
 1

XT3 Operational Enhancements

Chad Vizino, Nathan Stone, J. Ray Scott

{vizino,nstone,scott}@psc.edu

Pittsburgh Supercomputing Center

ABSTRACT: The Pittsburgh Supercomputing Center has developed a set of operational

enhancements to the supplied XT3 environment. These enhancements facilitate the

operation of the machine by allowing it to be run efficiently and by providing timely and

relevant information upon failure. Custom scheduling, job-specific console log

gathering, event handling, and graphical monitoring of the machine will be reviewed and

discussed in depth

KEYWORDS: scheduling, pbs, cpa, xt3, crms, event handling, console log, graphical

monitor.

1.0 Introduction

The Pittsburgh Supercomputing Center has implemented

a custom scheduling environment along with a set of

operational enhancements which include job specific

console log management, a custom event handler and a

graphical machine monitor.

We will give a brief overview of the custom scheduling

environment (for details see [1]). Next we will discuss

job specific console log management, then custom event

handling and, finally, the graphical monitor.

2.0 Job Scheduling Environment

To understand how the developed system tools function

together, a description of a job life cycle is helpful. The

cycle begins by a user submitting a job. The job is run on

nodes selected by the scheduler and checked for

availability before the job starts. Failed nodes are

removed from scheduling and the job is placed back in

queue for selection on a new set of nodes. Once the job is

started, it can be monitored visually using the graphical

monitor to see node placement and other attributes of the

system. When the job has finished, the user gets normal

batch job output along with a specific file containing

console log messages showing messages issued from only

the nodes on which the job ran. Should a problem report

need to be filed for a software and/or hardware failure

with Cray, this file provides useful information to include

in the problem report. While the job is running, should a

node die unexpected, the event handler issues an e-mail

message to system administrators showing the node(s)

that failed along with job detail about the owning batch

job and updates a site SQL database with the node failures

for tracking and site ticket handling.

2.1 PBS Pro Changes

To support the ability for the scheduler to select the

specific nodes on which a batch job is to be run, several

changes were made to the supplied PBS Pro batch

package [2]. Changes included ones to source code to

provide a nid_list job attribute to be used by the scheduler

to pass a specific list of node ids (nids) through to the job

execution agent (pbs_mom daemon) at job start time,

developing a custom scheduler written in TCL [3], and

writing job prologue and epilogue scripts to support node

availability checking and job specific console log

handling.

PSC has developed a utility, ping_list, for quickly pinging

a list of nodes similar to the Cray-supplied ping_node

which can only check one node at a time. Ping_list is

called in the job prologue script to check for node

availability at job start time. Detected failures are

removed from scheduling and the job is returned to the

queue for reselection on a different set of nodes.

One of the key features of PSC’s batch environment is the

ability to have the scheduler select the specific nodes for a

job rather than letting the Compute Processor Allocator

(CPA) select them. CPA has a hard-coded node

allocation algorithm built into it. Having a custom

scheduler pick the nodes allows various node allocation

algorithms to be tested and easily deployed in the scripted

scheduler code. See [4] for more information concerning

node allocation experiments using these changes.

 2

The scheduler also embodies PSC’s job scheduling

policy. Interested readers are encouraged to read [1] and

[5] for more information.

3.0 XT3 Console Log

To understand how the job specific console log utility

works it is helpful to understand the content and function

of the system console log file. The console log file

resides on the System Management Workstation (SMW)

and is created at system boot time. The contents include

all console messages from all nodes on the system with

each line date and time stamped along with the hardware

address of the issuing node.

The console log file contains useful information about

activity from a batch job’s compute nodes. This

information is also useful to supply to Cray in the event of

an application failure where system software or hardware

problems are suspected.

Although this console log file is useful, it has several

problems. First, it can be quite large in size. Second,

finding messages from specific nodes is time consuming

and difficult since the nodes are labeled by hardware

name rather than nid. And third, references to other nodes

are often displayed using a node’s hexadecimal

representation.

The job specific console logging tool was designed to

meet the following goals: 1) Direct each console log

entry to a file related to a user job so that at job end, a

user has a file with a listing of all the console messages

issued from the nodes on which the job ran; 2) Provide

system administrators and users with a predictable place

to look for system related problems encountered during a

job run; 3) Use little resources; and 4) Provide readable

output.

3.1 Job Specific Console Logging

Implementation

The job specific console logging tool has been

implemented as a daemon running on the SMW called

xtconsole_watcher. The tool was written in Perl for

maintainability and speed and is started at SMW boot

time. It opens a pipe to xtconsole and watches its output

which provides access to the live node console log stream.

