
Scalability of Graph Algorithms on Eldorado

Keith D. Underwood Megan Vance Jonathan Berry
Bruce Hendrickson

Sandia National Laboratories∗

P.O. Box 5800, MS-1110
Albuquerque, NM 87185-1110

{kdunder, mlvance, jberry, bahendr}@sandia.gov

June 1, 2006

Abstract

The Cray MTA-2 system provides exceptional per-
formance on a variety of sparse graph algorithms.
Unfortunately, it was an extremely expensive plat-
form. Cray is preparing an Eldorado platform that
leverages the Cray XT3 network and system in-
frastructure while integrating a new revision of the
MTA-2 processors that is pin compatible with the
AMD Opteron socket. Unlike the MTA-2, this plat-
form will have a more constrained network bisec-
tion bandwidth and will pay a high penalty for ran-
dom memory accesses. This work attempts to as-
sess whether the Eldorado platform will scale and
provide the level of performance that the MTA-2
platform did.

1 Introduction

Algorithms that operate on sparse graph structures
are of particular intrest to the informatics com-
munity. Core algorithms include operations such
as connected components, S-T connectivity, sparse
matrix vector multiplication, and subgraph isomor-
phism (see Graph Software Development and Per-
formance on the MTA-2 and Eldorado by Jonathan
Berry in CUG 2006). These types of algorithms per-
form extremely poorly on the commodity processors
that make up many of todays supercomputers. They
tend to make somewhat random references to data
that is distributed across the entire system. Thus,

∗Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

their performance is dominated by both the latency
of remote accesses and the rate at which those ac-
cesses can occur (message rate).

One architecture that performs extremely well on
these algorithms is the MTA-2. A single 220 MHz
processor on the MTA-2 achieves comparable per-
formance a 3 GHz Pentium-4. More importantly,
because the MTA-2 is designed to provide remote
load/store operations at a high rate and is designed
to tolerate remote latency, it scales dramatically bet-
ter than systems based on commodity microproces-
sors and commodity networks. The downside of the
MTA-2 was that the overall system was extremely
expensive. To address this issue, Cray is introducing
the Eldorado system that places MTA-2 processors
into AMD Opteron sockets and leverages the much
lower cost infrastructure of the Cray XT3 system.

Unfortunately, the aspects of the system that re-
duce the cost also put the performance at risk. The
network cannot provide full bisection bandwidth (a
feature that MTA-2 leverages heavily). The memory
system has changed from one that could sustain full-
rate random accesses to the standard DRAM used
by an AMD Opteron. Eldorado will even include a
cache (of sorts). This combination of changes calls
into question the potential for Eldorado to provide
the same orders of magnitude advantage (at scale)
that the MTA-2 could. This paper presents simu-
lation and analysis that indicate that the Eldorado
platform will perform surprisingly well in the face of
its limitations.

1



2 Methodology

The performance of Eldorado systems is constrained
by a number of interdependent factors. While Cray
has an existing MTA-2 simulator, it does not account
for any of the variables associated with Eldorado and
is not generally available. While it is currently not
possible to simulate all of the factors affecting per-
formance simultaneously, good approximations can
be achieved by simulating some of the factors in-
dependently and unifying the simulations through
analysis. The approach was to analyze some graph
algorithms, simulate the performance implications
of the DRAM subsystem, and simulate the perfor-
mance of the network at 512 nodes.

2.1 “Application” Data

Our first objective was to obtain reliable baseline
data on the behavior of algorithms from the graph
library. Since the Cray MTA-2 simulator was not
available to us, we needed other methods to ob-
tain sufficient data on the behavior of the applica-
tion. The first step was to understand the rate at
which applications make memory references. This
data was obtained from the standard MTA-2 per-
formance tools as the percentage of VLIW instruc-
tions that make a memory reference. While this does
not provide an exact representation of the pattern
of memory access instructions, the percentage (typ-
ically 50% or more) is high enough to imply that a
statistical representation is sufficient.

