
Characterizing Applications on theCharacterizing Applications on the
MTA2 Multithreading ArchitectureMTA2 Multithreading Architecture

Cray User Group 2006, Cray User Group 2006, LuganoLugano, Switzerland, Switzerland
May 10, 2006May 10, 2006

Richard Barrett, Jeffrey Vetter, Richard Barrett, Jeffrey Vetter, Sadaf AlamSadaf Alam, Collin McCurdy, and Philip Roth, Collin McCurdy, and Philip Roth

Oak Ridge National LaboratoryOak Ridge National Laboratory
Oak Ridge, TN 37831Oak Ridge, TN 37831

http://www.csm.ornl.gov/fthttp://www.csm.ornl.gov/ft
http://www.http://www.nccsnccs..govgov

2

MTA MotivationMTA Motivation

 Memory access latencyMemory access latency

 Common approach: cacheCommon approach: cache
Con:
– Leads to code transformations to increase likelihood

of accessing data in cache
– Not all code can be made “cache friendly”
– Transformations may limit performance on other

architectures (e.g., vector processors)

3

MTA PhilosophyMTA Philosophy

 TolerateTolerate memory access latency memory access latency
 Instead of data caches to reduce latency of Instead of data caches to reduce latency of somesome

accesses, use computation to hide accesses, use computation to hide ““communicationcommunication””
(data transfer between memory and processor registers)(data transfer between memory and processor registers)
for for allall accesses accesses

 Problem: available overlap within one thread ofProblem: available overlap within one thread of
execution is often too small to hide the entire memoryexecution is often too small to hide the entire memory
access latencyaccess latency

 MTA solution: support enoughMTA solution: support enough concurrent threads ofconcurrent threads of
execution to hide the worst case memory access latencyexecution to hide the worst case memory access latency
– When one thread issues a load instruction, execute instructions

from other threads until load completes
– Low-overhead switching between threads

4

MTA-2MTA-2 ProcessorProcessor

 Compute nodes based around MTA processorCompute nodes based around MTA processor
– Support for 128 concurrent instruction streams
– Switch between streams on each cycle
– 64-bit VLIW instruction

• One fused multiply-add
• One add or control
• One memory load or store

– 220 MHz

i = n

i = 3

i = 2

i = 1

.
 .
 .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

.
 .
 .

Sub-
problem

B
Subproblem A

Serial
Code

Unused streams

. . . .

Programs

running in

parallel

Concurrent

threads of

computation

Hardware

streams

(128)

Instruction

Ready

Pool;

Pipeline of

executing

instructions

Image courtesy of Cray Inc.

5

MTA-2MTA-2 System OrganizationSystem Organization

 Compute nodes connected with interconnectCompute nodes connected with interconnect
networknetwork
– “Modified Cayley” topology
– Also described as 3D torus with some links removed

 Memory units distinct fromMemory units distinct from compute nodescompute nodes
– “Dance hall” organization
– Every memory access goes across the interconnect
– Memory locations have associated “full/empty” bit

 SPARC Solaris front-end systemSPARC Solaris front-end system

6

Programming the MTA-2Programming the MTA-2

 Global shared memory modelGlobal shared memory model
– Programs are collections of threads that access shared data
– Synchronize using full-empty bits on memory locations

 Implicit and explicit expressions of parallelismImplicit and explicit expressions of parallelism
– Loops (implicit)

• Compiler automatically splits loop iterations across multiple threads
• May require directives to specify absence of dependencies or best

number of threads to use
– Futures (explicit)

• Somewhat like a function call, with code body and return value
• Executed in a separate thread, can synchronize on return value
• For task parallelism and recursion
• Can use generic functions like readfe() for explicit synchronization

between threads

7

MTA-2 ToolsMTA-2 Tools

 Traditional Traditional toolchain toolchain on front-end nodeon front-end node
– Compiler, assembler, linker
– C, C++, Fortran (F77 and F90)
– Cross-compilation, since front-end is SPARC Solaris

