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ABSTRACT: Portals Direct I/O ("PDIO") is a 
special-purpose middleware infrastructure for writing 
data from compute processor memory on Cray XT3 
compute nodes to remote agents anywhere on the 
WAN in real-time. The prototype implementation 
provided a means for aggregation of outgoing data 
through multiple load-balanced routing daemons, end-
to-end parallel data streams through externally 
connected “I/O nodes”, and a bandwidth feedback 
mechanism for stability and robustness.  It was used by 
one research group, demonstrated live at several 
conferences, and shown to deliver bandwidths of up to 
100 MByte/sec.  

Although the prototype met the initial design 
requirements for the target application, it had some 
limitations due to the special-purpose nature of that 
design. Based on experiences with that 
implementation, the beta version now under 
development has a number of interface, functionality 
and performance enhancements.  We present the 
motivations for this infrastructure and the revisions 
that should make it a general purpose solution for 
users on PSC’s Cray XT3 and other compute 
platforms. 
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I. INTRODUCTION 

HPC researchers frequently need real-time remote 
access to their simulation data.  Such needs range from 
simultaneous coupled simulations (formerly known as 
“metacomputing” but also as “grid computing”), to 
interactive simulation steering, to the simple need for 
prompt post-processing or rendering at another site.  
Distributed applications or others with heterogenous 
spatial characteristics implicitly require data transport 
from one computational site/stage to the next.  
Meeting these challenges with real-time delivery of 
simulation output data requires innovation and 
effective load-balancing of high-end compute and 
network resources. 

PSC has developed a new remote I/O library that 
routes simulation data from memory within the 
compute processors on the Cray XT3 to remote 
receivers anywhere on the WAN.  Since this service 

routes traffic from the internal Portals [1] network 
directly to I/O on other machines, without the 
intervention of other application libraries like MPI, it 
is called "Portals Direct I/O" (PDIO).   

The first prototype was originally designed to 
facilitate real-time remote rendering and steering for a 
specific scientific application.  This resulted in a 
successful first implementation demonstrated live at 
multiple conference venues.  Despite early successes 
in both performance and function, PSC saw the need 
to revise the design based on experiences with the 
prototype.   

The newly revised “beta” version of this 
middleware includes several major enhancements.  
First, the new user-level interface is transparent, 
encapsulated by an intercept shim that augments the 
behavior of the normal UNIX file operations. Second, 
PDIO utilizes more scalable and robust 
communication protocols both over Portals within the 
machine and over TCP across the WAN. These 
updated protocols also allow support for broader use 
cases. Third, PDIO and associated machine resources 
are dynamically allocated by a centralized resource 
manager, to allow the PDIO infrastructure to be a truly 
shared resource for all users on the system.  This 
revised design is expected to provide a popular service 
since virtually all computational scientists wish to 
access their data on machines outside the original 
compute platform and PDIO will accelerate that 
opportunity. 

II. DESIGN GOALS 

The PSC has a long tradition of striving to meet user 
requirements and accommodate unusual requests 
wherever feasible.  This extends from customized job 
reservations and scheduling policies [2] to innovative 
software development like automated checkpoint-
recovery systems [3,4].  The work described here grew 
out of one such request. 

The original prototype was designed as a special-
purpose solution for the “PPM” application [5] by the 
Woodward collaboration. The beta version was 
redesigned based on experience with this 
implementation to convert the resulting special-
purpose solution to a general-purpose solution, 
suitable to other use cases.  Several users and other 



sites have already expressed interest in the beta 
version of PDIO. 

The high-level design goal of PDIO is to deliver 
data resident in compute node memory directly to 
external WAN-connected hosts without staging the 
data through any disks or other file systems.   The low-
level requirements have changed from the first 
prototype to the beta version, now in development.  
Following are the specific design goals of each version 
separately. 

A. Prototype Design Goals 
The Woodward collaboration has a reputation for 

their specialized real-time rendering tools [6], but to 
be fully appreciated these tools require significant data 
streams or volumes.  These collaborators expressed a 
need to get data from memory on compute nodes to 
remote sites at speeds of order 100 MByte/sec for the 
purpose of remote rendering and interactive simulation 
controls. 

