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ABSTRACT: CTH is a widely used shock hydrodynamics code developed at Sandia.  
We will investigate scaling on Red Storm to 10000 processors and will use those results 
to compare with an execution time model of the code.  
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1. Introduction 
In this paper, we will investigate the scaling of CTH 

on Sandia’s Red Storm computer.  Red Storm is a CRAY 
XT3 with 10368 processors that are connected in a 27 x 
16 x 24 mesh.  The mesh is a torus in the z direction.  The 
processors are 2.0 GHz. 

 
CTH is an explicit, three-dimensional, multimaterial 

shock hydrodynamics code which has been developed at 
Sandia for serial and parallel computers.  It is designed to 
model a large variety of two- and three-dimensional 
problems involving high-speed hydrodynamic flow and 
the dynamic deformation of solid materials, and includes 
several equations of state and material strength models 
[1]. 

 
The numerical algorithms used in CTH solve the 

equations of mass, momentum, and energy in an Eulerian 
finite difference formulation on a three-dimensional 
Cartesian mesh.  CTH can be used in either a flat mesh 
mode where the faces of adjacent cells are coincident or 
in a mode with Automatic Mesh Refinement (AMR) 
where the mesh can be finer in areas of the problem 
where there is more activity.  We will be using the code 
in a flat mesh mode for this study. 

 
For this study, we will be using a shaped-charge 

problem that scales with the number of processors.  The 
shaped-charge consists of a cylindrical container filled 
with high explosive capped with a copper liner.  When 

the explosive is detonated from the center of the back of 
the container, the liner collapses and forms a jet.  This is 
illustrated in Figure 1.  The problem is run in quarter 
symmetry, while the image is reflected across the axis to 
give a full view of the problem.  The time 0 image shows 
the initial state of the problem, while the image at 0.3 ms 
shows the formation of the jet.  The colors in the 
explosive in the image at 0.3 ms indicate pressure. The 
simulation consists of those three materials and a fourth 
material that forms a target for the jet.  The target is not 
shown in Figure 1. 

 
 

 

 
                 0.0 ms                                0.30 ms 

Figure 1: Shaped-charge problem at two times 

2.  Results from Red Storm 
We ran CTH with the shaped-charge problem on 

several numbers of processors up to 10360 processors.  
The results are shown in Table 1.  The time in the table is 
in seconds. 
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Number of 
Processors 

Time per Time 
Step 

% Efficiency 

1 11.83 100.0 
2 14.23 83.1 
4 14.86 79.6 
8 17.17 68.9 

16 17.49 67.6 
32 18.70 63.2 
64 18.86 62.7 

128 19.73 59.9 
256 19.86 59.6 
512 21.95 53.9 

1024 22.01 53.7 
2048 22.16 53.4 
4096 22.10 53.5 
8192 24.69 47.9 

10360 22.26 53.1 
 

Table 1: CTH results from the shaped-charge problem. 
 
The time per time step was determined by taking an 

average of the time for the first 100 time steps.  The 
problem is scaled so that each processor could have a 90 
x 216 x 90 grid of cells.  The code may distribute the cells 
differently since it seeks to make the processor domains 
as cubic as possible. If the code had scaled perfectly, then 
the time per time step would remain constant since each 
processor has the same amount of work.  The efficiency is 
the time on one processor divided by the time on multiple 
processors and reflects the departure from ideal scaling.  
These inefficiencies are the result of the necessary 
interprocessor communications as well as the load 
imbalance between the processors. 

 
For a flat mesh CTH problem, the problem space is 

divided into a rectilinear grid of computational cells.  The 
simulation variables, such as pressure and temperature, 
are stored in three-dimensional arrays and are updated a 
k-plane at a time.  To update these variables may require 
the values of variables in the 26 neighboring cells, so 
some subroutines will operate on three k-planes at once. 