 Traceview Traceview provides insight intoprovides insight into programprogram’’s dynamic behaviors dynamic behavior
– Graphical user interface showing program timeline with observed and

theoretical maximum parallelism
– Can provide detailed information (e.g., source code) for points along the

timeline
 CanalCanal (Compiler Analysis)(Compiler Analysis) provides insight into compilerprovides insight into compiler

transformationstransformations

– Exposes whether compiler has parallelized a loop and how many
threads it will request to execute it

– Also explains why compiler didn’t parallelize a loop

8

Programming MTA-2 forProgramming MTA-2 for
PerformancePerformance

 Key to good performance isKey to good performance is keeping processors saturated (I.e.,keeping processors saturated (I.e.,
each processor always has a thread whose next instruction caneach processor always has a thread whose next instruction can bebe
executed)executed)

 Potential usagePotential usage scenarioscenario
1. Compile
2. Use canal tool to check that important loops were parallelized

• If loops weren’t parallelized, add directives or modify code to enable
compiler to parallelize loops

• Back to step 1.
3. Run instrumented code to produce program trace
4. Use traceview to identify situations where processors are under-utilized

• If there are any , add directives or modify code to expose more
parallelism

• Back to step 1

9

Continuous PDE to discrete formContinuous PDE to discrete form
for Finite Difference Stencilsfor Finite Difference Stencils

DO J = 2, LCOLS+1
 DO I = 2, LROWS+1

 GRID2(I,J) = (
 GRID(I-1,J) +
 GRID(I,J-1) + GRID(I,J) + GRID(I,J+1) +
 GRID(I+1,J)) / 5

 END DO
END DO

10

Parallel ProcessingParallel Processing

11

MTA-2 implementationMTA-2 implementation

DO J = 2, LCOLS+1
 DO I = 2, LROWS+1

 GRID2(I,J) = (
 GRID(I-1,J) +
 GRID(I,J-1) + GRID(I,J) + GRID(I,J+1) +
 GRID(I+1,J)) / 5

 END DO
END DO

12

What is peak?What is peak?

 Performance expectation:Performance expectation:

F(mach capability for our problem)

 Flops/MemRef Flops/MemRef * 220[MHz]* 220[MHz]

 Tools:Tools:
– Traceview: shows where to look.
– Canal (Compiler ANALysis) tool. Shows effects of work.

 FeoFeo’’s s RuleRule: Expect ~90+% of peak.: Expect ~90+% of peak.

13

Expectation: Expectation: CAnalCAnal

Loop 26 in MAIN__ at line 197 in loop 25Loop 26 in MAIN__ at line 197 in loop 25
 Parallel section of loop from level 4 Parallel section of loop from level 4
 Loop summary: 6 memory operations, 5 floating point operations Loop summary: 6 memory operations, 5 floating point operations
 8 instructions, needs 30 streams for full utilization 8 instructions, needs 30 streams for full utilization
 pipelined pipelined

 | DO I = 2, LROWS+1
 | DO J = 2, LCOLS+1
26 SSPP | GRID2(I,J) = &
 | (GRID1(I-1,J)+ &
 | GRID1(I, J-1)+GRID1(I ,J)+GRID1(I, J+1) + &
 | GRID1(I+1,J)) &
 | * FIFTH
 | END DO
 | END DO

!$mta use 60 streams

14

Performance:Performance:
5-pt difference stencil5-pt difference stencil

Serial code!

15

Comparison with XT-3Comparison with XT-3

16

ApplicationsApplications

 Fast Multi-poleFast Multi-pole

 Molecular dynamicsMolecular dynamics

 Discrete even simulationDiscrete even simulation

17

 Adaptive tree-code: solves O(nAdaptive tree-code: solves O(n22) N-body problem in) N-body problem in
~O(n) time~O(n) time

 Attractive candidate for MTA:Attractive candidate for MTA:
– Irregular references to global data structure

• Tree has a single root…
– Adaptive nature makes load-balancing difficult

 Algorithm:Algorithm:
– Insert particles into adaptive tree
– Tree traversals:

• Create interaction lists
• Upward pass, propagate summary information up
• Interactions
• Downward pass, propagate potentials down to particles