1) Seamless Remote File Delivery 
The first assent was the appearance of remote data 

in file format, as opposed to in-memory DMA-type 
transfers.  This was mandated by the file system 
interface of existing rendering tools.  Most users in 
practice have made similar accommodations for their 
own or 3rd party tools or post-processing based on 
output files. 

We further established that the best means for 
accomplishing this was a middleware library bridging 
the gap between the internal Portals computational 
interconnect to the external WAN.  For example, 
writing a harvester that dynamically migrated files 
from local disk to remote hosts was deemed a poor 
match for the interactive feedback and controls 
inherent in the steered application.  The proposed 
solution must aggregate traffic at the sender side, 
transmit it, and reconstitute it into files at the receiver 
side in order to achieve the desired performance and 
functionality.  Remote file naming and structures must 
appear as they otherwise would on the local compute 
resource, allowing preexisting rendering tools to make 
immediate use of data in the new locale. 

2) High Performance 
Although in practice researchers always want the 

maximum possible data delivery throughput, rates of 
order 100 MByte/sec were required in order to satisfy 
the high resolution and interactive nature of the 
visualization step of this steered simulation. 

3) Arbitrary Output and Destinations 
Remote visualization and control were the primary 

goal.  These naturally involve the prepared 

visualization data.  However capturing output from 
non-interactive batch sessions at the researcher’s home 
site was an obvious secondary target.  In this way 
researchers could capture comparable data streams and 
other low-level simulation parameters for playback at 
other times, local to their home site and without 
initiating large batch-mode file transfers post-
simulation. 

4) Acceptable Constraints 
Reasonable constraints included the knowledge that 

individual writes could be bound to unique files, a 
characteristic specific to this application. 

B. Revised (Beta Release) Design Goals 
1) Transparent Invocation 

The prototype was implemented behind an API that 
required explicit initialization and invocation, 
including distinct header files and function names.  
While this was acceptable to the Woodward 
collaboration, experience confirms that the prevailing 
mindset among scientific applications developers is 
that they will avoid all site-specific customizations 
(beyond basic build procedures) whenever possible, 
and are hesitant to make any changes to their source 
code beyond those justified by their science.  A 
distinct PDIO API would therefore constitute a 
significant barrier to mainstream user adoption.  Any 
production release must be implemented in a manner 
that its usage is transparent to the applications 
developers (although run-time switches are generally 
accepted, e.g. batch script customizations). 

2) Support for General File Access Patterns 
The prototype implementation imposed an implicit 

constraint, namely that each write() invocation was 
associated with an independent remote file.  While this 
satisfied the stated requirements of the Woodward 
collaboration, as noted, it is unsuitable to most users.  
The full release must support more typical file access 
patterns: multiple writes per file, parallel or concurrent 
writers, seek operations, etc. 

3) Performance & Robustness Enhancements 
The prototype implementation contained certain 

internal timeout and threshold constraints.  Although 
these were tuned for effective utilization by the PPM 
application, generalization required that we not merely 
tune these for each application but eliminate 
dependence upon them wherever possible.  
Furthermore, those middleware parameters that persist 
must be dynamically configurable either by 
administrators or individual users. 



The PDIO daemon’s ring buffer management was 
also revised to enable multi-destination support and 
time-based partial buffer flushing. 

4) Back-Channel Communication to the Client 
While the prototype implementation had a feedback 

mechanism for performance reasons and state 
management, the beta version will feature propagation 
of all relevant system error messages (e.g. “device 
full”) from the remote receiver back to the running 
application.  This will strengthen the abstraction of file 
system locality. 

5) Resource Management 
Terascale computing platforms generally have a 

finite and limited number of externally connected 
nodes (“I/O nodes”).  I/O nodes and their physical 
memory, network connectivity, PDIO daemons and 
their Portals communication identifiers are all 
examples of system resources that are consumed by 
the PDIO system.  These resources must therefore be 
allocated in order to avoid user collisions and must be 
dynamically managed in order to maintain the 
infrastructure in an automated way. 

