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ABSTRACT: We recently started to explore the potential of FPGAs for some 
application kernels that are important for our most demanding supercomputer users at 
ZIB. In this paper, we give an overview of our efforts and present current status achieved 
so far on a Cray XD1 system using the Mitrion-C programming environment.  
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1. Introduction 
Konrad-Zuse-Zentrum für Informationstechnik Berlin 

(ZIB) is a non-university research institute of the state of 
Berlin. In close interdisciplinary cooperation with the 
Berlin universities and scientific institutions it 
implements research and development in the field of 
information technology with a particular focus on 
application-oriented algorithmic mathematics and 
practical computer science. ZIB provides high-
performance computer capacity as an accompanying 
service for researchers in Berlin, Germany and abroad. 

Within the North-German HPC Consortium (HLRN), 
ZIB operates an IBM p690 that consists of 16 p690 
systems with 64Gbyte up to 256 Gbyte each, giving a 
total of 512 processors and 1.25 Tbyte of memory with a 
peak performance of 2.6 TFlops. Linked via dedicated 
fibre optics to its peer-system in Hanover, the two super-
computers are operated as one virtual supercomputer.  

FPGA-Based Computing at ZIB: The Cray XD1 System 
With the procurement of an FPGA equipped Cray 

XD1 system in September 2004, ZIB was the first site in 
Germany to provide FPGA technology for its HPC users. 
Partly funded by the BMBF for the BCB groups1 at ZIB, 
the Cray XD1 system is primilary used for applications in 
the area of bioinformatics and life sciences. 

The motivation for exploring FPGA as application 
accelerators results from the following technology trends: 

 
1 BCB = Berlin Center for Genome Based Bioinformatics 

 
� The predominant quantitative approach in major 

HPC systems is accompanied by a sharp increase 
in the running costs due to a less efficient power 
utilization caused by increased processor 
frequency and massive use of underutilized 
commodity components. As an example, the 
operation costs for power consumption of the 
current HLRN system are in the range of EUR 
250,000 per year plus running cost for cooling. 

� The sustained performance of only about 10-
15% of the peak performance for cache-based 
microprocessor architectures has been relatively 
constant over the last years—at an irritatingly 
low margin. Vector computers, on the other 
hand, deliver a higher sustained performance, 
but suffer from a decreasing application code 
base, because of their incompatibility with PCs 
and servers, on which code development is 
usually performed. 

� Physical considerations alone (heat dissipation 
per Flop, increasing signal delays due to long 
pathways between functional units, etc.) leads us 
to believe that HPC with current microprocessor 
designs is not feasible for petaflop computers at 
reasonable operation costs.  

 
The unsatisfactory application performance despite 

increased peak performance and increased running costs 
caused scientists to establish strategic partnerships with 
HPC manufacturers like the “Blue Planet” partnership 
between Lawrence Berkeley National Laboratory and 
IBM, which resulted in a set of architectural extensions 



referred to as ViVA (Virtual Vector Architecture) that 
positively affected the architectural design of the ASCI 
Purple system [1]. 

The lack of computer manufacturers in Europe forced 
us to pursue another strategy, namely to optimally exploit 
standard FPGA coprocessors as accelerator for the most 
important HPC application kernels. Note that contrasting 
other, more hardware-oriented research groups, we do not 
have any expertise in hardware description languages, 
neither do we want to dive into this subject. Instead, we 
build on high-level programming languages (like Mitrion-
C) which allow us to focus on the development of highly 
efficient application kernels without the burden of having 
to implement highly specific VHDL code. Using Mitrion-
C has the additional advantage, that non-CS experts such 
as our HPC users from various application domains may 
improve the FPGA kernels without additional help. 