Each xtconsole line is parsed and routed to a specific job

related file which is then delivered to the job owner’s

home directory as

$HOME/job_console_logs/job_<JOB_ID>_console.log.

Through special tags inserted into the console log stream

by the batch system prologue and epilogue scripts, the

daemon is able to know when a job has started, on which

nodes it is running, and then when it ends. A secondary

map file is maintained with the node to job id mapping for

use by the event handler which will be discussed.

For readability hardware names and hexadecimal nids are

translated to decimal nids in the job specific console log

files.

3.2 PBS Changes to Support Job Specific

Console Logging

To support job specific console logging, it was necessary

to customize the batch system to provide a way to

communicate job start and end to the job console

watching daemon on the SMW. The job prologue script

contains code to write a special message into the console

stream (using /dev/console). The tag is as follows:

PBS <job_id> started <time> <nid_list>

Where <job_id> is the job id, <time> is an integer time

stamp and <nid_list> is a special range list of the node ids

selected for the job (example: 12..15,20..30,50..60).

This tag must not exceed 70 characters or xtconsole will

split the line in a way that makes the tag difficult to

reassemble on the SMW by the job specific console log

daemon. The prologue carefully divides the tag into 70

character segments using a trailing continuation character

(+) at each line end as needed.

Once the job specific console log daemon sees the special

PBS tag on the console stream, it knows that a new job

has started and sets up a new job console log file along

with a mapping of node id to file handle for the job

console log file. Until the job ends, each console line is

decoded and routed to a specific job console log file.

At job end, the epilogue script writes a special short tag

into the console stream:

PBS <job_id> ended <time>

Where <job_id> and <time> are similar in format to the

ones used by the prologue script.

When this special tag is seen by the daemon on the SMW,

the related job console log file is closed and the file is

delivered to the job owner’s home directory and given

appropriate permissions for ownership.

To summarize, the algorithm for the console message

decoding is as follows:

 3

Open xtconsole stream {

 Decode line

 Watch for PBS tags (started, ended)

 Update nid to job id map file for event

handler

 Map nid to file descriptor

 Open file descriptor for job

 Route console messages to file descriptor

 Close file descriptor

}

3.3 Performance

One of the goals of the job specific console log daemon

was to use only a small amount of machine resource.

After measurement, we have found that the daemon uses

only a modest amount of resource. On the SMW, we

have measured cpu consumption at about 53 seconds over

a 10 day period which is well under 1% of the cpu load.

Memory consumption is about 5MB out of 2GB which is

less than 1% of the SMW memory. The extra xtconsole

process opened via the pipe used an additional 54 seconds

of cpu over a 10 day period and about 1MB of memory

File descriptor use is 4+N where N is the number of

running jobs. The four descriptors always in use are for

stdin, stdout, stderr and the pipe for the xtconsole stream.

We have built in a cap for N of 75 to keep the daemon

from consuming too many descriptors should something

go wrong.

4.0 Events

The XT3 software suite, UNICOS/lc, contains an event

generation system that PSC has harnessed for its own use

in detecting compute node failures and reporting them to

the appropriate system administrators and also to update a

site asset tracking database.

Cray RAS and Management System (CRMS) events are

useful for determining when a component has failed but

are not tied to specific jobs and can be prone to duplicate

events. As supplied, events are not handled in a way that

is easy for PSC to track failures.

In designing an event handler on top of the existing

CRMS one, we decided on several design goals: 1) Notify

system administrators of failure in a timely way; 2)

Throttle the volume of successive event messages; 3) Low

resource consumption; and 4) Be able to update PSC’s

site asset management database.

4.1 Event Handling Implementation

The Cray supplied xtconsumer utility provides access to

specific events and it streams selected events to stdout.

We wrote a daemon to open a pipe to watch this stream

and issue messages and site database updates when

compute node failure events (type ec_node_failed) occur.

A daemon, xtconsumer_watcher, was implemented in Perl

on the SMW, similar to xtconsole_watcher. Using the nid

to job id mapping file maintained by xtconsole_watcher,

the event handling daemon is able to report specific job

information as obtained from the PBS server upon

compute node failure.

Xtconsumer_watcher, watches the xtconsumer stream and

aggregates messages related to specific jobs by buffering

events for a specific, tunable waiting period, after which

time it flushes its buffer and delivers an e-mail message

containing aggregated messages (reduces message floods)

related to specific jobs to system administrators. It also

updates PSC’s site asset management database for event

tracking and resolution.

