. Figure X shows the fA evaluation part of the
total pipeline of 27 cycles.

Figure 4: Data dependency graph of the 15-step
pipeline for the calculation of the force factor
(visualization with Mitrion).

Application Performance Results
Reducing the wall-clock time is the only issue

application scientists are interested in. For a fair
comparison of the application performance with and
without FPGAs, the time measurement must include the
overheads associated with additional housekeeping (e.g.
loading the bitfile into FPGA), and the communication
time between host and FPGA.

Table 3 summarizes the wall-clock times for various
processing phases in one step for the calculation of the
pair wise interaction energies and the corresponding force
factor for about 28600 pairs. All timing measurements are
based on the PAPI 3 [16] wall-clock time or mflops
functions. The reference and host application was
compiled with Portland Group PGI 5.2 version at
optimization level “-O3 –fastsse” on our Cray XD1
system running S/W release v.1.3-45. The timing data is
averaged over multiple runs.

CUG 2006 Proceedings 7 of 8

Table 3: Wall-clock times (cumulative) for various
code blocks in the subroutine nforce for non-
bonding properties, processing 28599 interactions.

Version nforce code block time [ms]
- loops 21.51non-

FPGA call 21.61

- init 0.61
- - wdta 0.61
- - run 2.40
- - rdta 43.50
- - update 0.63
- loops 69.45

1.1.1
03/06

call 70.20
total speedup: 0.3

- init 0.86
- - run 0.77
- - update 0.73
- loops 19.82

1.1.5
05/06

call 20.81
total speedup: 1.1

The average time of the non-FPGA for the

calculation of the non-bonding data, i.e. pair wise
interaction energy and force factor, is 21 ms.

With Mitrion/Mithal 1.1.1, the FPGA runtime (run)
is about 2.4 ms for 28600 particle interactions3. The
additional overhead for housekeeping (init, update) is
relatively small. The data transfer from host memory to
SRAM (wdta) takes 0.615 ms, corresponding to 558
Mbyte/s. As the table shows, the data transfer back from
the SRAM to host memory (rdta) kills the speedup
achieved by the computational part on the FPGA. It
results in a performance decrease by a factor of 3.2 for
the total subroutine call (call). The poor communication
performance from the FPGA to the Opteron is due to the
limited read performance [14] (ref. Table 1).

With Mitrion/Mithal 1.1.5, a notable improvement of
the communication performance was achieved by using
the FPGA transfer region to store the results. The FPGA
runtime (run) includes the data transfer operations and
corresponds to a sustained performance of 558 Mflop/s.
At the time of writing it is not clear why the total time for
processing the interactions (loops), which includes the
code blocks run and update, is still large. The overall
performance is now slightly better than the non-FPGA
version.

3 Note that 15*28600/2.4ms = 178 MFlop/s is a factor 10
below the estimate of the Mitrion simulator.

6. Using Mitrion-C in Education
To promote the usage of parallel FPGA hardware, we

conducted an experimental student project seminar in the
winter term 2005/06. The seminar was targeted at the
more advanced MSc students with knowledge on
computer architecture and HPC programming. After the
initial exploration of the Cray XD1 hardware and the
Mitrion-C environment the students were offered to
implement either of three applications: the above
described Lennard-Jones interaction, a variant of the
Smith-Waterman sequence alignment algorithm, and a
kernel to solve the n-puzzle.

The students could implement these kernels
according to their own concepts. Interestingly, one group
decided to implement the LJ code with a fixed point high-
precision mode while another used 32bit floating point. In
the project seminar, the availability of the simulation
software was found most beneficial, since compilation
and synthetisation took very long and resources were
limited. For a forthcoming course, it is planned to
implement truly parallel FPGA kernels, that communicate
directly via HyperTransport without going through the
host processor. This is, however, not possible with the
current Mitrion-C.

7. Conclusion
The Mitrion-C product targets the community of

HPC application developers who want to implement
algorithms on FPGA by means of a high-level language.
It is a lively evolving package that supports the
implementation of algorithms on FPGA without the need
to learn and apply a hardware description language such
as VHDL, which is normally unfamiliar to HPC users.
For beginners, the learning curve of Mitrion-C is fairly
steep. With some experience in writing Mitrion-C code it
is possible to implement computational kernels within a
couple of hours.

The availability of the simulator is greatly
appreciated by our users. It is used to verify Mitrion-C
designs without the need to generate bitfiles, a time- and
memory consuming step.

Lessons Learned
� The high-level Mitrion-C interface allows

application programmers to implement
numerical algorithms on FPGA within a couple
of hours. The data dependency graph viewer is
an effective tool to trace and analyse data
streams.

� The Mitrion simulator substantially reduces the
time used for the implementation and validation

CUG 2006 Proceedings 8 of 8

of algorithms. It greatly improves the
productivity of software development.

