

CUG 2006 Proceedings 1 of 4

Analysis of an Application on Red Storm

Courtenay T. Vaughan and Sue P. Goudy, Sandia
National Laboratories1

ABSTRACT: CTH is a widely used shock hydrodynamics code developed at Sandia.
We will investigate scaling on Red Storm to 10000 processors and will use those results
to compare with an execution time model of the code.

KEYWORDS: Red Storm, XT3, CTH, performance modeling

1 This research was sponsored by Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

1. Introduction
In this paper, we will investigate the scaling of CTH

on Sandia’s Red Storm computer. Red Storm is a CRAY
XT3 with 10368 processors that are connected in a 27 x
16 x 24 mesh. The mesh is a torus in the z direction. The
processors are 2.0 GHz.

CTH is an explicit, three-dimensional, multimaterial

shock hydrodynamics code which has been developed at
Sandia for serial and parallel computers. It is designed to
model a large variety of two- and three-dimensional
problems involving high-speed hydrodynamic flow and
the dynamic deformation of solid materials, and includes
several equations of state and material strength models
[1].

The numerical algorithms used in CTH solve the

equations of mass, momentum, and energy in an Eulerian
finite difference formulation on a three-dimensional
Cartesian mesh. CTH can be used in either a flat mesh
mode where the faces of adjacent cells are coincident or
in a mode with Automatic Mesh Refinement (AMR)
where the mesh can be finer in areas of the problem
where there is more activity. We will be using the code
in a flat mesh mode for this study.

For this study, we will be using a shaped-charge

problem that scales with the number of processors. The
shaped-charge consists of a cylindrical container filled
with high explosive capped with a copper liner. When

the explosive is detonated from the center of the back of
the container, the liner collapses and forms a jet. This is
illustrated in Figure 1. The problem is run in quarter
symmetry, while the image is reflected across the axis to
give a full view of the problem. The time 0 image shows
the initial state of the problem, while the image at 0.3 ms
shows the formation of the jet. The colors in the
explosive in the image at 0.3 ms indicate pressure. The
simulation consists of those three materials and a fourth
material that forms a target for the jet. The target is not
shown in Figure 1.

 0.0 ms 0.30 ms

Figure 1: Shaped-charge problem at two times

2. Results from Red Storm
We ran CTH with the shaped-charge problem on

several numbers of processors up to 10360 processors.
The results are shown in Table 1. The time in the table is
in seconds.

CUG 2006 Proceedings 2 of 4

Number of
Processors

Time per Time
Step

% Efficiency

1 11.83 100.0
2 14.23 83.1
4 14.86 79.6
8 17.17 68.9

16 17.49 67.6
32 18.70 63.2
64 18.86 62.7

128 19.73 59.9
256 19.86 59.6
512 21.95 53.9

1024 22.01 53.7
2048 22.16 53.4
4096 22.10 53.5
8192 24.69 47.9

10360 22.26 53.1

Table 1: CTH results from the shaped-charge problem.

The time per time step was determined by taking an

average of the time for the first 100 time steps. The
problem is scaled so that each processor could have a 90
x 216 x 90 grid of cells. The code may distribute the cells
differently since it seeks to make the processor domains
as cubic as possible. If the code had scaled perfectly, then
the time per time step would remain constant since each
processor has the same amount of work. The efficiency is
the time on one processor divided by the time on multiple
processors and reflects the departure from ideal scaling.
These inefficiencies are the result of the necessary
interprocessor communications as well as the load
imbalance between the processors.

For a flat mesh CTH problem, the problem space is

divided into a rectilinear grid of computational cells. The
simulation variables, such as pressure and temperature,
are stored in three-dimensional arrays and are updated a
k-plane at a time. To update these variables may require
the values of variables in the 26 neighboring cells, so
some subroutines will operate on three k-planes at once.