The beta version of PDIO must have its own 
resource manager that handles these tasks, subject to 
both administrator and user controls. 

III. IMPLEMENTATION DETAILS 

The PDIO implementation has changed somewhat to 
meet the revised design goals.  Where there are 
differences between the two versions these will be 
highlighted.  Otherwise the following description 
applies to both versions.  

A. PDIO Components 
There are three communication layers in the PDIO 

system, as shown in Figure 1:     the client library, the 
I/O daemon and the remote receiver.  These serve as 
the data sender, aggregator/router and receiver, 
respectively. There is also a resource manager to 
allocate and track the active components in the system. 

1) Client Library 
The client library is the only component of the 

PDIO system that runs on the compute nodes.  It stores 
a minimal amount of stream state (e.g. file offsets) and 
passes the data specified in each write() invocation 
to a PDIO daemon over the Portals communication 
layer.  Beginning with the beta version, its interface to 
the application is through a thin intercept shim under 
the standard C I/O functions (e.g. open, write, 
fcntl, close). 

The usage model is that each compute node process 
writes to what appears to be a "local" disk file, while 
the files that the application is writing are created in 
the file system of the remote client.  The only 
requirements are that the output filename be prefixed 

with a recognizable string (e.g. 
“pdio://host:port/”) to designate data 
destined for a remote PDIO receiver, and that added 
elements (e.g. an include path and a link library) must 
appear on the compile/link command lines.  

2) I/O Daemon 
The PDIO daemon runs on an externally connected 

I/O node.  It receives Portals data/messages from the 
clients on the compute nodes, aggregates them into 
optimally-sized buffers in memory and asynchronously 
routes them over the WAN via parallel TCP/IP data 
streams to remote receivers.  Each process utilizes one 
or more multi-threaded ring buffers filled by Portals 
and emptied by TCP/IP, maximizing throughput 
within each daemon process.  Multiple daemons can 
be used across one or more I/O nodes for system-wide 
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Figure 1: PDIO communication layers.  Dotted lines encapsulate the 
various hosts; compute and I/O nodes are both within the Cray 
XT3.  Italics text identifies transport protocols and media.  Multiple 
compute processes can connect to each I/O daemon.  There are 
multiple I/O daemons and remote receivers (not shown) that operate 
in parallel. 



optimal load-balanced performance.  Beginning with 
the beta version, these daemons are launched by a 
“mother hen” process, which is itself started at 
machine boot time.  The “mother hen” spawns a 
configurable number of PDIO daemons and keeps 
them running by restarting any that are lost at any 
time. 

3) Remote Receiver 
The PDIO receiver is the final component in this 

chain.  It is the only component that runs outside the 
compute resource, on any WAN-connected host.  It 
“listens” on a well-known TCP port, waiting for an 
incoming connection from a PDIO daemon.  Upon 
connection it spawns off a receiver thread/process that 
reconstitutes the incoming aggregated TCP buffers 
into individual file I/O operations.  As of the beta 
release, all data written by the PDIO receiver are 
owned by the UID of the receiver process.  This may 
change in future releases.  The PDIO receiver process 
can persist over many streams and user jobs.  There is 
no need to stop or restart it except as desired. 

The PDIO receiver is provided in source form and 
requires compilation by the user.  It is written in C and 
has not been difficult to compile on any platforms 
tested to date (e.g. IA32/IA64/x86-64 Linux, Tru64 
UNIX).  This highly portable receiver has no software 
dependencies to prevent “research administrators” 
(those with better things to do than install 3rd-party 
software) from easily building and running it on any 
WAN-connected host. 

4) Resource Manager 
The PDIO resource manager (RMGR) dynamically 

tracks all available PDIO daemons, assigning them to 
running jobs as requested.  Batch or interactive jobs 
generate requests by invoking the PDIO “agent” 
(analogous to the SSH agent[7]).  The agent serves not 
only to allocate daemons but also to pass certain 
environment variable assignments to the client library 
through the running application, and can even be used 
to pass tuning controls to the daemons. 

PDIO daemons are deallocated and terminated when 
the agents are terminated, at which point the “mother 
hen” that used to own each daemon spawns new 
daemons to replace those that were exhausted.  All 
new daemons immediately register their presence, 
special features and Portals identifiers with the 
resource manager to await the next allocation. 