Applications of Interest 
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Compute intensive molecular simulations are one 
major class of application on ZIB’s computing systems. 
These simulations cover a wide range of molecular 
systems and simulation techniques: from small molecules 
to large biomolecules, from highly sophisticated 
stationary or time-dependent electronic structure 
calculations to molecular dynamics calculations  based on 
empirical potentials. The latter belongs to the class of 
applications where the calculation of non-bonding 
interactions is usually the most time consuming step. 
Today, molecular dynamics calculations are performed 
with optimized production code (e.g. NAMD, AMBER) 
or in-house developed codes having specialized features 
(e.g. hybrid Monte-Carlo). 

 

2. Cray XD1 System with Attached FPGA 
At ZIB, one XD1 chassis is installed. It contains 12 

AMD Opterons at 2.2 GHz and 12 Gbyte of memory. The 
12 CPUs are organized in 6 nodes connected by the Cray 
RapidArray interconnect. Each node hosts one Xilinx 
Virtex-II Pro XC2VP50 FPGA with 16 Mbyte of QDR 
SRAM organized in 4 memory banks with 4 Mbyte each. 
The FPGA has a maximal frequency of 197 MHz. It 
comprises of 

 
� 53136 logic cells, 
� 4176 Kbits of block ram, 
� 232 18x18 multipliers, and 
� 2 PowerPC cores, which are not used with 

Mitrion-C. 
 

3. Non-Bonding Interactions: The Lennard-
Jones Potential 
For a large ensemble of interacting particles the most 

time-consuming step in the approximate evaluation of the 
energy or mutual forces is the calculation of pairwise 
interaction term. A fast calculation schema is needed to 
simulate large particle ensembles. The Lennard-Jones 
(LJ) potential is a commonly used equation that expresses 
the non-bonding interaction of atomic or molecular 
particles. Its has the advantage that the non-specific 
attraction caused by the dispersion interaction and the 
repulsion caused by the  Pauli repulsion for short 
distances are formulated in a compact equation.  

For two particles, the energy U depends on the 
distance r separating both particles: 
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The parameters σ and ε, respectively, are specific for 

each type of particle pair under consideration. The force 
F acting on the first particle due to the presence of the 
second particle at distance r: 
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Related Work 
The MD-GRAPE project [2] is one of the most 

successful approaches which uses hardware acceleration 
for n-body simulations. The MD-GRAPE system is based 
on an ASIC design which comprises the implementation 
of multiple pipelines for the calculation of non-bonding 
interaction energies and forces. On the latest MD-
GRAPE-3 chip 20 pipelines for calculation of forces are 
implemented. Operated with a clock rate of 300 MHz the 
chip performs 660 operations per cycle and has a peak 
performance of 198 GFlop/s [3]. 

A highly optimized VHLD design with two pipelines 
using IEEE 754 double precision floating-point units for 
the calculation of LJ potentials and forces on a Xilinx 
Virtex-IIPro125 chip was recently presented by Scrofano 
and Prasanna [4]. Their implementation achieves a 
performance of 3.9 GFlop/s on the XCV2Pro125-7, 
however, on a much larger FPGA than ours. 

Recently, Kindratenko and Pointer [5] reported their 
effort in porting the molecular dynamics code NAMD to 
the SRC-6 platform. On the SRC-6 system, they achieved 



an overall speedup of 3 compared to a 2.8 GHz x86-CPU 
which is remarkable for a highly optimized production 
code. 

 

4. High-Level Algorithm Design for FPGA 
with Mitrion-C 
Traditionally, algorithms on FPGA are expressed by 

the behaviour of the hardware and described by HDLs 
such as VHDL or Verilog. Mitrion-C is a C-like high-
level language with certain properties known from 
functional programming languages. We have choosen 
Mitrion-C because of its attractive underlying concept of 
hardware virtualization. Another issue was its earliest 
possible availability on the Cray XD1 platform. Mitrion 
currently supports Cray, Nallatech and SGI. Other C-to-
VHDL approaches, for example Handel-C or Impulse-C, 
as well as other high-level approaches, e.g. from 
DSPlogic will be considered shortly. 
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Short Intro: Mitrion Programming Environment 
We give an overview about the Mitrion programming 

environment from the application programmer’s point of 
view. The concept of hardware abstraction with the 
Virtual Mitrion Processor are described in detail 
elsewhere [6, 7]. 