Knowing the requested memory access rate is in-
sufficient to fully understand the implications of the
architecture for the application. Unlike the MTA-
2, Eldorado is a non-uniform memory architecture
with a much greater penalty for remote accesses (in
terms of both latency and access rate) than for local
accesses. Thus, a second important criteria is the
percentage of those accesses that are local and the
percentage that are remote. Cray instrumented their
simulator to distinguish stack accesses (effectively,
local accesses on the Eldorado platform) from heap
accesses (remote accesses on the Eldorado platform).
It was also necessary to capture the full address trace
to perform some simulations of the eventual cache
architecture. While the stack accesses are not the
only accesses that can be made local on Eldorado,
making other accesses local will require changes to
both the system software and programming model
that cannot be measured on the MTA-2; thus, the
data we have available is used to consider a worst

case, where only the stack accesses are local. How-
ever, there seems to be only very limited scope for
exploiting local memory allocation in graph opera-
tions on highly unstructured graphs.

2.2 Cache Experiments

One of the many aspects of Eldorado that differs
from the MTA-2 is the memory system. Rather than
having memory distributed throughout the fabric
(independent of any node) that can deliver full band-
width with random accesses, Eldorado has a DRAM
attached to each node that has limited random ac-
cess characteristics. To better use this DRAM, Eldo-
rado incorporates a buffer in the memory controller
that is managed as a cache of the local DRAM only.
The performance of this “cache” is critically impor-
tant to the performance of the machine as a whole.

To measure the performance of the cache, mem-
ory access traces were taken from a single processor
on the MTA-2 simulator. Each access in the trace
was flagged as a local (stack) or remote access. It
is expected that numerous threads will execute si-
multaneously on one Eldorado processor. While the
trace from a single processor would certainly cap-
ture numerous threads executing, it is possible that
the relatively small graphs used in the simulation
environment would not lead to full utilization of the
processor. To explore the implications of this possi-
bility, the single processor data was used to gener-
ate multiple threads of access. Measurements were
taken (in powers of 2) for each possibility between
1 and 128 replications. Each replication of the ad-
dresses was offset by a constant value (4999872) from
the previous replicate to prevent the artificial intro-
duction of cache hits. The constant was chosen to
be large, 64 byte aligned, but not 32 KB aligned.
This was done to prevent breaking natural align-
ment without introducing artificial aliasing pressure
on the cache.

Typical codes will have a constraint on the
lookahead that can be exploited. They will also
have a combination of local (stack) and remote
(heap/dataset) accesses. These factors skew the tim-
ing of the threads and pollute the cache with net-
work traffic. Thus, the simulator imposed a looka-
head constraint of 4 on the threads and, for remote
accesses, imposed a statistical remote latency. Si-
multaneously, the cache was exposed to high-rate
random accesses to provide a “polluting” factor.

2



2.3 Network Simulation

The second major factor in Eldorado performance
that differs dramatically from the MTA-2 is the net-
work. While the MTA-2 used a full bisection band-
width modified Cayley graph network, Eldorado uses
the 3D torus network from the Cray XT3. The im-
plications of the torus vary depending on the exact
machine size, but the experiments here assume an
8 × 8 × 8 topology of 512 nodes. Note that this is
not a natural machine size for the Eldorado infras-
tructure, but it is not exceedingly unreasonable to
build.

The simulation of the network performance starts
at the edge of the processor with the HyperTrans-
port (HT) link into the Seastar network chip. The
Eldorado processor will run at 500 MHz, but the HT
link nominally runs with a 2 byte wide per direction,
1.6 GigaTransfer/s rate. Nominally, this provides
3.2 GB/s of bandwidth per direction. Realistically,
this never happens. There are HT packets involved
that impose 8 bytes of overhead per transaction, and
an HT cave on the Seastar that will impose some
overhead. Since our current simulator only permits
clocks that are integer multiples of each other, we
simulated this interface as a 2 byte wide (per direc-
tion) link and explored the parameter space from
0.5 GT/s to 1.5 GT/s. None of the HT rates im-
pacted the results, so the latter was used to prevent
introducing an artificial constraint. Based on our
experience with the Cray XT3 network and our dis-
cussions with Cray, we believe this to be reasonable,
but not exact. The link was simulated with a latency
of 250 ns in one direction.