The presence of agents and daemons is established 
by opening TCP sockets to the Resource Manager, 
keeping them open for the duration of the session.  If 
at any time a daemon or agent closes its connection 
(i.e. is terminated) the Resource Manager will 
propagate kill signals to all remaining associated 
processes, which will print or log an appropriate 
message. 

B. PDIO Features 
1) Portals/Seastar to TCP routing 

The Cray XT3 communication fabric (see Figure 2) 
is based on the Cray Seastar chip.  Each Opteron 
processor has a 6.4 GByte/sec memory channel and a 
6.4 GByte/sec hypertransport channel connected to a 
Cray Seastar chip.  The Seastars connect directly to 
one another (6 links per Seastar) by 7.6 GByte/sec 
communication links, so that the hardware provides an 
extremely high bandwidth, low-latency mesh 
interconnect.  Cray has implemented the Portals [1] 
DMA communication library over this hardware, 
providing a high-performance, portable interface to 
higher level software.  By utilizing Portals the PDIO 
library takes direct advantage of this low-level 
communication protocol and exposes the compute 
processor memory to the I/O nodes by DMA. 

The routing of traffic from the internal Portals 
network to the external TCP network is an obvious 
feature of PDIO – an implicit requirement in its design 
and success.  The data transmission starts on the 
compute nodes via the client library and is propagated 
through the PDIO daemons, which route traffic to the 
PDIO receiver(s) on the external TCP network.  
Because compute and I/O nodes run different kernels, 
Portals communication between them is considered 
“heterogenous”.  This is not programmatically 
available by any other protocol.  Without this type of 
routing no internal data would be directly accessible 
outside the compute resource.  

Figure 2: The Cray XT3 Scalable Architecture.  This illustrates the 
role and configuration of the Seastar interconnect between compute 
(left) and service and I/O (right) nodes.  See text for bandwidths. 

2) Multi-Threaded Ring Buffer Management 
The PDIO daemons and receivers both utilize multi-

threaded ring buffer management for optimum 
performance.  At each end of the WAN TCP 
connection buffers are filled by one thread (e.g. the 
Portals aggregator in the PDIO daemon and the TCP 
socket recv() in the PDIO receiver) and emptied by 



a separate thread (e.g. the TCP socket send() in the 
PDIO daemon and file system write() in the PDIO 
receiver).  This parallelization allows for 
asynchronous, parallel I/O within each process, 
minimizing resource contention at each end.  
Beginning with the beta release, PDIO daemons can 
support multiple ring buffers corresponding to 
connections to multiple remote receivers. 

3) Multiple I/O Daemons 
PDIO clients have the ability to identify and select 

from a number of available PDIO daemons.  
Balancing connectivity from hundreds or thousands of 
clients to a smaller number (dozens) of daemons is 
essential to reduce resource contention.  Furthermore, 
these daemons can run on any of the I/O nodes, 
making optimal use of those I/O nodes with 
specialized hardware.  One such specialization was to 
equip some I/O nodes with 10GigE network cards with 
10GigE links to the TeraGrid.  PSC has configured a 
single DDNS alias (tg-gridftp.bigben.psc. 
teragrid.org) to point to two such nodes, which 
were used for the SC|05 demo as described below. 

4) A Configurable Number of TCP Output 
Streams 

Each PDIO daemon supports one or more external 
WAN connections.  So by launching multiple PDIO 
daemons on each I/O node, users can increase the 
number of parallel output streams per node, optimizing 
the compute-Seastar-TCP resource utilization of each 
I/O node.  Multiple socket streams per host (even as 
few as two) are known to achieve higher aggregate 
throughput on many networks than single streams. 

5) Buffer Aggregation in the I/O Daemon 
Scientific applications in general write output with a 

variety of buffer sizes.  Individual writes of order 
kBytes are not unusual, but TCP buffers this size result 
in poor network performance.  Using larger (of order 
MBytes) transmission buffers can significantly 
improve throughput on high-bandwidth, high-latency 
networks[8].   