The current Mitrion release [8] includes 
 
� the Mitrion-C to VHDL compiler, 
� the Data Dependency Graph visualizer, 
� the Mitrion simulator server, 
� the Mitrion Hardware Abstraction Layer library 

(Mithal), and 
� parcheck for summarizing and checking the 

result of the place and route design process with 
Xilinx ISE par [ise]. 

 
 In the following, we focus on the two most 

important components of the Mitrion package. 
The Mitrion simulator, introduced with rel. 1.1.0 

(Feb 2006), substantially reduces the development time. It 
acts as a virtual FPGA device when the host program is 
linked with the simulator version of Mithal. In this way, 
the process of the host program and the simulator process 
interact logically in the same way as the host program 
with the FPGA device. The validation of the 
implementation (watch points in the Mitrion-C code) and 
the monitoring of I/O operations to/from external memory 
become fairly easy.  

The Mithal interface, introduced with rel. 1.1.1 on 
Cray XD1 (Mar 2006) improves the portability of the 
implementation across different hardware platforms (e.g. 
Cray XD1 and SGI RASC). 

In Mitrion-C, the most important data structures are 
collections. Collections are represented by two basic 

types: lists and vectors. List collections are used for 
streaming data and invoking pipeline parallelism. The 
vector collection implicitly represents multiple instances 
of the Virtual Mitrion Processor (processing elements) 
and therefore data parallelism. Thus, to implement an 
algorithm in Mitrion-C one needs to think in terms of 
transforming collections by means of self-written 
functions (of course, very short and biased view on the 
potential of Mitrion-C). 

The Brief History of FPGA Programming at ZIB 
After its first release, the Mitrion-C package shows 

an exceptional vivid life cycle (see “diary” in text box 
below). Based on experiences and feedback from user 
communities, several releases were made available in a 
short frame of time. Most releases had a major impact on 
the development either by introducing new functionality 
or changes in the Mithal library.  

 

Here is my (Th.St.) Mitrion-C release “diary”: 
 
� 2005, Sept 28: got access to pre-release of 

Mitrion 
� 2005, Nov 9: got the first official Mitrion release 

1.0.1 installed on our XD1, realized that we have 
an old Cray release (1.1) which is not supported 
by Mitrion 1.0.1 

� 2005, November: Cray Inc announces availability 
of Cray rel 1.3 at SC05, so it should be ready for 
download but it is not, urgent contacts to Cray 
Germany to solve the problem (students are 
waiting…) 

� 2005, Dec 20: Cray 1.3 finally installed with the 
help of R. Pennarun (Cray French), run demos 
from Mitrionics 

� 2006, Feb 12: Mitrion 1.1.0: comes with the 
simulator - great step forward! 

� 2006, Mar 20: Mitrion 1.1.1: Mithal introduced 
on Cray XD1 

� 2006, Apr 3: Mitrion 1.1.4: Mithal changed, 
explicit data transfer function removed from API, 
data transfer trigger is now hidden (I don’t like 
that) 

� 2006, Apr 19: Mitrion 1.1.5: on XD1, access to 
host DRAM via FTR possible 

 

Bottleneck: Bandwith Host – FPGA 
It is well documented that the quality of the host – 

FPGA interface determines the resulting overall 
performance improvement, and therefore, the acceptance 
of using FPGAs as accelerating devices. 
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Figure 1: Interface between FPGA and Opteron 

 
Figure 1 illustrates the architecture of the functional 

units within the FPGA expansion module and the 
corresponding memory layout. To become familiar with 
the Mitrion-C concept and the usage of the host API we 
performed some bandwidth measurements. The program 
codes were simple in their computational task, e.g. each 
entity in a data stream is incremented by a fixed number. 
They only differ in their kind of input/output interface to 
the SRAM modules and later into the FTR. The FTR, 
standing for FPGA Transfer Region, is the DRAM host 
memory (accessible with Mitrion rel. 1.1.4).  