The algorithm to handle node event fail messages is as

follows:

Open xtconsumer stream {

 Wait for node failed event or time out

 Decode line

 Record time received

 Ignore duplicates

 Get owning job id from nid to job id

map file

 Get yod info from SDB

 Store in buffer for aggregation

 Flush buffer (send mail, update Assets DB) if…

 Oldest message > THRESHOLD and

 Last send > THRESHOLD

}

Since both the xtconsumer_watcher and

xtconsumer_watcher utilities run on the SMW, the

xtconsumer_watcher daemon can look for specific failure

signatures in a job specific console log should a node fail

for a given job. This has helped us to quickly identify

failure patterns so that we can update problem reports to

Cray with little log analysis to determine the cause of

failure.

4.2 Performance

Similar to the job specific console logging daemon, a goal

of the event handler was to use few resources on the

running host. On the SMW, we have measured the cpu

consumption to be less than 1 second of cpu time in about

8 days which is less than 1% of the cpu resource. The

additional required xtconsumer process opened via the

 4

pipe used less than 1 second over the same 8 day period

and consumed about 1MB of memory. Memory

consumption was about 8.5MB out of 2GB which is less

than 1% of the memory resource.

5.0 Graphical Monitor

The final tool to be reviewed is the graphical monitor

which allows users and system administrators to view the

system nodes in various ways including physical layout,

logical layout (3-d torus) along with job placement,

machine characteristics including temperature and

network traffic.

Figure 1.

The monitor is implemented in C and uses OpenGL and

GLUT [6]. There are versions for Windows, Linux and

Mac as well as a web based one.

To provide information to incoming requests, job

information is cached offline for processing by a web

server. Clients run natively (and more quickly) on one of

the three operating system mentioned above. See top half

of Figure 2 and a sample image in Figure 1.

For web page requests (slower), the server provides a

simple mechanism for supplying graphical images. See

Figure 3. As the client requests new views of the

machine, the xt3dmon server renders the images and

sends them to the web client. See bottom half of Figure 2

to see how this works and a sample image in Figure 3.

Figure 1 shows a logical view of the compute nodes with

various job detail shown using the native viewer. The

tool provides the ability to click on any node to get

information about it: node id, job participation, job owner,

etc. Nodes are color coded according to their batch job

membership so that nodes owned by specific jobs can be

clearly seen.

Figure 2.

Figure 3 shows a physical view (two rows of 11 cabinets

each) using the web based tool.

For live views of the machine, see

http://www.psc.edu/machines/cray/xt3/bigben.html#monit

or.

Figure 3.

 5

6.0 Conclusion

PSC’s developed tool set enhances the operation and

monitoring of our XT3 machine. Users are provided

with information useful for the interpretation of their runs

by receiving console output from nodes specific to their

jobs and visual job placement through the use of the

graphical monitor.

The system is effectively scheduled through the custom

scheduling enhancements made by placing jobs on

specific nodes.

System administrators gain effective information for

system monitoring and problem reporting through the use

of the job specific console log tool and event handling

tool and also through visualizing system and job

characteristics through the graphical monitor.

7.0 References

[1] C. Vizino, J. Kochmar, N. Stone, R. Scott, “Batch

Scheduling on the Cray XT3”, CUG 2005.

[2] PBS Pro: http://www.altair.com/software/pbspro.htm

[3] Tool Control Language: http://www.tcl.tk/

[4] D. Weisser, N. Nystrom, C. Vizino, S. Brown, J.

Urbanic, “Optimizing Job Placement on the Cray XT3”,

CUG 2006.

[5] C. Vizino, J. Kochmar, R. Scott, “Custom Features of

a Large Cluster Batch Scheduler”, PDPTA 2005.

[6] OpenGL, GLUT: http://www.opengl.org

8.0 Acknowledgements

This material is based upon work supported by the

National Science Foundation under Cooperative

Agreement No. SCI-0456541.

About the Authors

Chad Vizino is a member of the Scientific Computing

Systems group currently working on scheduling systems,

resource management and accounting. Nathan Stone is

Senior Research Analyst and is responsible for software

infrastructures for data management and administrative

scalability issues. Ray Scott is Director, Systems and

Operations, in charge of all computing platforms at the

PSC. They can be reached at PSC, 300 S. Craig St.,

Pittsburgh, PA 15213. Phone: 412-268-4960. E-mail:

{vizino,nstone,scott}@psc.edu.

