
PDIO: High-Performance Remote File I/O for Cray
XT3 Compute Nodes

N. T. B. Stone, D. Balog, B. Gill, B. Johanson, J. Marsteller, P. Nowoczynski, R. Reddy,

J. R. Scott, D. Simmel, J. Sommerfield, K. Vargo, C. Vizino, Pittsburgh Supercomputing Center and
D. Porter, Laboratory for Computational Science and Engineering

ABSTRACT: Portals Direct I/O ("PDIO") is a
special-purpose middleware infrastructure for writing
data from compute processor memory on Cray XT3
compute nodes to remote agents anywhere on the
WAN in real-time. The prototype implementation
provided a means for aggregation of outgoing data
through multiple load-balanced routing daemons, end-
to-end parallel data streams through externally
connected “I/O nodes”, and a bandwidth feedback
mechanism for stability and robustness. It was used by
one research group, demonstrated live at several
conferences, and shown to deliver bandwidths of up to
100 MByte/sec.

Although the prototype met the initial design
requirements for the target application, it had some
limitations due to the special-purpose nature of that
design. Based on experiences with that
implementation, the beta version now under
development has a number of interface, functionality
and performance enhancements. We present the
motivations for this infrastructure and the revisions
that should make it a general purpose solution for
users on PSC’s Cray XT3 and other compute
platforms.

KEYWORDS: computer input-output, data
communication, data handling

I. INTRODUCTION

HPC researchers frequently need real-time remote
access to their simulation data. Such needs range from
simultaneous coupled simulations (formerly known as
“metacomputing” but also as “grid computing”), to
interactive simulation steering, to the simple need for
prompt post-processing or rendering at another site.
Distributed applications or others with heterogenous
spatial characteristics implicitly require data transport
from one computational site/stage to the next.
Meeting these challenges with real-time delivery of
simulation output data requires innovation and
effective load-balancing of high-end compute and
network resources.

PSC has developed a new remote I/O library that
routes simulation data from memory within the
compute processors on the Cray XT3 to remote
receivers anywhere on the WAN. Since this service

routes traffic from the internal Portals [1] network
directly to I/O on other machines, without the
intervention of other application libraries like MPI, it
is called "Portals Direct I/O" (PDIO).

The first prototype was originally designed to
facilitate real-time remote rendering and steering for a
specific scientific application. This resulted in a
successful first implementation demonstrated live at
multiple conference venues. Despite early successes
in both performance and function, PSC saw the need
to revise the design based on experiences with the
prototype.

The newly revised “beta” version of this
middleware includes several major enhancements.
First, the new user-level interface is transparent,
encapsulated by an intercept shim that augments the
behavior of the normal UNIX file operations. Second,
PDIO utilizes more scalable and robust
communication protocols both over Portals within the
machine and over TCP across the WAN. These
updated protocols also allow support for broader use
cases. Third, PDIO and associated machine resources
are dynamically allocated by a centralized resource
manager, to allow the PDIO infrastructure to be a truly
shared resource for all users on the system. This
revised design is expected to provide a popular service
since virtually all computational scientists wish to
access their data on machines outside the original
compute platform and PDIO will accelerate that
opportunity.

II. DESIGN GOALS

The PSC has a long tradition of striving to meet user
requirements and accommodate unusual requests
wherever feasible. This extends from customized job
reservations and scheduling policies [2] to innovative
software development like automated checkpoint-
recovery systems [3,4]. The work described here grew
out of one such request.

The original prototype was designed as a special-
purpose solution for the “PPM” application [5] by the
Woodward collaboration. The beta version was
redesigned based on experience with this
implementation to convert the resulting special-
purpose solution to a general-purpose solution,
suitable to other use cases. Several users and other

sites have already expressed interest in the beta
version of PDIO.

The high-level design goal of PDIO is to deliver
data resident in compute node memory directly to
external WAN-connected hosts without staging the
data through any disks or other file systems. The low-
level requirements have changed from the first
prototype to the beta version, now in development.
Following are the specific design goals of each version
separately.

A. Prototype Design Goals
The Woodward collaboration has a reputation for

their specialized real-time rendering tools [6], but to
be fully appreciated these tools require significant data
streams or volumes. These collaborators expressed a
need to get data from memory on compute nodes to
remote sites at speeds of order 100 MByte/sec for the
purpose of remote rendering and interactive simulation
controls.