Table 1 summarizes our performance results. The 
first benchmark case shows the performance when the 
Opteron triggers the data transfer between the SRAM and 
its own (host) memory. Note the asymmetry: Reading 
data from SRAM to the host is 156-times slower than 
sending. When using the FPGA to trigger the data 
transfer, see the next line, the results are only slightly 
worse. 

 

Table 1: In/Out Bandwidth Measured with Mitrion-C 

Type/Mithal-
Version 

Data Transfer Chain Bandwidth 
[Mbytes/s] 

host memory Æ SRAM 764.9
SRAM Æ host memory 4.9

stream/1.1.1 

total throughput 9.2
dram/1.1.5 FPGA Æ host DRAM 675.1

 

Hardware Abstraction Layer: Extension to Support 
Fortran 

On the XD1 system, the API for resource allocation 
and communication between the host and the FPGA is 
provided by Cray’s ufplib [10]. On top of the Cray 

API, Mitrionics implemented their own hardware 
abstraction layer, named Mithal [11].  

Most of the important applications considered here 
are implemented in Fortran. Both APIs,  the one for host-
to-FPGA communication and Mithal have a C interface. 
Especially the Mithal interface is not directly accessible 
from Fortran due to the use of character string arguments 
for SRAM and DRAM bank identification. Since the 
large majority of our HPC applications use Fortran, we 

implemented a thin wrapper around both APIs and made 
them accessible to Fortran as subroutine calls. [12], see 
Figure 2. 
 
 

With the ffpga functions, we hide any FPGA specific 
data structures and housekeeping functions from the 
Fortran application programmer. A summary of our 
Fortran interface can be found in Table 2. 

 

Table 2: Fortran ffpga interface: API definition and 
short functional description 
ffpga_init (bitfile, stat) allocate the FPGA device, load 

bitfile into FPGA 
ffpga_reg_buffer(id, nbytes, 
mode, stat) 

returns an address of registered 
buffer space in host memory 

ffpga_start ( stat ) start the FPGA 
ffpga_wait ( stat ) wait for FPGA finalization 
ffpga_close ( stat ) close the FPGA device 
ffpga_wrreg (id, ptr, stat) write data to FPGA register 
ffpga_wdta (id, ptr, offset, 
nbytes, stat) 

transfer data from registered 
buffer to SRAM 

ffpga_rdta (id, ptr, offset, 
nbytes, stat) 

transfer data from SRAM to 
host buffer 

 
The bottom two API functions are available for 

Mithal releases up to 1.1.4. They trigger the explicit data 
transfer to/from SRAM banks from/to pre-registered host 
memory space. With the ffpga layer one can easily 
switch between the two FPGA vendor API without re-
coding the host program. We take advantage of this in 
some phases of the development process. 

RapidArray 
Transport 

Hyper  
Transpor

t 

4

FPGA 
App. 
Accel. 

Processor 

QDR 

RAP-2 

FPGA Expansion 

RAP-1 

AMD 
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Opteron 
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Hyper Hyper 
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hardware 

ffpgaMithal 

Cray API (ufplib) 

Figure 2: Thin Fortran API layer ffpga 
wrapping the Mithal and the Cray API. 



p1MD Profile
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Reconfigurable Computing Taken Seriously 
One outstanding feature of reconfigurable computing 

devices is its ability to reconfigure functional units at 
different levels between jobs, processes, and during 
runtime.  

