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Motivation

• Graph algorithms perform extremely well on the MTA-2

– Won IC graph benchmarking contest in 2004

– Latency tolerance is key

• The MTA-2 can be “easier” to program for graph 

algorithms than using MPI on a distributed memory 

machine

– Generic software infrastructures hide some of shared-memory 

complexity

– Much easier to handle many classes of input in a generic way

• Graph algorithms are of interest

– Pattern finding in relational data could become a kernel of counter-

terrorism work



Massive Multithreading: The Cray MTA-2

• Slow clock rate (220Mhz)

• 128 “streams” per processor

• Global address space

• Fine-grain synchronization

• Simple, serial-like programming model

• Advanced parallelizing compilers

Latency Tolerant:

important for Graph 

Algorithms

No Processor Cache

Hashed Memory



Introduction to Eldorado

• The MTA-2 has amazing performance on graph algorithms, 

but doesn’t scale to large enough sizes

• Building a scalable infrastructure is expensive

– Board design, cabinet design, signal integrity work

– Scalable management software infrastructure

• Low cost approach to an MTA-2 successor: leverage the 

XT3

– Refresh the MTA-2 design to run at 500MHz

– Put it in an Opteron socket



Primary Changes: Eldorado vs. MTA-2
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New System Picture
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Major Question:  Will Eldorado still Scale?

• Every change to the hardware could have a negative impact 

on performance for graph algorithms

– New memory system has poor random access characteristics

– The network is not designed for an MTA-2 processor (reduced relative 

bisection bandwidth)

– Graph codes are not traditionally cache friendly – may not be DRAM 

buffer friendly

• Potential new bottlenecks

– If the “buffer” does not work, a DRAM will not feed a processor

– The per processor network bisection bandwidth shrinks with scale

– The relative network latency is much higher and will go up under load



Start with Graph Kernels

• Connected components

– Kahan’s three phase algorithm

– The “bully” algorithm

• Subgraph Isomorphism

– Compound type filtering

– SNL walk heuristic

• S-T Connectivity

– Bi-directional BFS 



Measure and then Simulate

• We do not have a full system simulator, but we can 

simulate the pieces

• Measure the graph kernels

– How often do they access memory?

– How much of that is local/remote?

• Simulate the DRAM buffer

– Will the DRAM buffer hit rate be sufficient?

– What are the impacts of network traffic pollution?

• Simulate the network

– How will the network respond under load?

– Where will the limitations arise?



Application Measurements
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DRAM Buffer Simulation Approach

• Gather traces from MTA-2 “Zebra” simulator

– Cray collected traces from each kernel

– Traces represent “1 processor” of data

• Replicate traces as needed

– Single processor trace may not be representative of real 

work load

– More threads may be needed in Eldorado

– Traces were assumed to be representative of “some threads”

• Create as realistic of an environment as possible

– Polluting traffic from the network

– Interleaved requests to the network that were constrained by 

lookahead



DRAM Buffer Simulation Results: 

DRAM Buffer Hit Rate
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Why the DRAM Buffer Matters

• The network is going to be a bottleneck

– It may deliver 75 Mref/s, but will still be the constraint

– If it delivers 75 Mref/s, it will take 75 Mref/s from the DRAM

– The DRAM only delivers 100 Mref/s

• Only 25 Mref/s are left for the node

– That is, if you don’t want the DRAM to be a constraint

– All of the codes require more than this

– Anything more it steals from the network



Implications of DRAM Buffer Results: 

Mref/s Needed from DRAM
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Network Simulation Approach

• Build a hybrid (cycle based/discrete event) 

simulation model of the router

– Capture as many parameters as possible while maintaining 
a rational execution time

– Capture cycle level details of arbitration

• Drive the network with a statistical model of an 

Eldorado processor

– Subject the statistical model to Eldorado constraints

– Sweep over parameters of relevance: access rate, local 
percentage, lookahead, number of threads, DRAM buffer 
hit rate

– Currently over 1500 points in that space



Parameter Definitions

• Access Rate:  percentage of instructions that access memory 

times the processor clock rate (500 MHz)

• Local Percentage:  percentage of instructions that access 

local DRAM rather than the network

• LookAhead:  number of instructions between issuing a load 

and needing the result of the load

• Number of threads:  simultaneous number of threads 

assumed per processor

• DRAM buffer hit rate: assumed success of the DRAM 

buffer



LookAhead and Thread Impacts: 

Sustained Memory Reference Rate
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LookAhead and Thread Impacts:

Parallel Efficiency
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Local Percentage and Hit Rate Impacts:

Parallel Efficiency
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Hot Spot Memory Rate Impacts: Few to Few
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Hot Spot Memory Rate Impacts: All to Few
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Implications for Graph Kernels

• S-T Connectivity

– Currently looks to be the worst scaling of the bunch 

– Particularly bad if not visiting many nodes

– Short execution time means one instance would not scale 

anyway

– Most impacted by difference between MTA-2 and Eldorado

• Connected Components

– “Bully” algorithm is best performing on MTA-2, should be 

best performing on Eldorado

– Per node performance should be comparable between MTA-2 

and Eldorado



Implications for Graph Kernels

• Subgraph Isomorphism and Sparse Matrix Vector Multiply 

are the poster children for “codes that should scale”

– Both have good “work to memory access” ratios

– Both have Eldorado friendly global access rates

– Both are very DRAM buffer friendly (regardless of the number of threads 

per processor)

– Both could benefit from Eldorado specific optimization

• Subgraph Isomorphism could use a “local copy of the 

subgraph” to shift from global to local accesses

• Sparse Matrix Vector Multiply could apply some distributed 

memory techniques to move more accesses locally



Optimizing for Eldorado

• Results paint a worst case scenario because the 

software was optimized for MTA-2

• Applications could become local memory aware

– MTA-2 had no exploitable locality, but Eldorado apps 

could attempt to exploit local buffer

• Compiler optimizations could differ

– Register spill/fill avoided “at all cost”, but cheap on 

Eldorado (may be able to reduce remote loads)

– Instruction ordering could consider stack to be “closer” to 

increase LookAhead for remote accesses

• Apps will need to become more hotspot aware



Conclusions

• Graph algorithms are demanding in terms of mem. reference

– The make more memory references (50-80%) and more of them go to the 

network (50%)

– But, this is worst case scenario (not optimized for Eldorado)

• Graph algorithms should still scale well

– Not as well as the MTA-2, but better than any other platform

– DRAM buffer should perform well under this usage model

– Network performance is within a factor of 2 or 3 of “enough”

– Hotspots are bad, but not as bad as they could have been

• Eldorado will be the fastest graph machine available