1) Seamless Remote File Delivery
The first assent was the appearance of remote data

in file format, as opposed to in-memory DMA-type
transfers. This was mandated by the file system
interface of existing rendering tools. Most users in
practice have made similar accommodations for their
own or 3rd party tools or post-processing based on
output files.

We further established that the best means for
accomplishing this was a middleware library bridging
the gap between the internal Portals computational
interconnect to the external WAN. For example,
writing a harvester that dynamically migrated files
from local disk to remote hosts was deemed a poor
match for the interactive feedback and controls
inherent in the steered application. The proposed
solution must aggregate traffic at the sender side,
transmit it, and reconstitute it into files at the receiver
side in order to achieve the desired performance and
functionality. Remote file naming and structures must
appear as they otherwise would on the local compute
resource, allowing preexisting rendering tools to make
immediate use of data in the new locale.

2) High Performance
Although in practice researchers always want the

maximum possible data delivery throughput, rates of
order 100 MByte/sec were required in order to satisfy
the high resolution and interactive nature of the
visualization step of this steered simulation.

3) Arbitrary Output and Destinations
Remote visualization and control were the primary

goal. These naturally involve the prepared

visualization data. However capturing output from
non-interactive batch sessions at the researcher’s home
site was an obvious secondary target. In this way
researchers could capture comparable data streams and
other low-level simulation parameters for playback at
other times, local to their home site and without
initiating large batch-mode file transfers post-
simulation.

4) Acceptable Constraints
Reasonable constraints included the knowledge that

individual writes could be bound to unique files, a
characteristic specific to this application.

B. Revised (Beta Release) Design Goals
1) Transparent Invocation

The prototype was implemented behind an API that
required explicit initialization and invocation,
including distinct header files and function names.
While this was acceptable to the Woodward
collaboration, experience confirms that the prevailing
mindset among scientific applications developers is
that they will avoid all site-specific customizations
(beyond basic build procedures) whenever possible,
and are hesitant to make any changes to their source
code beyond those justified by their science. A
distinct PDIO API would therefore constitute a
significant barrier to mainstream user adoption. Any
production release must be implemented in a manner
that its usage is transparent to the applications
developers (although run-time switches are generally
accepted, e.g. batch script customizations).

2) Support for General File Access Patterns
The prototype implementation imposed an implicit

constraint, namely that each write() invocation was
associated with an independent remote file. While this
satisfied the stated requirements of the Woodward
collaboration, as noted, it is unsuitable to most users.
The full release must support more typical file access
patterns: multiple writes per file, parallel or concurrent
writers, seek operations, etc.

3) Performance & Robustness Enhancements
The prototype implementation contained certain

internal timeout and threshold constraints. Although
these were tuned for effective utilization by the PPM
application, generalization required that we not merely
tune these for each application but eliminate
dependence upon them wherever possible.
Furthermore, those middleware parameters that persist
must be dynamically configurable either by
administrators or individual users.

The PDIO daemon’s ring buffer management was
also revised to enable multi-destination support and
time-based partial buffer flushing.

4) Back-Channel Communication to the Client
While the prototype implementation had a feedback

mechanism for performance reasons and state
management, the beta version will feature propagation
of all relevant system error messages (e.g. “device
full”) from the remote receiver back to the running
application. This will strengthen the abstraction of file
system locality.

5) Resource Management
Terascale computing platforms generally have a

finite and limited number of externally connected
nodes (“I/O nodes”). I/O nodes and their physical
memory, network connectivity, PDIO daemons and
their Portals communication identifiers are all
examples of system resources that are consumed by
the PDIO system. These resources must therefore be
allocated in order to avoid user collisions and must be
dynamically managed in order to maintain the
infrastructure in an automated way.

The beta version of PDIO must have its own
resource manager that handles these tasks, subject to
both administrator and user controls.

III. IMPLEMENTATION DETAILS

The PDIO implementation has changed somewhat to
meet the revised design goals. Where there are
differences between the two versions these will be
highlighted. Otherwise the following description
applies to both versions.

A. PDIO Components
There are three communication layers in the PDIO

system, as shown in Figure 1: the client library, the
I/O daemon and the remote receiver. These serve as
the data sender, aggregator/router and receiver,
respectively. There is also a resource manager to
allocate and track the active components in the system.