44,35

0,93

0,10

0,03
nforce
force

One possible approach is to migrate a part of an 
algorithm onto the reconfigurable device. Then only one 
computational functionality of a given application can be 
used at runtime.  

move54,56
analysis
starts

Another approach is to reconfigure the device on-the-
fly during job or process execution. This is attractive for 
multi-step applications, because the limited space 
resources on todays FPGA restrict the size of the 
application kernels that can moved onto the FPGA. The 
frequency of FPGA reconfigurations, however, is limited 
by the time needed for loading the bitfile into the FPGA. 

Figure 3: Timing profile for benchmark 
p1MD, 1000 steps for 1000 particles on 
standard processor. 

The Cray XD1 ufplib supports only files as a source 
for the bitfile while other vendors support memory access 
as well [13]. On the Cray, the average loading time from 
disk is about 1.68 s for a 2.27 MB bitfile, corresponding 
to 3.7E+9 cycles on the 2.2 GHz Opteron CPU. Note that 
the load time is not limited by the disk access time: 
Loading the bitfile from RAM disk we measured slightly 
larger loading times of about 1.82 s. The time to load the 
FPGA is limited by the I/O interface between the Opteron 
CPU and the programming port of the FPGA (LPC bus 
performance bottleneck [14]). 

Therefore, on-the-fly reconfiguration of FPGAs 
during is only useful when the time period between the 
execution of different computational functions on the 
FPGA is in the order of minutes. 

 

5. Mitrion-C Implementation of LJ Force 
Calculation 

Test and Benchmark Environment 
For testing as well as benchmarking our Lennard-

Jones implementation, we choose to use a very simple 
scenario. We implemented the LJ particle code in Fortran 
as described by Haberlandt et. al. [15]. Our p1MD 
implementation acts as our host program for subsequent 
FPGA implementations. The implementation is reduced 
to the core functionality found in most applications 
dealing with empirical force-fields.  

The timing profile in Figure 3 illustrates that the time 
consuming step, i.e. the calculation of the forces between 
interacting particles, is represented by the two dominating 
subroutines nforce and force, respectively: both 
subroutines consume over 90% of the computational time 
in this test scenario (again we point out, this profile is 
measured for the test case under investigation; in a 

practical scenario the proportion will be lower, still the 
qualitative picture will not change). 

Design Principles 
Our design/implementation of the LJ was guided by 

the following principles: 
 
� Stream data directly from/to RAM modules. 
� Use deep as pipelines as possible. 
� Support maximal data input/output bandwidth. 
� Keep it simple. 

32bit Implementation 
Some of the empirical force-field implementations 

are based on 32bit processing. This is motivated by the 
fact, that the simulation of molecular dynamics by 
integrating Newtons equation of motion is a chaotic 
process. The numerical noise caused by the physics 
overlaps the noise caused by rounding errors, therefore 
some implementations prefer a 32bit implementation with 
short trajectories (for example in hybrid Monte-Carlo 
approaches). 

We started with the implementation of an IEEE 32bit 
version for the calculation of the Lennard-Jones potential 
and forces. We noticed soon that in our first naïve 
approach the number of required flip-flops, multipliers  
and subsequently slices exceeded the available resources 
on the XC2VP50. Since floating point division and 
square root operations are resource demanding, we put 
these operations into the host program. Later, we will try 
to perform the division in the FPGA. 

The memory interfaces to SRAM banks and DRAM 
is 64bit wide on the Cray XD1. At each cycle we read or 
write a full 64bit word per RAM bank. After reading, this 
word is transformed into a list of two 32bit members. For 
both the read and write operations simple I/O functions 
are written in Mitrion-C. 



The core of the computational engine on FPGA is 
designed to calculate the LJ energy part as well as the 
force factor for a given particle pair. The three data input 
streams deliver the distance (or reciprocal distance) and 
the pair-specific parameters ε and σ. These three data 
streams are fed into the function which computes the 
energy part and the force factor. Both 32bit results are 
packed into 64bit words and the later are streamed out to 
SRAM or DRAM. This described procedure represents 
one pipeline. Depending on the number of functional 
components on the FPGA chip it is easily extensible to 
more pipelines in Mitrion-C by introducing a vector 
collection.   