Each processor’s domain is a rectilinear subgrid of

this global grid and includes a layer of ghost cells on each
face which contains grid information from neighboring
processors. The processors are also arranged in a grid so
that any two processors that share a face share the whole
face and only have each other to exchange that
information with. At several points during each time
step, each processor takes updated information from its
outermost layer of real cells and sends it to neighboring
processors which put that information into their ghost
cells. Corner cases are handled since a processor only
communicates in one direction at a time and
communicates the ghost cells that are contained in the
plane of real cells that it is exchanging. After an

exchange in all three directions, the corner ghost cells will
contain data from the processor on the diagonal without
communicating directly with that processor. There are
also times in the time step, such as determining the size of
the next time step, where a global reduction is done.

The number of processors that a processor needs to

exchange information with varies with the number of
processors in the simulation. Given that the processors
are arranged in a grid, each processor can communicate
with 0, 1, or 2 processors in each direction. For this
simulation, some processors will communicate with 2
processors in each direction starting at 128 processors.
After that point the time per time step flattens out.

3. A Model of CTH
The model that we are using for CTH timing is taken

from [2]. In general, the computational complexity for
each time step is O(N3) where N is the length of one edge
of a subdomain assigned to a processor. The
communication complexity is O(N2) + O(log(P)), where P
is the number of processors used in the simulation. The
total run time is the sum of the times for the
computational and communication phases since the code
does not overlap communication and computation. In
equation 1, T represents the run time for a single time
step.

T = E(κ,φ)N3 + C(λ + τkN2) + S(γ log(P)) (1)

In this model, λ and τ denote the communication

latency and transfer cost. The ghost cell data exchanges
occur in parallel and are point-to-point communications
between logical nearest neighbors. The count of
exchanges, C, depends on the problem, the dimensionality
of the problem, and the number of processors that the
simulation is run on. The number of variables in any
exchange, k, also depends upon the simulation. For this
simulation, k = 40. The cost of collective operations is
O(log(P)). The number of collectives per time step is S
and γ is the cost of transfer of a double precision number
along a leg of the communication tree.

The time for a calculation in a cell is E(κ,φ), a

function of the number of floating-point operations per
cell, κ, and the effective floating-point computational rate,
φ. Since a typical CTH simulation will have regions of
high activity as well as cells with differing numbers of
materials, the operation counts per cell can vary widely
across the domain. The operation count per cell will also
depend on the equation of state and response models for
the materials in the cell.

CUG 2006 Proceedings 3 of 4

4. Application of the Model to the Simulation
We have instrumented the code to determine the

message types and counts. For this simulation, there are
58 locations where ghost cell data can be exchanged.
Since the number of exchanges varies with the number of
neighbors that a processor has, some of those exchanges
will not occur and the others will exchange data with 1 or
2 other processors. For example, the two processor
simulation has 22 exchanges per time step while the 128
processor simulation has 117 exchanges per time step.
Given the size of the grid on each processor for this
simulation, each processor is sending an average of about
600,000 double precision numbers per exchange.

Every place in the code where the processors could

exchange ghost cell data contains a collective operation
and there 31 other collective operations for this
simulation for a total of 89 collective operations per time
step.

We used the Pallas Benchmark to determine the

communication parameters. Since CTH uses data
exchanges, we used the PingPing benchmark to determine
that λ = 8.3µs and τ = 0.00102 µs/byte or 0.00816 µs per
double precision number. From the AllReduce
benchmark, γ = 10.5 µs per double precision reduce.

Given these parameters and the average message size

of about 600,000 double precision numbers, each
message should take about 4.9 ms to be transmitted.
Since the latency for a message is about 8.3 µs, this
would seem to indicate that the code should be fairly
insensitive to latency.

Using the communication parameters in equation 1,

and using the time on one processor for the computational
time on multiple processors, the predicted execution time
varies from 11.94 seconds on 2 processors to 12.41
seconds on 10360 processors. Clearly, the execution time
model does not account for the additional time for
running on multiple processors.

One portion of CTH that is not included in this model

is the code that prepares messages for communication and
distributes the message contents once those are received.
As the code goes through processing k-planes, it
assembles the messages that need to be exchanged. Only
the data for the messages in the z direction is continuous
in memory, but even that data gets copied to combine the
data for all of the variables that need to be communicated.
There is also some amount of computation that is
involved in assembling the message to be sent and
distributing the data from the message once it is received.
CTH also copies the data into a collected MPI datatype,
since that is needed for the AMR mode of the code.