1) Client Library
The client library is the only component of the

PDIO system that runs on the compute nodes. It stores
a minimal amount of stream state (e.g. file offsets) and
passes the data specified in each write() invocation
to a PDIO daemon over the Portals communication
layer. Beginning with the beta version, its interface to
the application is through a thin intercept shim under
the standard C I/O functions (e.g. open, write,
fcntl, close).

The usage model is that each compute node process
writes to what appears to be a "local" disk file, while
the files that the application is writing are created in
the file system of the remote client. The only
requirements are that the output filename be prefixed

with a recognizable string (e.g.
“pdio://host:port/”) to designate data
destined for a remote PDIO receiver, and that added
elements (e.g. an include path and a link library) must
appear on the compile/link command lines.

2) I/O Daemon
The PDIO daemon runs on an externally connected

I/O node. It receives Portals data/messages from the
clients on the compute nodes, aggregates them into
optimally-sized buffers in memory and asynchronously
routes them over the WAN via parallel TCP/IP data
streams to remote receivers. Each process utilizes one
or more multi-threaded ring buffers filled by Portals
and emptied by TCP/IP, maximizing throughput
within each daemon process. Multiple daemons can
be used across one or more I/O nodes for system-wide

I/O Daemon

Ring Buffer

Remote Receiver

Ring Buffer

Compute Nodes

I/O Node

Remote Host

Client
Library

Client
Library

Files on Disk

w
r
i
t
e
(
)

w
r
i
t
e
(
)

TCP / WAN

Portals / Seastar

Figure 1: PDIO communication layers. Dotted lines encapsulate the
various hosts; compute and I/O nodes are both within the Cray
XT3. Italics text identifies transport protocols and media. Multiple
compute processes can connect to each I/O daemon. There are
multiple I/O daemons and remote receivers (not shown) that operate
in parallel.

optimal load-balanced performance. Beginning with
the beta version, these daemons are launched by a
“mother hen” process, which is itself started at
machine boot time. The “mother hen” spawns a
configurable number of PDIO daemons and keeps
them running by restarting any that are lost at any
time.

3) Remote Receiver
The PDIO receiver is the final component in this

chain. It is the only component that runs outside the
compute resource, on any WAN-connected host. It
“listens” on a well-known TCP port, waiting for an
incoming connection from a PDIO daemon. Upon
connection it spawns off a receiver thread/process that
reconstitutes the incoming aggregated TCP buffers
into individual file I/O operations. As of the beta
release, all data written by the PDIO receiver are
owned by the UID of the receiver process. This may
change in future releases. The PDIO receiver process
can persist over many streams and user jobs. There is
no need to stop or restart it except as desired.

The PDIO receiver is provided in source form and
requires compilation by the user. It is written in C and
has not been difficult to compile on any platforms
tested to date (e.g. IA32/IA64/x86-64 Linux, Tru64
UNIX). This highly portable receiver has no software
dependencies to prevent “research administrators”
(those with better things to do than install 3rd-party
software) from easily building and running it on any
WAN-connected host.

4) Resource Manager
The PDIO resource manager (RMGR) dynamically

tracks all available PDIO daemons, assigning them to
running jobs as requested. Batch or interactive jobs
generate requests by invoking the PDIO “agent”
(analogous to the SSH agent[7]). The agent serves not
only to allocate daemons but also to pass certain
environment variable assignments to the client library
through the running application, and can even be used
to pass tuning controls to the daemons.

PDIO daemons are deallocated and terminated when
the agents are terminated, at which point the “mother
hen” that used to own each daemon spawns new
daemons to replace those that were exhausted. All
new daemons immediately register their presence,
special features and Portals identifiers with the
resource manager to await the next allocation.

The presence of agents and daemons is established
by opening TCP sockets to the Resource Manager,
keeping them open for the duration of the session. If
at any time a daemon or agent closes its connection
(i.e. is terminated) the Resource Manager will
propagate kill signals to all remaining associated
processes, which will print or log an appropriate
message.

B. PDIO Features
1) Portals/Seastar to TCP routing

The Cray XT3 communication fabric (see Figure 2)
is based on the Cray Seastar chip. Each Opteron
processor has a 6.4 GByte/sec memory channel and a
6.4 GByte/sec hypertransport channel connected to a
Cray Seastar chip. The Seastars connect directly to
one another (6 links per Seastar) by 7.6 GByte/sec
communication links, so that the hardware provides an
extremely high bandwidth, low-latency mesh
interconnect. Cray has implemented the Portals [1]
DMA communication library over this hardware,
providing a high-performance, portable interface to
higher level software. By utilizing Portals the PDIO
library takes direct advantage of this low-level
communication protocol and exposes the compute
processor memory to the I/O nodes by DMA.