One of the more important roles of the PDIO 
daemon is to aggregate smaller writes from the PDIO 
client library into larger, more optimal network buffers 
before routing them to the external TCP network.  
During this aggregation data is copied from memory 
on a compute node, where the scientific application 
runs, to memory on an I/O node, which has external 
connectivity to the WAN. 

Users can either specify their preferred size for these 
network buffers or accept the default values. 

6) Parallel Remote Receivers 
The PDIO receiver process binds to a well-known 

TCP port and waits in accept() for incoming 
connections.  Upon connection it spawns off a new 
sub-process to handle the incoming request, returning 

to accept() new connections that may be coming.  
This allows multiple parallel streams to be handled by 
each remote receiver host. 

7) Standard Job Submission Procedures 
The job submission procedures required by a site’s 

scheduling system do not require modification.  The 
only run-time modification required by users is to 
launch a PDIO agent within the batch script.  Users 
can pass configurable parameters to the daemons and 
client library via command line options for the agent 
or by a personal configuration file 
($HOME/.pdio.conf). 

8) End-to-End Flow Control 
It is important for all three levels—client, daemon 

and receiver—have the ability to throttle back the data 
streams they're receiving, especially considering the 
potentially large bandwidth difference between the 
data coming from the compute nodes over the internal 
Cray Seastar network and the data going out over the 
wide-area TCP network to the remote client.  This is 
no different from what is commonly expected of local 
file systems—that an application cannot over-run or 
lose its own file system traffic.  The PDIO daemon 
asynchronously manages multiple data streams from 
hundreds of clients in parallel while still providing a 
blocking write() behavior at the client end, if the 
transmission chain backs up.  This allows PDIO to 
limit the rate at which messages are sent all the way 
back to the scientific application, slowing down the 
application if necessary to avoid data loss.  While this 
may appear to be a weakness it is a strong design 
feature.  It ensures reliability and stability whether 
running over slower (e.g. low-end commodity) or 
faster (e.g. NSF TeraGrid) networks, and similarly 
accommodates remote file system performance issues. 

If the WAN transmission pipeline is not backed up 
then the write() invocation at the client side (on the 
compute node) will return as soon as the DMA 
operation from compute to I/O node has completed.  
This operation has characteristic speeds approaching 
memory resident file systems, as opposed to disk-
based file systems.  This should allow the application 
to return to computation more quickly, spending less 
time in file I/O functions, provided that the WAN 
connectivity and file systems at the remote host(s) are 
fast enough.  As noted below the prototype has already 
demonstrated performance approaching Gigabit-
Ethernet speeds, provided adequate remote resources. 

9) Transparent Invocation 
As noted, transparent invocation was an explicit 

design goal of the revised system.  This required 
unique understanding of the Cray XT3 environment.  
Catamount on this platform mandates all static linking, 
eliminating the option of supplanting the dynamic run-
time libraries.  Furthermore, libsysio, the intercept 



library for all I/O operations was implemented by 
directly replacing all of the usual system functions 
(e.g. open, write, close).  As a result, our 
intercept library was designed to redirect invocations 
of the standard I/O functions to PDIO-specific 
versions by the use of compile-time macros (e.g. 
#define open pdio_open).  By adding an 
include element to the compilation line (and a library 
specifier to the corresponding link line) our header file 
precedes the usual stdio.h header, directing all I/O 
to pass through the PDIO intercept shim.  In that layer, 
file descriptors referencing PDIO files are handled by 
the client library, while those referencing normal 
(local) files are passed along to libsysio for 
normal processing.  Assigning valid file descriptors to 
remote PDIO files was achieved by opening empty 
“shadow” files in the memory-resident file system 
(/__incore). 

C. PDIO Security 
PDIO data does not touch any file systems within 

the compute resource, but only resides either in flight 
(e.g. between client and daemon, daemon and 
receiver), in memory (e.g. in the PDIO daemon ring-
buffer) or on remote media, after it is stored by the 
PDIO receiver.  Data security must be addressed at 
both the PDIO daemon and receiver levels. 