 
CUG 2006 Proceedings 6 of 8 

 

The host program generates the pair list based on a 
given cutoff distance criterion, which is common practice 
in particle simulations to decrease the complexity from 
O(N2) to O(N log N). The host gathers the pair parameters 
ε and σ and stores the three objects in a buffer. Then the 
FPGA is started by an asynchronous thread and it is 
waited for the finalization of the FPGA. Our current 
implementation does not support the overlapping of data 
processing on the host site with the computation on the 
FPGA. This is planned for a forthcoming version. 

Based on our simulations with the Mitrion simulator, 
the startup latency for reading the first word is 5 cycles, 
with the 14 cycle the first datum arrives at the efALJ-
function. The fA-function is 16 cycles deep so that after 
29 cycles, the first result is passed to the output. Finally, 
after 35 cycles, the first result is written to the FTR 
interface. This pipeline involves 15 IEEE single precision 
floating-point operations (multiply, add). After the 
pipeline is filled, it will provide a sustained performance 
of 1.5 GFlop/s (single precision). 

64bit Implementation 
Furthermore, we implemented one pipeline for the 

calculation of the force factor with full IEEE 64bit 
support. The implementation involves 10 floating point 
operations (add, multiply) and one division. After the 
pipeline is filled, it will provide a sustained performance 
of 1.1 GFlop/s. 

For each cycle, the three operands: The distance (r) 
and  the interaction parameters ε (eps) as well as σ 
(sig) are each read from one of the SRAM banks A, B, 
and C, respectively. After the pipeline is filled, in each 
cycle one 64bit results is written into the FTR interface2. 

Based on our simulations with the Mitrion simulator, 
the startup latency for reading the first word is 4 cycles, 
after 11 cycles the first datum arrives at the fA-function 
pipe. The fA-function is 15 cycles deep so that after 25 
cycles, the first result is passed to the output. Finally, 
after 27 cycles, the first result is written to the FTR 

                                                 
2 1 cycle corresponds to 10 ns in Mitrion based 100 MHz 
designs. 

interface. Figure X shows the fA evaluation part of the 
total pipeline of 27 cycles. 

 

Figure 4: Data dependency graph of the 15-step 
pipeline for the calculation of the force factor 
(visualization with Mitrion). 

 

Application Performance Results 
Reducing the wall-clock time is the only issue 

application scientists are interested in. For a fair 
comparison of the application performance with and 
without FPGAs, the time measurement must include the 
overheads associated with additional housekeeping (e.g. 
loading the bitfile into FPGA), and the communication 
time between host and FPGA.  

Table 3 summarizes the wall-clock times for various 
processing phases in one step for the calculation of the 
pair wise interaction energies and the corresponding force 
factor for about 28600 pairs. All timing measurements are 
based on the PAPI 3 [16] wall-clock time or mflops 
functions. The reference and host application was 
compiled with Portland Group PGI 5.2 version at 
optimization level “-O3 –fastsse” on our Cray XD1 
system running S/W release v.1.3-45. The timing data is 
averaged over multiple runs. 
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Table 3: Wall-clock times (cumulative) for various 
code blocks in the subroutine nforce for non-
bonding properties, processing 28599 interactions. 

Version nforce code block time [ms] 
- loops 21.51non-

FPGA call 21.61

- init 0.61
- - wdta 0.61
- - run 2.40
- - rdta 43.50
- - update 0.63
- loops 69.45

1.1.1 
03/06 

call 70.20
total speedup: 0.3 

- init 0.86
- - run 0.77
- - update 0.73
- loops 19.82

1.1.5 
05/06 

call 20.81
total speedup: 1.1 

 
 
The average time of the non-FPGA for the 

calculation of the non-bonding data, i.e. pair wise 
interaction energy and force factor, is 21 ms. 