� The data transfer bandwidth between host
memory (DRAM) and memory closely attached
to the FPGA device (SRAM banks) is a critical
issue and can limit the overall performance.

� One major concern are the limited resources on
the FPGA. The implementation of floating-point
intensive computational kernels with Mitrion-C
may fail due to limited functional components
(BRAM, multiplier) on FPGA or constraints.
This is especially painful on the elder and
smaller devices such as our XCVIIPro50.

8. Acknowledgments
We are especially grateful to Stefan Möhl, Pontus

Bergendahl, and Johan Lövdahl, all from Mitrionics A.B.,
for their guidance in using Mitrion-C, their efforts to
improve the software and their support. We would like to
thank Steve Margerm and Dave Strenski, all from Cray
Inc., for their help and support in understanding technical
details of the Cray XD1 system. Thanks also to the
participants of our project seminar “FPGA programming
for bioinformatics applications on the Cray XD1”.

9. About the Authors
Thomas Steinke is leader of the BCB Junior

Research Group “Alignment and Threading on
Massively-Parallel Computers”, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, Takustrasse 7, D-14195
Berlin-Dahlem, Germany, email: steinke@zib.de.

Alexander Reinefeld heads the computer science
department at ZIB and holds a chair for Parallel and
Distributed Systems at the Humboldt-Universität zu

Berlin. He can be reached at ZIB (www.zib.de), email:
ar@zib.de.

Thorsten Schütt is a research consultant and PhD
student at ZIB; his email is: schuett@zib.de.

10. References
[1] H. Simon et al., Science-Driven System Architecture: A New

Process for Leadership Class Computing, Journal of the Earth
Simulator, vol. 2, March 2005, 2–10.

[2] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takeda,
A. Konagaya, Protein explorer: A petaflop special-purpose
computer system for molecular dynamics simulations, in:
Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, New York, ACM Press, 2003

[3] http://mdgrape.gsc.riken.jp/modules/tinyd0/
[4] R. Scrofano, V.K. Prasanna, Computing Lennard-Jones Potentials

and Forces with Reconfigurable Hardware, International
Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), June 2004

[5] V. Kindratenko, D. Pointer, A case study in porting a production
scientific supercomputing application to a reconfigurable computer,
In: Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’06), April 2006, Napa, California

[6] Stefan Möhl, The Mitrion-C Programming Language, v. 1.0.1-100,
Mitrionics A.B., Lund, 2006

[7] A. Dellson, Turning FPGAs Into Supercomputers — Debunking the
Myths About FPGA-based Software Acceleration, CUG 2006

[8] Mitrion rel. 1.1.5, April 2006, Mitrionics A.B. Lund, Sweden
[9] Xilinx Integrated Software Environment (ISE) 7.1-4i, 2005, Xilinx

Inc.
[10] Cray XD1 FPGA Development, S–6400–131, Cray Inc, 2005
[11] The Mitrionic Host Abstraction Layer API, 1.1.0-001, Mitrionics

A.B., 2006
[12] Th. Steinke, ffpga interface, ZIB, 2006
[13] Stefan Möhl , private communication, Mitrionics, Mar 2006
[14] Steve Margerm, private communication, Cray Inc., May 2006
[15] R. Haberlandt, S. Fritzsche, G. Peinel, K. Heinzinger:

Molekulardynamik – Grundlagen und Anwendungen. Vieweg
Verlag, Braunschweig/Wiesbaden, 1995

[16] PAPI - Performance Application Programming Interface; Browne,
S., Dongarra J., Garner N., London K., and Mucci, P., A Scalable
Cross-Platform Infrastructure for Application Performance Tuning
Using Hardware Counters, Proc. SC'2000, November 2000,
http://icl.cs.utk.edu/papi/

mailto:steinke@zib.de
mailto:ar@zib.de
mailto:thorsten.schuett@zib.de
http://mdgrape.gsc.riken.jp/modules/tinyd0/

	Introduction
	FPGA-Based Computing at ZIB: The Cray XD1 System
	Applications of Interest

	Cray XD1 System with Attached FPGA
	Non-Bonding Interactions: The Lennard-Jones Potential
	Related Work

	High-Level Algorithm Design for FPGA with Mitrion-C
	Short Intro: Mitrion Programming Environment
	The Brief History of FPGA Programming at ZIB
	Bottleneck: Bandwith Host – FPGA
	Hardware Abstraction Layer: Extension to Support Fortran
	Reconfigurable Computing Taken Seriously

	Mitrion-C Implementation of LJ Force Calculation
	Test and Benchmark Environment
	Design Principles
	32bit Implementation
	64bit Implementation
	Application Performance Results

	Using Mitrion-C in Education
	Conclusion
	Lessons Learned

	Acknowledgments
	About the Authors
	References