The router may be one of the most difficult parts
to simulate correctly, but it is also the most crucial.
All of the router queue depths are modeled as are
the approximate latencies moving from one queue
to the next. The queue arbitrations use round-robin
arbitration. In addition, we make the assumption of
a strict X, Y, Z dimension order routing algorithm.
Alternatives, such as the (X+, Y+, Z+), (X-, Y-,
Z-) approach used in the T3E, may provide better
results under some load scenarios. Also, this does
not account for any gains that could be achieved
by the virtual channel spreading used in the T3E
systems or the losses that might occur if a node were
down. Unlike the T3E, adaptive routing was not
available.

The network link itself has a 3.84 GB/s data rate
that is achieved using high speed SERDES. Less
than 3 GB/s is available for actual data transfer be-

cause of the reliability protocol on the link. Due to
limitations in the simulator, the link is modeled as
a 4 GB/s link with overhead added to represent the
impacts of the link protocol. Thus, the link may be
modeled as 9% too slow. The bit error rate (and cor-
responding impact on link bandwidth) is not mod-
eled; however, this is a 10−12 event and should not
be a major factor. Serialization and deserialization
latency is approximately modeled as part of the la-
tency associated with controlling the link, which is
the bulk of the 52 ns router latency.

2.4 Network Traffic Generation

Network traffic was generated using statistical meth-
ods that are designed to match our best understand-
ing of the algorithms analyzed. The nominal request
rate was taken to be the fraction of instructions in-
cluding a memory reference multiplied by the clock
rate of the Eldorado processor. This yielded a sweep
space of 150, 230, 300, and 400 million references
per second. The local versus remote (stack ver-
sus heap) percentages were swept from 10% local
to 80% local, since coding styles can be changed to
increase the amount of local data used. The distribu-
tion of network accesses was assumed to be purely
random. That is, the hash algorithm used to dis-
tribute memory on the MTA-2 processor is assumed
to work and the code is assumed to have no signif-
icant hotspots. Sweeps to determine the impact of
significant hotspots were done by probabilistically
sending a higher fraction of the traffic to a hotspot.

The traffic generated at each node was assumed
to originate from some number of threads running
on the Eldorado processor (32, 64, or 128). Each
thread was assumed to be a stream of random ad-
dresses. Lookahead was imposed on each thread for
lookaheads of 2, 4 and 8. Threads were only sched-
uled if they had sufficient lookahead remaining.

One notable characteristic that was not captured
was the change from a hash on an eight byte bound-
ary to a hash on a 64 byte boundary. To date, we
have not been sufficiently confident in our ability to
assess the locality in the remote reference stream to
create a model of the implied changes in traffic pat-
tern. Realistically, it is possible that no such locality
exists, but we have not been able to confidently de-
clare that either.

3



2.5 Memory Effects on Network Sim-
ulation

Network requests must be serviced by the memory
subsystem on the Eldorado chip. Unfortunately, to
integrate 512 full memory system simulations with
the simulation of the network would have yielded
prohibitive simulation times on a serial simulator.
Thus, network simulations were run with statisti-
cal memory characteristics and swept over several
values. Memory characteristics were determined by
average cache hit rate giving each access a probabil-
ity of hitting the cache. Misses consumed part of a
simulated memory bandwidth and incurred a higher
delay, which was also impacted by contention. Net-
work accesses were assumed to never hit the cache
(and only pollute it) while local accesses were stud-
ied over several cache hit rates.

2.6 Simulation Durations

When simulating the cache and memory subsystem,
entire traces were simulated; however, when simu-
lating a 512 node network, it is necessary to choose
a shorter simulation duration. Given the constant,
uniform, statistical nature of the network traffic gen-
eration, we believe it is reasonable to reach “steady
state” points relatively quickly (in terms of simu-
lated cycles). To define steady state, we monitored
checkpoint dumps for multiple checkpoints. Where
measured network characteristics did not change for
several checkpoints, we declared that to be steady
state. For all constant traffic models, steady state
was reached within 1 million cycles.