Fast Fast Multipole Multipole MethodMethod

18

MTA ImplementationMTA Implementation

 Tree Traversals Tree Traversals
– Significant parallelism obtained simply by parallelizing

tree traversals
– Initial cut: use future construct for recursive traversals

• Proved unnecessarily expensive

– More efficient solution: forall loop over nodes w/
additional synchronization when required

 Tree ConstructionTree Construction
– Parallelize loop that inserts particles in tree

• Substantial sync required to ensure nodes uniquely created
• Final implementation likely only possible on MTA:

– Use synchronizing reads rather than locks to get to leaf,
then lock leaf; retry if leaf modified before locked

19

Initial ResultsInitial Results

64k bodies / proc 64k bodies total

Decent weak scaling, but strong scaling needs work…

20

Improving Strong ScalingImproving Strong Scaling

 Two related problems:Two related problems:
1. Not enough work – proportional to # nodes…
2. Variance in amount of work per node

 Two potential solutions:Two potential solutions:
Reduce “Maximum Bodies Per Node”

 Runtime parameter, determines depth of tree
 Fewer bodies/node implies deeper tree, more nodes, more

work, less variance in amount of work
 “Crack open” Interaction computation

 Allow multiple threads to compute one node’s interactions
 Implies significantly more synchronization: lock for every

update of field being computed

21

Improved Strong ScalingImproved Strong Scaling

Reduced bodies/node:
• from 128 to 2
• increases runtime, scales better

Cracked Interactions:
• back to 128 bodies/box
• better than initial, but tails off (contention?)

22

Molecular Dynamics (MD) SimulationMolecular Dynamics (MD) Simulation

 Time evolutionTime evolution——integration of Newtonian Equation of Motion: integration of Newtonian Equation of Motion: FFii ==
mmii**aaii. Force (F), mass (m) and acceleration (a) of a particle . Force (F), mass (m) and acceleration (a) of a particle ii..

 Computational complexity: NComputational complexity: N22 (N (N——number of atoms) or N*number of atoms) or N*NNcc
((NNcc——number number of atoms within cutoff limit)of atoms within cutoff limit)

 Characteristics:Characteristics:
– Computationally intensive calculations
– Random memory access patterns
– Dynamic runtime behavior

BiologyBiology ChemistryChemistry Materials/NanotechMaterials/Nanotech

Application areas of MD Simulations

23

Implementation & Optimization of anImplementation & Optimization of an
MD Kernel on MTA2MD Kernel on MTA2

 Our MD kernel contains force evaluation and integrationOur MD kernel contains force evaluation and integration
routinesroutines

 Bonded forces are deterministicBonded forces are deterministic——straightforward tostraightforward to
computecompute

 Simulation targets:Simulation targets:
– Longer time-scale simulations (strong-scaling mode)
– Larger systems simulations (weak-scaling mode)

 Non-bonded forces modeled by LJ modelNon-bonded forces modeled by LJ model

!
!
"

#

$
$
%

&
'
(
)

*
+
,-'

(
)

*
+
,

=

612

4)(
rr

rV
..

/

1. advance velocities
2. calculate potential energy and forces

 for i=1 to N atoms
 for j=1 to N-1 atoms
 if (i & j in cutoff limits)
 compute force

3. complete velocities update
4. calculate new kinetic and total energies

MTA2 compiler
parallelized the main
loops by moving a scalar
calculation outside of the
loop—very low
implementation overhead

24

Performance Evaluation (MD Kernel)Performance Evaluation (MD Kernel)

 Strong scaling mode resultsStrong scaling mode results——overall problem size fixedoverall problem size fixed
 Ideal speedup (speedup = timeIdeal speedup (speedup = timeoneMTA2oneMTA2/time/timenMTA2nMTA2) for all) for all

three test cases (8000, 16000 and 32000 atoms) on up tothree test cases (8000, 16000 and 32000 atoms) on up to
32 MTA2 processors32 MTA2 processors

0

20

40

60

80

100

120

1 2 4 8 16 32

Number of processors

R
u

n
ti

m
e

/i
n

te
rv

a
l

(s
e

c
) 32000 atoms

16000 atoms

8000 atoms

25

Performance Evaluation (MD Kernel)Performance Evaluation (MD Kernel)