 
Each processor’s domain is a rectilinear subgrid of 

this global grid and includes a layer of ghost cells on each 
face which contains grid information from neighboring 
processors.  The processors are also arranged in a grid so 
that any two processors that share a face share the whole 
face and only have each other to exchange that 
information with.  At several points during each time 
step, each processor takes updated information from its 
outermost layer of real cells and sends it to neighboring 
processors which put that information into their ghost 
cells.  Corner cases are handled since a processor only 
communicates in one direction at a time and 
communicates the ghost cells that are contained in the 
plane of real cells that it is exchanging.  After an 

exchange in all three directions, the corner ghost cells will 
contain data from the processor on the diagonal without 
communicating directly with that processor.  There are 
also times in the time step, such as determining the size of 
the next time step, where a global reduction is done. 

 
The number of processors that a processor needs to 

exchange information with varies with the number of 
processors in the simulation.  Given that the processors 
are arranged in a grid, each processor can communicate 
with 0, 1, or 2 processors in each direction.  For this 
simulation, some processors will communicate with 2 
processors in each direction starting at 128 processors. 
After that point the time per time step flattens out. 

3. A Model of CTH 
The model that we are using for CTH timing is taken 

from [2].  In general, the computational complexity for 
each time step is O(N3) where N is the length of one edge 
of a subdomain assigned to a processor.  The 
communication complexity is O(N2) + O(log(P)), where P 
is the number of processors used in the simulation.  The 
total run time is the sum of the times for the 
computational and communication phases since the code 
does not overlap communication and computation.  In 
equation 1, T represents the run time for a single time 
step. 

 
T = E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P))             (1) 
 
In this model, λ and τ denote the communication 

latency and transfer cost.  The ghost cell data exchanges 
occur in parallel and are point-to-point communications 
between logical nearest neighbors.  The count of 
exchanges, C, depends on the problem, the dimensionality 
of the problem, and the number of processors that the 
simulation is run on.  The number of variables in any 
exchange, k, also depends upon the simulation.  For this 
simulation, k = 40.  The cost of collective operations is 
O(log(P)).  The number of collectives per time step is S 
and γ is the cost of transfer of a double precision number 
along a leg of the communication tree. 

 
The time for a calculation in a cell is E(κ,φ), a 

function of the number of floating-point operations per 
cell, κ, and the effective floating-point computational rate, 
φ.  Since a typical CTH simulation will have regions of 
high activity as well as cells with differing numbers of 
materials, the operation counts per cell can vary widely 
across the domain.  The operation count per cell will also 
depend on the equation of state and response models for 
the materials in the cell.   
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4. Application of the Model to the Simulation 
We have instrumented the code to determine the 

message types and counts.  For this simulation, there are 
58 locations where ghost cell data can be exchanged.  
Since the number of exchanges varies with the number of 
neighbors that a processor has, some of those exchanges 
will not occur and the others will exchange data with 1 or 
2 other processors.  For example, the two processor 
simulation has 22 exchanges per time step while the 128 
processor simulation has 117 exchanges per time step.  
Given the size of the grid on each processor for this 
simulation, each processor is sending an average of about 
600,000 double precision numbers per exchange. 

 
Every place in the code where the processors could 

exchange ghost cell data contains a collective operation 
and there 31 other collective operations for this 
simulation for a total of 89 collective operations per time 
step. 

 
We used the Pallas Benchmark to determine the 

communication parameters.  Since CTH uses data 
exchanges, we used the PingPing benchmark to determine 
that λ = 8.3µs and τ = 0.00102 µs/byte or 0.00816 µs per 
double precision number.  From the AllReduce 
benchmark, γ = 10.5 µs per double precision reduce. 

 
Given these parameters and the average message size 

of about 600,000 double precision numbers, each 
message should take about 4.9 ms to be transmitted.  
Since the latency for a message is about 8.3 µs, this 
would seem to indicate that the code should be fairly 
insensitive to latency. 

 
Using the communication parameters in equation 1, 

and using the time on one processor for the computational 
time on multiple processors, the predicted execution time 
varies from 11.94 seconds on 2 processors to 12.41 
seconds on 10360 processors.  Clearly, the execution time 
model does not account for the additional time for 
running on multiple processors. 