3 Results

To set the results of the performance analysis in con-
text, it is useful to first examine the difference be-
tween the MTA-2 and the Eldorado platforms. Ta-
ble 1 lists the access rates for the MTA-2 and Eldo-
rado for comparison. The architectures are different
in numerous ways. The processor clock has gone up
by over a factor of two. The architecture has shifted
from uniform memory access (UMA) to non-uniform
memory access (NUMA) and from full random ac-
cess bandwidth to limited random access bandwidth.
This change brought the introduction of a 128 KB,
4-way set associative cache with 64 byte cache lines.
Finally, the network technology changed and that
changed the relative bisection bandwidth per pro-

cessor from 220 Mref/s to 75 Mref/s. In addition,
bisection bandwidth per processor is linear with the
number of processors on the MTA-2, but decreases
as the system size of the Eldorado grows beyond 512
nodes.

3.1 Application Characteristics

Table 2 presents characteristics measured from sev-
eral graph kernels. Three versions of the con-
nected components kernel are presented: the Bully
algorithm (the best performing algorithm on the
MTA-2), the Kahan algorithm, and the simple al-
gorithm. The S-T connectivity kernel is presented
for the “small” case (less than 30 nodes visited),
the “medium” case (1000-2000 nodes visited), and
the “large” case (at least 10000 nodes visited). The
other two algorithms presented are sparse matrix
vector multiply and subgraph isomorphism.

Two measurements are presented for each algo-
rithm along with three derived metrics that are re-
lated to Eldorado. The first column presents the per-
centage of VLIW instructions that include a memory
reference. The second column is the percentage of
those memory references that go to the stack and,
therefore, will be to local DRAM on Eldorado. The
final three columns translate these characteristics to
an access rate (based on the clock rate of Eldorado)
and break that access rate into two categories: local
and global. Local accesses go to the DRAM directly
and global accesses must use the network interface.

Referring back to Table 1, we can compare the
demands of the applications to the capabilities of
the platform. In the best case, when most accesses
hit the cache, an Eldorado processor can service 500
million memory references per second from the com-
bination of the network and local processor. In the
worst case, when no accesses hit cache, the node
can service 100 million memory references per sec-
ond from the DRAM directly. Given the nature of
the network requests, network requests are highly
unlikely to hit cache and the network could be re-
questing up to 75 million references per second and
that will draw directly from the 100 million refer-
ences per second the DRAM can service. The re-
maining 25 million reference per second plus any
data serviced by the cache must be sufficient for the
local accesses.

Clearly, the network will not be sufficient to sus-
tain most of the codes at maximum rate. What is
slightly more subtle, however, is that it is also pos-
sible for the DRAM to become the limiting factor if

4



Table 1: MTA-2 and Eldorado characteristics
Property MTA-2 Eldorado

Clock 220 MHz 500 MHz
Local Memory Rate (Best) N/A 500 Mref/s

Local Memory Rate (Worst) N/A 100 Mref/s
Data ”Cache” N/A 128 KB, 64B line

Topology Modified-Cayley 3D-Torus
System Size / Simulated Size 40 nodes 512 node (radix-8 torus)

Remote Memory Rate (Net, Best) 220 Mref/s 75 Mref/s
Bisection BW 3.5GB/s× P 15.3GB/s× P 2/3

Table 2: Memory access characteristics of several kernels
Kernel Name % Memory % Stack Access Rate

References Mref/s
Total Global Local

Connected Components: Bully 59 46 295 159 136
Connected Components: Kahan 60 53 300 141 159
Connected Components: Simple 56 49 280 143 137

S-T Connectivity: Small 75 10 375 338 37
S-T Connectivity: Medium 60 28 300 216 84
S-T Connectivity: Large 60 32 300 204 96

Sparse Mat. Vect. 46 53 230 108 122
Subgraph Isomorphism 30 34 150 99 51

5



Table 3: Cache hit rate of several kernels for several
replication degrees

Replications
Kernel Name 64× 16× 4× 1×

CC: Bully 20% 63% 85% 99%
CC: Kahan 13% 52% 79% 92%
CC: Simple 17% 56% 82% 92%

S-T Connectivity 85% 95% 99% 99%
Sparse Mat. Vect. 70% 85% 93% 99.9%

Subgraph Iso. 63% 69% 85% 87%

the cache hit rate is insufficient for local accesses.

