
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Analyzing the Scalability of Eldorado

Keith D. Underwood

Megan Vance

presented at CUG 2006 by

Jon Berry

(Discrete Math and Algorithms Dept.)

May 11, 2006

Scalable Computing Systems Dept

Sandia National Laboratories

Motivation

• Graph algorithms perform extremely well on the MTA-2

– Won IC graph benchmarking contest in 2004

– Latency tolerance is key

• The MTA-2 can be “easier” to program for graph

algorithms than using MPI on a distributed memory

machine

– Generic software infrastructures hide some of shared-memory

complexity

– Much easier to handle many classes of input in a generic way

• Graph algorithms are of interest

– Pattern finding in relational data could become a kernel of counter-

terrorism work

Massive Multithreading: The Cray MTA-2

• Slow clock rate (220Mhz)

• 128 “streams” per processor

• Global address space

• Fine-grain synchronization

• Simple, serial-like programming model

• Advanced parallelizing compilers

Latency Tolerant:

important for Graph

Algorithms

No Processor Cache

Hashed Memory

Introduction to Eldorado

• The MTA-2 has amazing performance on graph algorithms,

but doesn’t scale to large enough sizes

• Building a scalable infrastructure is expensive

– Board design, cabinet design, signal integrity work

– Scalable management software infrastructure

• Low cost approach to an MTA-2 successor: leverage the

XT3

– Refresh the MTA-2 design to run at 500MHz

– Put it in an Opteron socket

Primary Changes: Eldorado vs. MTA-2

15.3 GB/s * P2/33.5GB/s * PBisection BW

128 KB, 64 byte linesNoneData “Cache” (DRAM buffer)

100 MW/sNone
Memory Rate

(Worst, Local)

75 MW/s220 MW/s
Memory Rate

(Worst, Remote)

500 MW/s220 MW/sMemory Rate (Best)

Standard DRAM
Full speed

random access
Memory

3D-TorusModified-CayleyTopology

500 MHz220 MHzClock Rate

Eldorado (512 Node)MTA-2

New System Picture

128 Threads

128 bit wide

DDR-400

DRAM

6.4 GB/s peak

Seastar2

3.2 GB/s/direction peak

H

T
H

TDRAM

Buffer

Memory

Controller GAS Support

3D Torus Router

X+ Y+ Z+ Z-X- Y-

3.8 GB/s/direction peak

Major Question: Will Eldorado still Scale?

• Every change to the hardware could have a negative impact

on performance for graph algorithms

– New memory system has poor random access characteristics

– The network is not designed for an MTA-2 processor (reduced relative

bisection bandwidth)

– Graph codes are not traditionally cache friendly – may not be DRAM

buffer friendly

• Potential new bottlenecks

– If the “buffer” does not work, a DRAM will not feed a processor

– The per processor network bisection bandwidth shrinks with scale

– The relative network latency is much higher and will go up under load

Start with Graph Kernels

• Connected components

– Kahan’s three phase algorithm

– The “bully” algorithm

• Subgraph Isomorphism

– Compound type filtering

– SNL walk heuristic

• S-T Connectivity

– Bi-directional BFS

Measure and then Simulate

• We do not have a full system simulator, but we can

simulate the pieces

• Measure the graph kernels

– How often do they access memory?

– How much of that is local/remote?

• Simulate the DRAM buffer

– Will the DRAM buffer hit rate be sufficient?

– What are the impacts of network traffic pollution?

• Simulate the network

– How will the network respond under load?

– Where will the limitations arise?

Application Measurements

1361592954659Connected Comp: Bully

LocalGlobalTotal

51991503430Subgraph Isomorphism

1221082305346Sparse Matrix Vector

962043003260S-T Connectivity: Large

842163002860S-T Connectivity: Medium

373383751075S-T Connectivity: Small

1131172304956Connected Comp: Simple

1591413005360Connected Comp: Kahan

Access Rate (Mref/s)
% Stack

% Memory

References
MTGL Kernel

DRAM Buffer Simulation Approach

• Gather traces from MTA-2 “Zebra” simulator

– Cray collected traces from each kernel

– Traces represent “1 processor” of data

• Replicate traces as needed

– Single processor trace may not be representative of real

work load

– More threads may be needed in Eldorado

– Traces were assumed to be representative of “some threads”

• Create as realistic of an environment as possible

– Polluting traffic from the network

– Interleaved requests to the network that were constrained by

lookahead

DRAM Buffer Simulation Results:

DRAM Buffer Hit Rate

87%85%69%63%Subgraph Isomorphism

99.9%93%85%70%Sparse Matrix Vector

99%99%95%85%S-T Connectivity

92%82%56%17%Connected Comp: Simple

92%79%52%13%Connected Comp: Kahan

99%85%63%20%Connected Comp: Bully

1X4X16X64X

Replications

MTGL Kernel

Why the DRAM Buffer Matters

• The network is going to be a bottleneck

– It may deliver 75 Mref/s, but will still be the constraint

– If it delivers 75 Mref/s, it will take 75 Mref/s from the DRAM

– The DRAM only delivers 100 Mref/s

• Only 25 Mref/s are left for the node

– That is, if you don’t want the DRAM to be a constraint

– All of the codes require more than this

– Anything more it steals from the network

Implications of DRAM Buffer Results:

Mref/s Needed from DRAM

781619Subgraph Isomorphism

0.191837Sparse Matrix Vector

11514S-T Connectivity

9205094
Connected Comp:

Simple

12.73376138
Connected Comp:

Kahan

1.32050108Connected Comp: Bully

1X4X16X64X

Replications

MTGL Kernel

Network Simulation Approach

• Build a hybrid (cycle based/discrete event)

simulation model of the router

– Capture as many parameters as possible while maintaining
a rational execution time

– Capture cycle level details of arbitration

• Drive the network with a statistical model of an

Eldorado processor

– Subject the statistical model to Eldorado constraints

– Sweep over parameters of relevance: access rate, local
percentage, lookahead, number of threads, DRAM buffer
hit rate

– Currently over 1500 points in that space

Parameter Definitions

• Access Rate: percentage of instructions that access memory

times the processor clock rate (500 MHz)

• Local Percentage: percentage of instructions that access

local DRAM rather than the network

• LookAhead: number of instructions between issuing a load

and needing the result of the load

• Number of threads: simultaneous number of threads

assumed per processor

• DRAM buffer hit rate: assumed success of the DRAM

buffer

LookAhead and Thread Impacts:

Sustained Memory Reference Rate

2
4

8
32

64

128

0

20

40

60

80

100

120

140

M
re

f/
s

LookAhead

Threads

0-20 20-40 40-60 60-80 80-100 100-120 120-140

LookAhead and Thread Impacts:

Parallel Efficiency

2

4

8

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

P
a

ra
ll

e
l

E
ff

ic
ie

n
c

y

LookAhead

Threads

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6

Local Percentage and Hit Rate Impacts:

Parallel Efficiency

20
30

40
50

60 70
80

50
70

90

0
0.1
0.2
0.3

0.4
0.5
0.6

0.7

0.8

0.9

1

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Local Percentage

Hit

%

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7

0.7-0.8 0.8-0.9 0.9-1

May be possible

with sub. iso. if

user can alloc local

mem

Hot Spot Memory Rate Impacts: Few to Few

S
o

u
rc

e

T
a

rg
e

t

O
th

e
r

1
2

4
8

16
32

60

70

80

90

100

110

120

130
M

re
f/

s

Group Overload Percent

60-70 70-80 80-90 90-100

100-110 110-120 120-130

Hot Spot Memory Rate Impacts: All to Few

Source

Target

0
0.25

0.5
1

2
4

0
10
20
30
40
50
60
70
80
90
100
110

Mref/s

Overload

0-10 10-20 20-30 30-40 40-50 50-60

60-70 70-80 80-90 90-100 100-110

Implications for Graph Kernels

• S-T Connectivity

– Currently looks to be the worst scaling of the bunch

– Particularly bad if not visiting many nodes

– Short execution time means one instance would not scale

anyway

– Most impacted by difference between MTA-2 and Eldorado

• Connected Components

– “Bully” algorithm is best performing on MTA-2, should be

best performing on Eldorado

– Per node performance should be comparable between MTA-2

and Eldorado

Implications for Graph Kernels

• Subgraph Isomorphism and Sparse Matrix Vector Multiply

are the poster children for “codes that should scale”

– Both have good “work to memory access” ratios

– Both have Eldorado friendly global access rates

– Both are very DRAM buffer friendly (regardless of the number of threads

per processor)

– Both could benefit from Eldorado specific optimization

• Subgraph Isomorphism could use a “local copy of the

subgraph” to shift from global to local accesses

• Sparse Matrix Vector Multiply could apply some distributed

memory techniques to move more accesses locally

Optimizing for Eldorado

• Results paint a worst case scenario because the

software was optimized for MTA-2

• Applications could become local memory aware

– MTA-2 had no exploitable locality, but Eldorado apps

could attempt to exploit local buffer

• Compiler optimizations could differ

– Register spill/fill avoided “at all cost”, but cheap on

Eldorado (may be able to reduce remote loads)

– Instruction ordering could consider stack to be “closer” to

increase LookAhead for remote accesses

• Apps will need to become more hotspot aware

Conclusions

• Graph algorithms are demanding in terms of mem. reference

– The make more memory references (50-80%) and more of them go to the

network (50%)

– But, this is worst case scenario (not optimized for Eldorado)

• Graph algorithms should still scale well

– Not as well as the MTA-2, but better than any other platform

– DRAM buffer should perform well under this usage model

– Network performance is within a factor of 2 or 3 of “enough”

– Hotspots are bad, but not as bad as they could have been

• Eldorado will be the fastest graph machine available