 
One portion of CTH that is not included in this model 

is the code that prepares messages for communication and 
distributes the message contents once those are received.  
As the code goes through processing k-planes, it 
assembles the messages that need to be exchanged.  Only 
the data for the messages in the z direction is continuous 
in memory, but even that data gets copied to combine the 
data for all of the variables that need to be communicated.  
There is also some amount of computation that is 
involved in assembling the message to be sent and 
distributing the data from the message once it is received.  
CTH also copies the data into a collected MPI datatype, 
since that is needed for the AMR mode of the code. 

 
Another explanation for the difference in the 

predicted time versus the actual time is the load 
imbalance in the problem.  Since the shaped-charge 
problem starts out with a fairly localized area of high 
activity, once the problem is distributed onto multiple 
processors, some processors will be more active while 
others will be less active.   

5. Comparison with Profiling 
We also used CrayPat to profile CTH on several 

problem sizes to compare with the model.  We were not 
able to profile the entire code due to the current 
limitations of CrayPat, so we only profiled the MPI calls.  
We ran each simulation twice, once for 105 time steps 
and once for 5 time steps and subtracted the quantities for 
the two runs and divided by 100 to get values for an 
average time step and to disregard the startup and ending 
cost for the simulation.  

 
We found that the volume of message traffic is 

consistent with the number and length of messages 
predicted in the model.  Furthermore, the amount of time 
reported having been spent in the combination of the 
MPI_Send and MPI_Recv calls is about a factor of 2 
larger than the model predicts.  Part of that may be due to 
difference between the MPI calls that CTH uses versus 
the MPI calls that the Pallas benchmark uses.  There may 
also be some contention in the mesh since the processors 
are sending large messages to logical neighbors in the 
grid of processors which may not be close in the machine.  
The Pallas benchmark uses only two processors to 
benchmark the performance. 

 
We also found that the number of collective 

operations reported in the profiles to be consistent with 
the model of the code.  The time reported for these 
collective operations is quite a bit more than the model 
predicts.  The time difference is large enough that it 
would seem to be an indication of the load imbalance 
present in the problem instead of a difference in how the 
benchmark measures the time for collective operations 
and how the code uses those operations. 

 
For example, on 32 processors, the model predicts 

that the collective operations should take about 4.7 ms per 
time step, while the profile shows that they take up to 
about 4.8 seconds per time step.  Taking this difference 
plus the difference between the times for the model and 
profiling for the exchange operations (about 0.5 seconds) 
accounts for over 80% of the difference between the 
predicted time and the actual time.  The remaining second 
of difference is probably due to the extra computations 
that CTH has to do to support multiple processors.  We 
have seen similar amounts of time being spent in 
exchanges and collectives with a corresponding 
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difference from the model on other simulations on 
different numbers of processors. 

 
We also found through the profiling that there were 

some calls to miscellaneous MPI calls, such as a 
broadcast each time step to tell the processors if there had 
been a command from the operator to shutdown the code.  
These are not in the model, but take little enough time 
that they do not significantly affect the run time of the 
code. 

6. Summary 
We have run a weak scaling study using CTH on up 

to 10360 processors on Red Storm and then modeled the 
results.  While the model was not completely accurate, we 
were able to learn things about the code through this 
modeling effort.   

 
Through profiling, we found that we were able to 

correctly predict the volume and types of communication 
that occur in the code.  We were able to get close to the 
time required for the data exchange operations, but need 
to get better understanding of the amount of load 
imbalance the occurs in the code. 

 
We are planning to repeat this experiment with a 

problem that exhibits better load balance to see if we are 
better able to predict the run time.  The version of CTH 
that we were using for this study is a three year old 
version of the code and we would like to repeat this 
experiment with a current version of the code since 
performance enhancements have been put into the code.  
This will also help us to impact the performance of this 
widely used code.  After that we would also like to work 
at modeling the code while it is being used in AMR 
mode, since that is how the code is used much of the time. 
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