3.2 Caching Simulation

Table 3 shows the cache hit rates for each of the
graph kernels under varying degrees of trace repli-
cation. Small, medium, and large cases for the S-T
connectivity kernel could not be easily separated.
Interpretation of this data requires considering two
factors: how busy was the single node simulation
and how busy will the Eldorado node be. Both of
these are factors that are difficult to determine, so
the caching simulation swept over a range of possi-
bilities by replicating the work that was done by the
code in the simulation. For each kernel, the columns
represent the cache hit rate when we assume that El-
dorado will have to be 64× as busy (or 16×, 4×, or
1×) as the MTA-2 simulation was. Using the El-
dorado properties, the application properties, and
the cache hit rates, we can determine whether the
DRAM will be the first bottleneck. For the local
DRAM to be fast enough that it is not the bot-
tleneck, it must be able to service the local node’s
local request rate. If we start by assuming that the
network is consuming 75% of the local DRAM band-
width1, then after subtracting what hits the cache,
the local request rate must be below 25 Mref/s. Ta-
ble 4 shows the number of local DRAM accesses each
kernel would need assuming the cache hit rates in
Table 3.

The data in Table 4 indicates that if Eldorado has
no more than 4× as many threads per nodes as the
MTA-2 simulation, the cache should perform ade-
quately. Higher rates may lead to some limitations
from the DRAM; however, even at 16× replication,
the network is likely to be as limiting or more limit-
ing that the DRAM system.

1Because it is making 75 Mref/s that are uncacheable

Table 4: DRAM access rate (Mref/s) needed
Replications

Kernel Name 64× 16× 4× 1×
CC: Bully 108 50 20 1.3
CC: Kahan 138 76 33 12.7
CC: Simple 94 50 20 9

S-T Connectivity 14 5 1 1
Sparse Mat. Vect. 37 18 9 0.1

Subgraph Iso. 19 16 8 7

0

20

40

60

80

100

50 70 90

Pe
rc

en
t S

er
vic

ed

Percent Hit

150 Mref/s
230 Mref/s
300 Mref/s

Figure 1: Impact of cache hit rate

To clarify the implications of the cache hit rate,
consider the graph in Figure 1. This graph holds the
lookahead constant (8), the local access percentage
constant (60%), and the thread count per proces-
sor constant (64). What varies is the access rate
(the various lines) and the cache hit rate. The met-
ric is the percentage of the desired access rate that
can be serviced. Thus, a value of 50% translates
into a 2× performance hit from ideal. For higher
access rates, the difference in a low cache hit rate
and a high cache hit rate is significant. Despite the
fact that higher access rate applications are predom-
inantly bound by the network bisection bandwidth,
dropping the cache hit rate from 90% to 50% in this
scenario can drop the overall service rate from 56%
to 46% — an 18% drop in overall performance.

3.3 Network Simulation versus Algo-
rithms

A wide range of application configurations were sim-
ulated to produce over 1300 data points for a 512

6



node (8×8×8) system2. For the sake of brevity, this
section presents only those data points in the space
immediately around the current characteristics mea-
sured for the algorithms discussed in this paper. For
each application, we assume the “typical” lookahead
is 4. The typical number of threads per processor
is assumed to be 64, which should generally be a
reasonable number. The access rate, local reference
percentage, and cache hit rate are taken from the ap-
plication measurements above. Unfortunately, the
current analysis was performed on graph kernels us-
ing an MTA-2 programming model and optimized
for an MTA-2 system. The programming model of
Eldorado and optimizations made for Eldorado may
shift any number of these properties. Thus, for each
kernel, the impact of moving along each of two key
planes of interdependent variables is graphed. The
first plane presented is the access rate/local reference
percentage plane to explore the impacts of adding
or removing traffic from the network. The second
plane presented is the lookahead/threads per pro-
cessor plane to explore the impacts of available con-
currency on the results.

3.3.1 General Trends

As discussed earlier, cache hit rate can be critically
important. In cases where the stack percentage was
moderately high, the DRAM reference rate can eas-
ily become the primary bottleneck in the system if
the cache hit rate is insufficient. The definition of
“insufficient” depends on the requested access rate
and the stack percentage, but, as an example, a 50%
hit rate is insufficient when the stack percentage is
50% and the access rate is 230 Mref/s.