The routing of traffic from the internal Portals
network to the external TCP network is an obvious
feature of PDIO – an implicit requirement in its design
and success. The data transmission starts on the
compute nodes via the client library and is propagated
through the PDIO daemons, which route traffic to the
PDIO receiver(s) on the external TCP network.
Because compute and I/O nodes run different kernels,
Portals communication between them is considered
“heterogenous”. This is not programmatically
available by any other protocol. Without this type of
routing no internal data would be directly accessible
outside the compute resource.

Figure 2: The Cray XT3 Scalable Architecture. This illustrates the
role and configuration of the Seastar interconnect between compute
(left) and service and I/O (right) nodes. See text for bandwidths.

2) Multi-Threaded Ring Buffer Management
The PDIO daemons and receivers both utilize multi-

threaded ring buffer management for optimum
performance. At each end of the WAN TCP
connection buffers are filled by one thread (e.g. the
Portals aggregator in the PDIO daemon and the TCP
socket recv() in the PDIO receiver) and emptied by

a separate thread (e.g. the TCP socket send() in the
PDIO daemon and file system write() in the PDIO
receiver). This parallelization allows for
asynchronous, parallel I/O within each process,
minimizing resource contention at each end.
Beginning with the beta release, PDIO daemons can
support multiple ring buffers corresponding to
connections to multiple remote receivers.

3) Multiple I/O Daemons
PDIO clients have the ability to identify and select

from a number of available PDIO daemons.
Balancing connectivity from hundreds or thousands of
clients to a smaller number (dozens) of daemons is
essential to reduce resource contention. Furthermore,
these daemons can run on any of the I/O nodes,
making optimal use of those I/O nodes with
specialized hardware. One such specialization was to
equip some I/O nodes with 10GigE network cards with
10GigE links to the TeraGrid. PSC has configured a
single DDNS alias (tg-gridftp.bigben.psc.
teragrid.org) to point to two such nodes, which
were used for the SC|05 demo as described below.

4) A Configurable Number of TCP Output
Streams

Each PDIO daemon supports one or more external
WAN connections. So by launching multiple PDIO
daemons on each I/O node, users can increase the
number of parallel output streams per node, optimizing
the compute-Seastar-TCP resource utilization of each
I/O node. Multiple socket streams per host (even as
few as two) are known to achieve higher aggregate
throughput on many networks than single streams.

5) Buffer Aggregation in the I/O Daemon
Scientific applications in general write output with a

variety of buffer sizes. Individual writes of order
kBytes are not unusual, but TCP buffers this size result
in poor network performance. Using larger (of order
MBytes) transmission buffers can significantly
improve throughput on high-bandwidth, high-latency
networks[8].

One of the more important roles of the PDIO
daemon is to aggregate smaller writes from the PDIO
client library into larger, more optimal network buffers
before routing them to the external TCP network.
During this aggregation data is copied from memory
on a compute node, where the scientific application
runs, to memory on an I/O node, which has external
connectivity to the WAN.

Users can either specify their preferred size for these
network buffers or accept the default values.

6) Parallel Remote Receivers
The PDIO receiver process binds to a well-known

TCP port and waits in accept() for incoming
connections. Upon connection it spawns off a new
sub-process to handle the incoming request, returning

to accept() new connections that may be coming.
This allows multiple parallel streams to be handled by
each remote receiver host.

7) Standard Job Submission Procedures
The job submission procedures required by a site’s

scheduling system do not require modification. The
only run-time modification required by users is to
launch a PDIO agent within the batch script. Users
can pass configurable parameters to the daemons and
client library via command line options for the agent
or by a personal configuration file
($HOME/.pdio.conf).

8) End-to-End Flow Control
It is important for all three levels—client, daemon

and receiver—have the ability to throttle back the data
streams they're receiving, especially considering the
potentially large bandwidth difference between the
data coming from the compute nodes over the internal
Cray Seastar network and the data going out over the
wide-area TCP network to the remote client. This is
no different from what is commonly expected of local
file systems—that an application cannot over-run or
lose its own file system traffic. The PDIO daemon
asynchronously manages multiple data streams from
hundreds of clients in parallel while still providing a
blocking write() behavior at the client end, if the
transmission chain backs up. This allows PDIO to
limit the rate at which messages are sent all the way
back to the scientific application, slowing down the
application if necessary to avoid data loss. While this
may appear to be a weakness it is a strong design
feature. It ensures reliability and stability whether
running over slower (e.g. low-end commodity) or
faster (e.g. NSF TeraGrid) networks, and similarly
accommodates remote file system performance issues.

