
TLB EntriesTLB Entries and Applicationand Application
PerformancePerformance

Neil Neil StringfellowStringfellow

CSCS - Swiss National Supercomputing CentreCSCS - Swiss National Supercomputing Centre

CUG 2006 - Neil Stringfellow - CSCS

OverviewOverview

•CSCS and the Paul Scherrer Institute bought an 1100 processor
Cray XT3 system in early 2005

•A set of performance benchmarks were in the procurement and
Cray committed numbers to these benchmarks

•On machine delivery, it was clear that the benchmark results could
not be achieved with the default setup

•A small page size option was introduced which allowed most of
the benchmark figures to be achieved

•The small page option has benefited many other applications

•Some algorithms do have small benefits from large pages

CUG 2006 - Neil Stringfellow - CSCS

Introduction to Virtual MemoryIntroduction to Virtual Memory

•A process requires sections of memory in order to be able to
execute
 Text section - executable
 Data section
 A memory heap
 A stack

•These sections are given addresses in memory at compile time
and run time, for example
 Text - 0x0000-0x1fff
 Data - 0x2000-0x2fff
 Heap - 0x3000-0xefff
 Stack - 0xf000-0xffff

•All processes will have the same (or similar) addresses
 This would lead to overlapping memory between processes

CUG 2006 - Neil Stringfellow - CSCS

Virtual to Physical MappingVirtual to Physical Mapping

•The process requests memory from the operating system

•The operating system allocates real memory to the process

•The operating system gives the process an address which the
process should use to access the memory
 This is the virtual address

•The operating system also gives the CPU a virtual to physical
mapping so that the CPU can access the real physical memory
 This is the virtual to physical mapping

•Memory is given out in “pages” of a specific size

CUG 2006 - Neil Stringfellow - CSCS

Example of Virtual to Physical MapExample of Virtual to Physical Map

Text 2
Data 1
Heap 1
Heap 2

Stack 1
Stack 2

Heap 3

Text 1

0x0000

0xffff

0x0000

0xffff

Text 1
Data 1
Heap 1
Heap 2

Stack 1

0x0000

0xffff

Text 2
Data 1
Heap 1

Stack 1
Stack 2

Text 1
0x0000

0xffff

Physical Memory

Process 1

Process 2

Process 3

CUG 2006 - Neil Stringfellow - CSCS

Translation Translation Lookaside Lookaside BufferBuffer

•The TLB is a part of the processor which holds
translations from virtual to physical memory

•If the processor tries to access a page of memory
which has its address in the TLB then the translation
can occur and the memory operation can proceed

•A TLB miss occurs when the processor tries to access
a memory page for which no translation is in the TLB
 A page fault occurs and one entry in the TLB needs to be

replaced with the required virtual to physical mapping

•TLB misses are very costly !!!

CUG 2006 - Neil Stringfellow - CSCS

Page Size and TLB on the Page Size and TLB on the OpteronOpteron

•AMD Opteron has 2 page sizes
 Small page of 4 Kilobytes
 Large page of 2 Megabytes

•Processors have limited numbers of TLB entries
 TLB entries take up “real estate” on the processor

•For the AMD Opteron there are different numbers of TLB entries
for different page sizes
 Small pages have 64 TLB entries in primary cache and 1024 entries in

the secondary cache
 Large pages have 8 TLB entries in primary cache and NO entries in

secondary cache

CUG 2006 - Neil Stringfellow - CSCS

Red Storm Design ChoiceRed Storm Design Choice

•For Linux the default page size is 4 kilobytes

•For Catamount, Sandia decided to use 2 Megabyte pages for the
default

• Increases the memory footprint contained in TLB from 4
Megabytes to 16 Megabytes

•Minimises TLB misses if an application accesses “close” memory
locations
 Stream benchmark accesses 3 or 4 arrays

• Increases TLB misses if an application accesses many well
separated memory locations
 Accessing more than 8 arrays which are each separated by 2

Megabytes

CUG 2006 - Neil Stringfellow - CSCS

CSCS Procurement BenchmarksCSCS Procurement Benchmarks

•CSCS Benchmarks were
 IOZone (8 tests)
 HPC Challenge (23 tests)
 MoldyPSI - Molecular Dynamics Code (2 tests)
 Trilinos based applications (8 tests)

•Cray used a cluster to get basic benchmarks and extrapolated to
committed figures for the XT3

•Cray were allowed to miss up to 8 of their committed numbers
with consequent financial penalties

•With large pages Cray were due to miss 12 of their targets

CUG 2006 - Neil Stringfellow - CSCS

Code AnalysisCode Analysis

•Roberto Ansaloni (Cray benchmarker) discovered high numbers of
TLB misses on user benchmark codes

•Claudio Redaelli saw similar numbers of TLB misses on key
CSCS computational chemistry codes
 Mainly in the area of classical molecular dynamics