Stack percentage controls the point at which the
network bisection bandwidth saturates; thus, it
tends to be the primary bottleneck in the system.
The 230 Mref/s to 300 Mref/s memory instruction
rate means that the typical 50% stack percentage
seen in the graph kernels will directly lead, in and
of itself, to approximately a 2× performance penalty
on the kernels at a system scale of 512 nodes. On a
positive note, this is comparable to the performance
that might be expected from a current MTA-2 sys-
tem. Also, with the right development environment,
many of the algorithms are expected to be able to
achieve a somewhat higher “local” memory percent-
age beyond the current stack memory percentage.

Lookahead and the number of threads per proces-

2Larger systems may experience significantly worse results.

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

270 Mref/s
300 Mref/s
330 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 2: Impacts of (a) changes in global request
rate and (b) changes in concurrency on Connected
Components

sor are tightly coupled parameters. A smaller num-
ber of threads leads to the need for higher lookahead.
Similarly, smaller lookahead requires more threads.
Generally speaking (although certainly not univer-
sally), a lookahead of 4 looks achievable. With a
lookahead of 4, 64 threads generally look sufficient.

3.3.2 Connected Components

For practical purposes, the properties of the three
connected components algorithms are very similar.
About 60% of the instructions reference memory and
about 50% of those are local. That leads to a request
rate for the network of approximately 150 Mref/s
and a local reference rate of about 150 Mref/s for
a total request rate of 300 Mref/s. Given the data
from Table 3, we will assume a cache hit rate of 70%.
Simulations have indicated that the network bisec-

7



tion bandwidth is on the order of 67 Mref/s3, and
so we would expect 44% of the request rate of these
applications to be serviced. That translates into ap-
proximately a 2.3× performance penalty from what
the peak would be. It is also possible that changes to
the system software or the compiler to better exploit
local memory could make a significant difference in
these codes by shifting more of those accesses to the
local memory. As a caveat here, while the “Sim-
ple” connected components algorithm looks better
in the ways that are relevant to scalability on Eldo-
rado, it is less parallel than the “Bully” algorithm
and would not scale. Thus, we feel that Bully is a
better, general-purpose method.

Given that the shift to Eldorado may change some
of the salient features of the graph kernels, we have
explored the implications of increasing or decreasing
the access rate by 10%. We have also explored the
entire spectrum of local percentages for each of these
access rates. The results depicted in Figure 2(a)
are unsurprising. Lowering the memory demands of
the application improves the performance and rais-
ing the memory demands decreases the performance.
The performance delta is of approximately the same
magnitude as the change in memory demands. The
same holds true for moving more of the references
to local memory. To the right of the curve, however,
we can observe that there may be value in increasing
the number of total references if that can be used to
increase the percentage of references that are local.

The impact of concurrency is generally intuitive,
but points out the need to find high levels of con-
currency in the application. That said, 64 threads
per processor with a lookahead of 4 seems to be suf-
ficient to saturate the network. Indeed, providing
significantly more concurrency (128 threads, looka-
head of 8) seems to reduce performance. While this
seems counterintuitive, it appears multiple times in
the simulations. Our best current understanding in-
dicates that this is a real result that is caused by the
extremely non-linear relationship between network
delay and offered load. As the concurrency reaches
its highest level, the processors can offer dramati-
cally more load than the network can accept.

3.3.3 S-T Connectivity

Many of the S-T connectivity scenarios are very
similar to the connected components scenarios from
a perspective of how the kernel uses the machine.

3As noted in the methodology, this number may be up to
10% too low.

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

Figure 3: Impacts of concurrency on S-T Connectiv-
ity (medium)

That is, the memory reference rate is approximately
the same and the percentage of local accesses falls
within the ranges graphed in Figure 2(a); however,
since the concurrency impacts can be slightly dif-
ferent when the local percentage changes, those are
graphed in Figure 3.

In the case graphed in Figure 3, we see a similar
behavior to Figure 2(b). If too much concurrency
is exposed, network performance suffers. That is,
if the offered load to the network is too high, the
network delay grows dramatically. The break points
differ here because the percentage of the memory
request traffic that goes to remote nodes is higher.
Generally speaking, at this level of load, we expect as
much as a 3× performance hit against the theoretical
maximum.