If the WAN transmission pipeline is not backed up
then the write() invocation at the client side (on the
compute node) will return as soon as the DMA
operation from compute to I/O node has completed.
This operation has characteristic speeds approaching
memory resident file systems, as opposed to disk-
based file systems. This should allow the application
to return to computation more quickly, spending less
time in file I/O functions, provided that the WAN
connectivity and file systems at the remote host(s) are
fast enough. As noted below the prototype has already
demonstrated performance approaching Gigabit-
Ethernet speeds, provided adequate remote resources.

9) Transparent Invocation
As noted, transparent invocation was an explicit

design goal of the revised system. This required
unique understanding of the Cray XT3 environment.
Catamount on this platform mandates all static linking,
eliminating the option of supplanting the dynamic run-
time libraries. Furthermore, libsysio, the intercept

library for all I/O operations was implemented by
directly replacing all of the usual system functions
(e.g. open, write, close). As a result, our
intercept library was designed to redirect invocations
of the standard I/O functions to PDIO-specific
versions by the use of compile-time macros (e.g.
#define open pdio_open). By adding an
include element to the compilation line (and a library
specifier to the corresponding link line) our header file
precedes the usual stdio.h header, directing all I/O
to pass through the PDIO intercept shim. In that layer,
file descriptors referencing PDIO files are handled by
the client library, while those referencing normal
(local) files are passed along to libsysio for
normal processing. Assigning valid file descriptors to
remote PDIO files was achieved by opening empty
“shadow” files in the memory-resident file system
(/__incore).

C. PDIO Security
PDIO data does not touch any file systems within

the compute resource, but only resides either in flight
(e.g. between client and daemon, daemon and
receiver), in memory (e.g. in the PDIO daemon ring-
buffer) or on remote media, after it is stored by the
PDIO receiver. Data security must be addressed at
both the PDIO daemon and receiver levels.

Portals communication supports the notion of per-
message Access Control Lists (ACLs). So there is no
appreciable opportunity for one user to intercept
another’s PDIO data in flight within the compute
resource. And accessing another user’s data in the
PDIO daemon’s memory is prohibited by normal
UNIX process/memory constraints.

As of the beta version, communications between the
PDIO daemon and remote receiver are still performed
unencrypted over TCP socket streams, to avoid
performance penalties. And, while no user or
password data is exchanged in this manner, this does
present opportunity for malicious users to intercept
data in flight during WAN communications or to
attack the open port on the receiver. Once at the
remote site all files are currently owned by the UID
under which the remote receiver was launched.

Future projects are already under consideration to
address both shortcomings via alternative WAN
communication protocols. One such approach could
be to utilize the Globus eXtensible I/O (XIO) library.
XIO already has transport and transform drivers that
could support GSI-authenticated, compressed TCP
streams across the WAN, although their utilization
makes certain assumptions about software
environments. Converting to these protocols may also
have far-reaching affects upon the parallel aggregation
currently performed within the PDIO daemons.

IV. USER EXPERIENCE

Woodward et al. were the first scientists to utilize
this capability to remotely render compressible
turbulence data and steer the simulation from a remote
site while the simulation was proceeding. Their
application is called the Piecewise Parabolic Method
(“PPM” [5]). It is particularly well-designed for
custom I/O, encapsulating all output within a single
“switched_IO” function. Thus, by modifying 35
lines of source code they added full PDIO
functionality to their application. They ran this remote
visualization and control demonstration live at
multiple conference venues [9-11] and at their home
site in Minnesota. Each time they simulated the
turbulent fluid dynamics in shear driven mixing layers
and sent the output via PDIO to the remote site for
real-time rendering.