•Other large numbers of TLB misses were seen on codes at CSCS

•High priority was given to getting the small page/high TLB entry
facility of the Opteron to be usable from Catamount
 The Acceptance could not be passed without it
 CSCS’ users would have poor performance without it

CUG 2006 - Neil Stringfellow - CSCS

A New Option to A New Option to yodyod

•yod is the process which services a computational job
 launches a job on the compute nodes
 controls the job
 services system requests from the job

•A new option was provided to yod to allow the small
page size to be selected
 option is -small_pages
 real purpose of option is -lots_of_TLB_entries
 the real changes to allow this option were made in the

catamount kernel

•This made dramatic improvements in many codes

CUG 2006 - Neil Stringfellow - CSCS

AcceptanceAcceptance CodesCodes

•IOZone was able to be passed with either page size

•The small page option meant that 6 of the 10 user
benchmarks could be passed
 4 Trilinos benchmarks for sparse solver still failed

•One extra HPC Challenge benchmark could also be
passed with small pages
 This was unexpected and therefore saved Cray some money

CUG 2006 - Neil Stringfellow - CSCS

Effect on HPC ChallengeEffect on HPC Challenge

•Summary of results from HPC Challenge for change from large to
small page size
 Single Node/Embarrassingly Parallel were worse

 Stream Benchmark - 1-2% worse
 Random access on node - over 40% worse
 DGEMM - 1% worse
 FFT - 10% worse

 Global Benchmarks were generally better
 HPL - 1% worse
 Ptrans - 3% better
 Random access - 5% better
 Latency - 4-5% better
 Bandwidth - about the same
 FFT - 2% better

•Random Ring Latency improvement allowed performance test to
be passed

CUG 2006 - Neil Stringfellow - CSCS

Other CodesOther Codes

•LM Numerical weather prediction code
 The LM_RAPS public version showed an improvement of over

10% on 28 processors
 This was true for low resolution and high resolution cases

 This 10% improvement was also seen with the full aLMo code
used by MeteoSwiss on over 400 processors

•Some slight degradation for dense linear algebra
dominant codes
 Approximately 1-6% degradation on ScaLAPACK routines

CUG 2006 - Neil Stringfellow - CSCS

Molecular Dynamics CodesMolecular Dynamics Codes

•Standard test suite for Orac showed a reduction of 10-
20% in execution time

•Tests from Amber and NAMD showed even higher
reductions up to 40% improvement

•Most of CSCS’ molecular dynamics codes are now run
with the -small_pages option
 Still about 30% of runs are done without the option

•Classical molecular dynamics packages account for
about 15-20% of runtime on the Cray XT3 at CSCS
 Accounting from NAMD, Amber, Orac, DL_POLY, MoldyPSI

CUG 2006 - Neil Stringfellow - CSCS

Another ExampleAnother Example

•Mike Ashworth from Daresbury Laboratory was running
a turbulence code on the XT3 at CSCS
Me: How did your runs go on the XT3 ?
Mike: Here’s a graph (XT3 worst of 3 machines)
Me: Could you rerun with the -small_pages option as I'm

wondering whether this PCHAN could be the first code to
perform worse with small pages

Mike: Sorry, small pages is good for PCHAN as well.

CUG 2006 - Neil Stringfellow - CSCS

PCHAN ImprovementPCHAN Improvement

CUG 2006 - Neil Stringfellow - CSCS

ConclusionsConclusions

•The -small_page option has been an improvement for
many codes on CSCS’ Cray XT3

•Usage of the option has increased and scientific
throughput for many groups has improved

•Many people who use their own codes do not make
use of -small_pages and probably do not try the
option either

•It is important to remember that this is not an issue of
page size but of numbers of TLB entries

CUG 2006 - Neil Stringfellow - CSCS

RecommendationsRecommendations

•The default for small or large pages when yod
launches a job should be a site-configurable default
 In something like /etc/yod.conf
 Needs also a -large_pages option to yod

•Work on Cray supplied numerical libraries should also
be done with both small and large pages
 There might not be many libraries which this should affect
 If Cray ships the Goto BLAS, page size could be significant

•AMD should put a large number of TLB entries for
large pages on the Opteron

CUG 2006 - Neil Stringfellow - CSCS

AcknowledgementsAcknowledgements

•Thanks to Roberto Ansaloni, Maria Grazia Giuffreda,
Claudio Redaelli, Mauro Ballabio, Kevin Roy, Craig
Lucas and Mike Ashworth for providing benchmark
results

•Thanks to Roberto Ansaloni for the initial work in
identifying the problem of high numbers of TLB misses
with the default catamount page size

•Thanks to Roberto Ansaloni and Mario Mattia for
pursuing the need for the -small_pages option within
Cray