In scenarios where the number of nodes visited
by the S-T connectivity algorithm is small, we see
an extreme example of a poor match to the Eldo-
rado architecture. Approximately 75% of the in-
structions reference memory and approximately 10%
of those are local. In our design space exploration,
we reduced the extreme slightly to an 80% reference
rate with 20% of those being local. That leads to
a request rate for the network of approximately 320
Mref/s and a local reference rate of approximately 80
Mref/s for a total request rate of 400 Mref/s. Given
the data from Table 3, we will assume a cache hit
rate of 90%. Simulations have indicated that the
network bisection bandwidth is on the order of 67
Mref/s, and so we would expect 21% of the request
rate of these applications to be serviced. That trans-
lates into approximately a 5× performance penalty
from what the peak would be.

8



0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

360 Mref/s
400 Mref/s
440 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 4: Impacts of (a) changes in global request
rate and (b) changes in concurrency on S-T Con-
nectivity (small)

The impacts of changes in rate follows similar
trends to what was seen with the connected com-
ponents algorithm; however, the right side of the
curve is even steeper. The impact of concurrency
on this particular example (Figure 4) are virtually
non-existent. The network is so overwhelmed that
reducing concurrency only has an impact at the low-
est level (32 threads, lookahead of 2).

3.3.4 Sparse Matrix Vector Multiply

Sparse matrix vector multiply is one of the particu-
larly good matches between the Eldorado architec-
ture and an algorithm implementation. Only 46%
of the instructions reference memory and over 50%
of those are local. That leads to a request rate for
the network of approximately 108 Mref/s and a lo-
cal reference rate of approximately 122 Mref/s for
a total request rate of 230 Mref/s. Given the data

0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

207 Mref/s
230 Mref/s
253 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 5: Impacts of (a) changes in global request
rate and (b) changes in concurrency on Sparse Ma-
trix Vector Multiply

from Table 3, we will assume a cache hit rate of 90%.
Simulations have indicated that the network bisec-
tion bandwidth is on the order of 67 Mref/s, and so
we would expect over 62% of the request rate of these
applications to be serviced. That translates into a
mere 1.6× performance penalty from what the peak
would be.

The access rate data in Figure 5(a) paints a
promising picture. With an application that is this
well matched to the architecture, relatively small
improvements in the application behavior could
lead to dramatically better application performance.
This is particularly promising given that sparse ma-
trix vector multiply has been successfully imple-
mented on numerous distributed memory architec-
tures. With an Eldorado programming model that
should be amenable to distributed memory tech-
niques, it should be possible to achieve all of the
potential performance on this application.

9



0

20

40

60

80

100

20 30 40 50 60 70 80

Pe
rc

en
t S

er
vic

ed

Local Percentage

135 Mref/s
150 Mref/s
165 Mref/s

(a)

0

20

40

60

80

100

2 3 4 5 6 7 8

Pe
rc

en
t S

er
vic

ed

LookAhead

128 Threads
64 Threads
32 Threads

(b)

Figure 6: Impacts of (a) changes in global request
rate and (b) changes in concurrency on Subgraph
Isomorphism

The concurrency data in Figure 5(b) is also strik-
ingly different from that of the network bound algo-
rithms. When the network is not significantly con-
stricting remote memory requests, the amount of
concurrency exposed becomes critically important.
It is possible to see a factor of 1.5 to 2 difference in
application performance based on the exposed con-
currency.

3.3.5 Subgraph Isomorphism

Subgraph Isomorphism is perhaps the epitome of a
good match to the Eldorado architecture, thanks to
a filtering step which dominates its performance on
our sample data. A mere 30% of the instructions
reference memory, but only 34% of those are local.
Nonetheless, the total request rate is only 150 Mref/s
— the lowest of any of the kernels. This also yields
the lowest network request rate (99 Mref/s) and one

of the lowest local request rates (51 Mref/s). All
of this is accompanied by a cache hit rate of at
least 70%. Together, these translate into an algo-
rithm that should run within 1.5× of the peak per-
formance.

The most promising part of the subgraph isomor-
phism kernel is that it is highly likely that the per-
centage of memory references that are local could be
increased to 60 or 70%, at which point the network
could satisfy most of the requests4. This could be
achieved by moving a single copy of the subgraph to
a “local” memory location that can be accessed by
all the threads running on a given processor.