During early test trials at their home site (from
bigben.psc.edu to *.lcse.umn.edu, which
traverses the Abilene/Internet2 [12] network) PDIO
delivered roughly 320 Mbit/sec, pressing the practical
limits of their laboratory’s internet connection. This
established the performance and feasibility of this
approach. By contrast, at the later SC|05
demonstration PDIO delivered rates nearing 800
Mbit/sec over a period of minutes and 200 Mbit/sec
over the course of the full 90-minute live
demonstration. (The rate was intentionally reduced to
avoid filling the disk at the remote host over the course
of the full demo.) PDIO-enabled PPM was similarly
demonstrated live at two other conference venues and
multiple laboratories with similar success,
emphasizing the portability of this solution. With no
PDIO-related failures during the live demonstrations
PDIO has shown excellent reliability and stability for
both short (minutes) and long (hours) periods of use.

V. CONCLUSIONS

PSC has created a transparent middleware layer that
delivers high-performance, load-balanced, streaming
output to any remote host on the Wide Area Network.
We have virtually extended the file system from
compute nodes to the entire internet. This provides
Cray XT3 users with an unprecedented means for
transferring data from memory on compute nodes to
their home site, conference venue or any other site in
real-time. We anticipate that researchers will use this
for real-time heterogenous applications like remote
rendering, coupled simulations, data-driven
simulations, monitoring or even simply to have faster
access to their data for post-processing.

The need for this type of solution in Massively
Parallel Processing (MPP) computing environments is
imminent. MPPs, contrasted with large clusters,

typically run micro-kernel operating systems on the
compute nodes to enable application scalability. But
these nodes typically lack external connectivity and
may not even support an IP stack. The press toward
petascale computing demands that our software
innovation provide scalable I/O solutions that account
for these hardware and OS constraints, like separation
of I/O initiators from external connectivity on
dedicated “I/O nodes”. PDIO makes effective use of
this hardware configuration. This work could be
applied directly to such platforms by either building
Portals for the internal OS/network in question or
replacing the internal Portals aggregation with other
native transports – resulting in similar advantages for
users on arbitrary HPC platforms.

REFERENCES
[1] R. Brightwell, W. Lawry, A. B. Maccabe, R. Riesen, “Portals

3.0: Protocol Building Blocks for Low Overhead
Communication,” in Proceedings of the 2002 Workshop on
Communication Architecture for Clusters, April, 2002.

[2] C. Vizino, J. Kochmar, and J. R. Scott, “Custom Features of a
Large Cluster Batch Scheduler”, in Proceedings of the 2005
Int. Conf. on Parallel and Distributed Processing Techniques
and Applications, 2005.

[3] N. T. B. Stone, J. Kochmar, P. Nowoczynski, J. R. Scott, D.
Simmel, J. Sommerfield, and C. Vizino, “Terascale I/O
Solutions,” Lecture Notes in Computer Science, vol. 2660,
pp. 13-22, 2003.

[4] N. T. B. Stone, J. Kochmar, R. Reddy, J. R. Scott, J.
Sommerfield, and C. Vizino, “A Checkpoint and Recovery
System for the Pittsburgh Supercomputing Center Terascale
Computing System,” PSC technical report CMU-PSC-TR-
2001-0002, unpublished. Available:
http://www.psc.edu/publications/tech_reports/

[5] P. R. Woodward, “A Complete Description of the PPM
Compressible Gas Dynamics Scheme,” in Implicit Large
Eddy Simulation: Computing Turbulent Flow Dynamics,
edited by F. Grinstein, Cambridge University Press, 2006 (in
press).

[6] P. R. Woodward, D. H. Porter, A. Iyer, “Initial experiences
with grid-based volume visualization of fluid flow simulations
on PC clusters,” in Proc. Visualization and Data Analysis
2005 (VDA2005), San Jose, CA, Jan., 2005. Available:
http://www.lcse.umn.edu/VDA2005

[7] OpenSSH project, “ssh-agent man page”, unpublished.
Available: http://www.openbsd.org/cgi-
bin/man.cgi?query=ssh-agent&sektion=1

[8] M. Mathis, R. Reddy, “Enabling High Performance Data
Transfers,” 2006. Available:
http://www.psc.edu/networking/projects/tcptune/

[9] Global Lambda Integrated Facility, iGrid2005 Conference,
2005. Available: http://www.igrid2005.org/

[10] IEEE, Visualization 2005 Conference, 2005. Available:
http://vis.computer.org/vis2005/

[11] IEEE / ACM, SC|05 Conference, 2005. Available:
http://sc05.supercomputing.org/

[12] The Abilene Backbone Network, 2006. Available:
http://abilene.internet2.edu/