 Weak Scaling modeWeak Scaling mode——by increasing the problem size and number ofby increasing the problem size and number of
MTA2 processors *2MTA2 processors *2

 Not idealNot ideal——compute time increase with problem size due to loadcompute time increase with problem size due to load
imbalancesimbalances

 Significantly better than a microprocessorSignificantly better than a microprocessor——computationalcomputational
complexity: Ncomplexity: N22 (N (N——number of atoms) or N*number of atoms) or N*NNcc ((NNcc——number number of atomsof atoms
in cutoff limit)in cutoff limit)

Number of processor

0

5

10

15

20

25

1024 2048 4096 8192 16384 32768

Number of processors

R
u

n
ti

m
e

/i
n

te
rv

a
l

(s
e

c
)

1 2 4 8 16 32 uproc

26

Discrete-event Simulation (DES)Discrete-event Simulation (DES)

 Modeling of time dependents systemsModeling of time dependents systems
 Asynchronous systemAsynchronous system
 Time-stamped events (do not model aTime-stamped events (do not model a

single time step)single time step)
 Inherently sequentialInherently sequential——event queue isevent queue is

updated after processing an eventupdated after processing an event
 Applications:Applications:

– Internet modeling
– Computer & telecommunication network

modeling
– Service systems modeling
– Security networks
– Real-time decision making

27

A Simplified DES KernelA Simplified DES Kernel

 Basically, a tree-based priority queue and two loops:Basically, a tree-based priority queue and two loops:
– Loop 1: Insert N elements
– Loop 2: Remove all N elements

 A straightforward, but A straightforward, but inefficientinefficient, parallelization strategy:, parallelization strategy:
– Only permit one thread to insert/remove at a time

 Question: can extremely fine-grained synchronization within priorityQuestion: can extremely fine-grained synchronization within priority
queue enable parallel insertions/removals? queue enable parallel insertions/removals? ProfitablyProfitably????

For 1 to MAX_ELEMENTS in Parallel
 Create an event with a random timestamp
 lock()
 Insert event in Priority Queue
 unlock()

For 1 to MAX_ELEMENTS in Parallel
 lock()
 Remove the event with minimum timestamp
 unlock()

28

MTA PQ ImplementationMTA PQ Implementation

 Priority Queue InsertPriority Queue Insert
– Sequential:

• Add element as binary tree leaf
• Move up tree, SWAP()’ing w/ parent, until > parent

– Parallel:
• Atomic fetch_add_int() to find leaf in which to add element
• Lock child and parent before SWAP()…

 Priority Queue RemovePriority Queue Remove
– Sequential:

• Remove root, move leaf to root
• Move down tree, SWAP()’ing w/ smallest child, until both children >

– Parallel:
• Atomic fetch_add_int() to find leaf to move
• Lock root and leaf before removal/move
• Lock parent and each child before moving down

29

Parallel Performance (Parallel Performance (vs vs Serial)Serial)

Single processor, multiple element counts:

Multiple processors, single element count (256K):

Remove

Insert Remove

Insert

30

ConclusionsConclusions

 Answer to our question:Answer to our question:
– YES, PQ insertions and removals can be done in parallel
– Insert - surprisingly large amount of parallelism available
– Remove - definite benefit for 1p, but currently too much

synchronization to be scalable
• More scalable as number of elts increases?
• More efficient use of locks possible?

 Other areas for investigation:Other areas for investigation:
– More difficult proposition: can Inserts and Removes occur at

the same time?
– Priority queue might not be the best choice of data structure for

DES on the MTA…others?

31

AcknowledgementsAcknowledgements

 This research was sponsored by the Office of Mathematical, Information,This research was sponsored by the Office of Mathematical, Information,
and Computational Sciences, Office of Science, U.S. Department of Energyand Computational Sciences, Office of Science, U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Accordingly, the U.S. Government retains a non-exclusive, royalty-freeAccordingly, the U.S. Government retains a non-exclusive, royalty-free
license to publish or reproduce the published form of this contribution, orlicense to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.allow others to do so, for U.S. Government purposes.

 Cray, including Supercomputing Center of ExcellenceCray, including Supercomputing Center of Excellence
– John Feo