3.4 Load Imbalance Issues

One of the major concerns with the Eldorado net-
work is the potential for a network interface to be un-
able to consume the traffic it receives at a sufficient
rate. This is a typical network hot spot scenario that
could lead to traffic congestion in the network that
affects the performance of the system as a whole.
Figure 7 depicts results from two experiments that
were used to explore this possibility. The Y-axis is
the same percent serviced used in earlier graphs and
the X-axis is a metric of overload. Percent overload
is the percent of the traffic that is sent to the target
set of nodes beyond their fair share. As an example,
in a 512 node system, each node should send ap-
proximately 0.2% of its traffic to every other node.
If a node has a percent overload of 2 with a tar-
get node set of 2 nodes, it will send approximately
1.2% of its traffic to each of those two nodes and
will reduce the traffic to the other 510 nodes equally.
Figure 7 graphs the impact on the overall average,
the source nodes, the target nodes, and the “other”
nodes (nodes that are neither source nor target).

Figure 7(a) shows the scenario where a group of
8 source nodes send overload to 2 target nodes5 .
This is a “small, bad application” scenario, where
one application runs on a small number of nodes
and behaves badly. We can see that neither the aver-
age nor the non-participating nodes are particularly
affected. Even the source nodes are not dramat-
ically affected until the overload is extreme. The
target nodes even seem to have a slight improve-

4If the simulated network rates do indeed turn out to be
low, this point could be reached with 50% of the memory
references being local.

5Request rate is fixed at 300Mref/s, local percentage at
50%, cache hit percentage at 90%, and lookahead at 4. These
are reasonable application parameters.

10



0

20

40

60

80

100

0 5 10 15 20 25 30 35

Pe
rc

en
t S

er
vic

ed

Percent Overload

Average
Source
Target
Other

(a)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Pe
rc

en
t S

er
vic

ed

Percent Overload

Average
Source
Target

(b)

Figure 7: Impacts of (a) constrained (8-to-2) over-
load and (b) widespread (510-to-2)overload

ment. Clearly, a single, small job is unlikely to have
a particularly detrimental effect on the system as a
whole.

In contrast, Figure 7(b) paints a picture where
510 nodes are sources that send overloads to 2 tar-
get nodes. Even the 0.25% overload scenario shows
a significant degradation. At 0.5% overload, the av-
erage service rate has dropped to only 57% of the
peak service rate. That is a 1.5× performance hit
for an increase of 1 memory reference in 200 going
to a pair of nodes. Clearly, a small network hot spot
in a code running on a 512 node machine can have
dramatic effects.

4 Conclusions

While the Eldorado platform shares many of the
characteristics of the MTA-2 platform, it also has
dramatic differences that create cause for concern

about the overall performance of the platform.
These changes include detrimental changes to the
memory hierarchy and the network topology – the
two most performance critical aspects of the ma-
chine. Simultaneously, the processor performance
(in terms of clock rate) on the Eldorado platform
has been significantly increased.

To assess these concerns, this paper presents simu-
lations of the various components of the system and
ties those results together through analysis. Four al-
gorithms were analyzed and statistically simulated
at 512 nodes to characterize their interaction with
the network and the memory system in Eldorado.
The results were promising in that the limitations
of the network and DRAM do not seem to impose
dramatic constraints on their performance. Two al-
gorithms (subgraph isomorphism and sparse matrix
vector multiply) appear to be capable of achieving
performance that is only 35% below the peak per-
formance of the processors. The connected compo-
nents algorithms and the S-T connectivity algorithm
do not perform as well, but they are still expected
to be within 60-75% of the peak processor perfor-
mance. While this sounds low, it should translate to
performance that is on par with the MTA-2. Thus,
we do not see a particularly severe architectural lim-
itation to the scaling of the Eldorado platform to
512 nodes.

There are many aspects of scalability that ex-
tend beyond just the machine architecture. Issues of
thread creation and thread management along with
a variety of run-time system issues and compiler is-
sues can put scalability at risk. These issues cannot
be directly evaluated for the Eldorado platform and
are important considerations for future work.

11