Another explanation for the difference in the

predicted time versus the actual time is the load
imbalance in the problem. Since the shaped-charge
problem starts out with a fairly localized area of high
activity, once the problem is distributed onto multiple
processors, some processors will be more active while
others will be less active.

5. Comparison with Profiling
We also used CrayPat to profile CTH on several

problem sizes to compare with the model. We were not
able to profile the entire code due to the current
limitations of CrayPat, so we only profiled the MPI calls.
We ran each simulation twice, once for 105 time steps
and once for 5 time steps and subtracted the quantities for
the two runs and divided by 100 to get values for an
average time step and to disregard the startup and ending
cost for the simulation.

We found that the volume of message traffic is

consistent with the number and length of messages
predicted in the model. Furthermore, the amount of time
reported having been spent in the combination of the
MPI_Send and MPI_Recv calls is about a factor of 2
larger than the model predicts. Part of that may be due to
difference between the MPI calls that CTH uses versus
the MPI calls that the Pallas benchmark uses. There may
also be some contention in the mesh since the processors
are sending large messages to logical neighbors in the
grid of processors which may not be close in the machine.
The Pallas benchmark uses only two processors to
benchmark the performance.

We also found that the number of collective

operations reported in the profiles to be consistent with
the model of the code. The time reported for these
collective operations is quite a bit more than the model
predicts. The time difference is large enough that it
would seem to be an indication of the load imbalance
present in the problem instead of a difference in how the
benchmark measures the time for collective operations
and how the code uses those operations.

For example, on 32 processors, the model predicts

that the collective operations should take about 4.7 ms per
time step, while the profile shows that they take up to
about 4.8 seconds per time step. Taking this difference
plus the difference between the times for the model and
profiling for the exchange operations (about 0.5 seconds)
accounts for over 80% of the difference between the
predicted time and the actual time. The remaining second
of difference is probably due to the extra computations
that CTH has to do to support multiple processors. We
have seen similar amounts of time being spent in
exchanges and collectives with a corresponding

CUG 2006 Proceedings 4 of 4

difference from the model on other simulations on
different numbers of processors.

We also found through the profiling that there were

some calls to miscellaneous MPI calls, such as a
broadcast each time step to tell the processors if there had
been a command from the operator to shutdown the code.
These are not in the model, but take little enough time
that they do not significantly affect the run time of the
code.

6. Summary
We have run a weak scaling study using CTH on up

to 10360 processors on Red Storm and then modeled the
results. While the model was not completely accurate, we
were able to learn things about the code through this
modeling effort.

Through profiling, we found that we were able to

correctly predict the volume and types of communication
that occur in the code. We were able to get close to the
time required for the data exchange operations, but need
to get better understanding of the amount of load
imbalance the occurs in the code.

We are planning to repeat this experiment with a

problem that exhibits better load balance to see if we are
better able to predict the run time. The version of CTH
that we were using for this study is a three year old
version of the code and we would like to repeat this
experiment with a current version of the code since
performance enhancements have been put into the code.
This will also help us to impact the performance of this
widely used code. After that we would also like to work
at modeling the code while it is being used in AMR
mode, since that is how the code is used much of the time.

About the Authors
Courtenay Vaughan is a Senior Member of Technical

Staff at Sandia National Laboratories. He can be reached
at Sandia National Laboratories, P. O. Box 5800, MS
0817, Albuquerque, New Mexico 87185, E-Mail:
ctvaugh@sandia.gov. Sue Goudy is a Senior Member of
Technical Staff at Sandia National Laboratories. She can
be reached at Sandia National Laboratories, P. O. Box
5800, MS 0817, Albuquerque, New Mexico 87185, E-
Mail: spgoudy@sandia.gov.

References
1. E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V.

Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, L. Yarrington,
“CTH: A Software Family for Multi-Dimensional
Shock Physics Analysis,” Proceedings, 19th
International Symposium on Shock Waves 1,

274ff (Université de Provence, Provence, France)
(1993).

2. S. P. Goudy, Development of a Modeling

Methodology for Hybrid Parallelism”, PhD
Dissertation, NM Tech, May 2005, SAND 2005-
2876P.