Portals communication supports the notion of per-
message Access Control Lists (ACLs).  So there is no 
appreciable opportunity for one user to intercept 
another’s PDIO data in flight within the compute 
resource.  And accessing another user’s data in the 
PDIO daemon’s memory is prohibited by normal 
UNIX process/memory constraints. 

As of the beta version, communications between the 
PDIO daemon and remote receiver are still performed 
unencrypted over TCP socket streams, to avoid 
performance penalties.  And, while no user or 
password data is exchanged in this manner, this does 
present opportunity for malicious users to intercept 
data in flight during WAN communications or to 
attack the open port on the receiver.  Once at the 
remote site all files are currently owned by the UID 
under which the remote receiver was launched. 

Future projects are already under consideration to 
address both shortcomings via alternative WAN 
communication protocols.  One such approach could 
be to utilize the Globus eXtensible I/O (XIO) library.  
XIO already has transport and transform drivers that 
could support GSI-authenticated, compressed TCP 
streams across the WAN, although their utilization 
makes certain assumptions about software 
environments.  Converting to these protocols may also 
have far-reaching affects upon the parallel aggregation 
currently performed within the PDIO daemons. 

IV. USER EXPERIENCE 

Woodward et al. were the first scientists to utilize 
this capability to remotely render compressible 
turbulence data and steer the simulation from a remote 
site while the simulation was proceeding.  Their 
application is called the Piecewise Parabolic Method 
(“PPM” [5]).  It is particularly well-designed for 
custom I/O, encapsulating all output within a single 
“switched_IO” function.  Thus, by modifying 35 
lines of source code they added full PDIO 
functionality to their application.  They ran this remote 
visualization and control demonstration live at 
multiple conference venues [9-11] and at their home 
site in Minnesota.  Each time they simulated the 
turbulent fluid dynamics in shear driven mixing layers 
and sent the output via PDIO to the remote site for 
real-time rendering. 

During early test trials at their home site (from 
bigben.psc.edu to *.lcse.umn.edu, which 
traverses the Abilene/Internet2 [12] network) PDIO 
delivered roughly 320 Mbit/sec, pressing the practical 
limits of their laboratory’s internet connection.  This 
established the performance and feasibility of this 
approach.  By contrast, at the later SC|05 
demonstration PDIO delivered rates nearing 800 
Mbit/sec over a period of minutes and 200 Mbit/sec 
over the course of the full 90-minute live 
demonstration. (The rate was intentionally reduced to 
avoid filling the disk at the remote host over the course 
of the full demo.)  PDIO-enabled PPM was similarly 
demonstrated live at two other conference venues and 
multiple laboratories with similar success, 
emphasizing the portability of this solution.  With no 
PDIO-related failures during the live demonstrations 
PDIO has shown excellent reliability and stability for 
both short (minutes) and long (hours) periods of use. 

V. CONCLUSIONS 

PSC has created a transparent middleware layer that 
delivers high-performance, load-balanced, streaming 
output to any remote host on the Wide Area Network.  
We have virtually extended the file system from 
compute nodes to the entire internet.  This provides 
Cray XT3 users with an unprecedented means for 
transferring data from memory on compute nodes to 
their home site, conference venue or any other site in 
real-time.  We anticipate that researchers will use this 
for real-time heterogenous applications like remote 
rendering, coupled simulations, data-driven 
simulations, monitoring or even simply to have faster 
access to their data for post-processing.   

The need for this type of solution in Massively 
Parallel Processing (MPP) computing environments is 
imminent.  MPPs, contrasted with large clusters, 



typically run micro-kernel operating systems on the 
compute nodes to enable application scalability.  But 
these nodes typically lack external connectivity and 
may not even support an IP stack.  The press toward 
petascale computing demands that our software 
innovation provide scalable I/O solutions that account 
for these hardware and OS constraints, like separation 
of I/O initiators from external connectivity on 
dedicated “I/O nodes”.  PDIO makes effective use of 
this hardware configuration.  This work could be 
applied directly to such platforms by either building 
Portals for the internal OS/network in question or 
replacing the internal Portals aggregation with other 
native transports – resulting in similar advantages for 
users on arbitrary HPC platforms.   
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