With Mitrion/Mithal 1.1.1, the FPGA runtime (run) 
is about 2.4 ms for 28600 particle interactions3. The 
additional overhead  for housekeeping (init, update) is 
relatively small. The data transfer from host memory to 
SRAM (wdta) takes 0.615 ms, corresponding to 558 
Mbyte/s. As the table shows, the data transfer back from 
the SRAM to host memory (rdta) kills the speedup 
achieved by the computational part on the FPGA. It 
results in a performance decrease by a factor of 3.2 for 
the total subroutine call (call). The poor communication 
performance from the FPGA to the Opteron is due to the 
limited read performance [14] (ref. Table 1). 

With Mitrion/Mithal 1.1.5, a notable improvement of 
the communication performance was achieved by using 
the FPGA transfer region to store the results. The FPGA 
runtime (run) includes the data transfer operations and 
corresponds to a sustained performance of 558 Mflop/s. 
At the time of writing it is not clear why the total time for 
processing the interactions (loops), which includes the 
code blocks run and update, is still large. The overall 
performance is now slightly better than the non-FPGA 
version. 

 

                                                 
3 Note that 15*28600/2.4ms = 178 MFlop/s is a factor 10 
below the estimate of the Mitrion simulator. 

6. Using Mitrion-C in Education 
To promote the usage of parallel FPGA hardware, we 

conducted an experimental student project seminar in the 
winter term 2005/06. The seminar was targeted at the 
more advanced MSc students with knowledge on 
computer architecture and HPC programming. After the 
initial exploration of the Cray XD1 hardware and the 
Mitrion-C environment the students were offered to 
implement either of three applications: the above 
described Lennard-Jones interaction, a variant of the 
Smith-Waterman sequence alignment algorithm, and a 
kernel to solve the n-puzzle. 

The students could implement these kernels 
according to their own concepts. Interestingly, one group 
decided to implement the LJ code with a fixed point high-
precision mode while another used 32bit floating point. In 
the project seminar, the availability of the simulation 
software was found most beneficial, since compilation 
and synthetisation took very long and resources were 
limited. For a forthcoming course, it is planned to 
implement truly parallel FPGA kernels, that communicate 
directly via HyperTransport without going through the 
host processor. This is, however, not possible with the 
current Mitrion-C. 

 

7. Conclusion 
The Mitrion-C product targets the community of 

HPC application developers who want to implement 
algorithms on FPGA by means of a high-level language. 
It is a lively evolving package that supports the 
implementation of algorithms on FPGA without the need 
to learn and apply a hardware description language such 
as VHDL, which is normally unfamiliar to HPC users. 
For beginners, the learning curve of Mitrion-C is fairly 
steep. With some experience in writing Mitrion-C code it 
is possible to implement computational kernels within a 
couple of hours.  

The availability of the simulator is greatly 
appreciated by our users. It is used to verify Mitrion-C 
designs without the need to generate bitfiles, a time- and 
memory consuming step. 

Lessons Learned 
� The high-level Mitrion-C interface allows 

application programmers to implement 
numerical algorithms on FPGA within a couple 
of hours. The data dependency graph viewer is 
an effective tool to trace and analyse data 
streams. 

� The Mitrion simulator substantially reduces the 
time used for the implementation and validation 
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of algorithms. It greatly improves the 
productivity of software development. 

� The data transfer bandwidth between host 
memory (DRAM) and memory closely attached 
to the FPGA device (SRAM banks) is a critical 
issue and can limit the overall performance. 

� One major concern are the limited resources on 
the FPGA. The implementation of floating-point 
intensive computational kernels with Mitrion-C 
may fail due to limited functional components 
(BRAM, multiplier) on FPGA or constraints. 
This is especially painful on the elder and 
smaller devices such as our XCVIIPro50. 
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