
 Quantum Mechanical Simulation of Nanocomposite 
Magnets on CRAY XT3 

Yang Wang, Pittsburgh Supercomputing Center, G.M. Stocks, Aurelian Rusanu, D.M.C. 
Nicholson, and Markus Eisenbach Oak Ridge National Laboratory 

ABSTRACT: One of the grand challenges in the development of nanotechnology is 
how to synthesize and process “designed nano-structured” materials. An important 
example of these materials is the nanocomposite permanent magnets made of hard and 
soft phased magnetic nanoparticles located on a superlattice. Binary phase magnets, if 
they can be devised, could double the energy product of current single-phase magnets. 
However, such magnetic nanostructures present substantial theoretical challenges due to 
the need to treat the electronic interactions quantum mechanically whilst dealing with a 
large number of atoms. In this presentation, we demonstrate our capability of performing 
the quantum mechanical simulation of  nanocomposite magnets using a CRAY XT3 
supercomputing system and the Locally Self-consistent Multiple Scattering (LSMS) 
method, a linear scaling ab initio method capable of treating tens of thousands of atoms. 
The simulation is intended to study the physical properties of magnetic nanocomposites 
made of FePt nanoparticle and FePt random alloy. We will demonstrate the scalability 
of the LSMS method on Cray XT3, and will discuss our results on the electronic and 
magnetic structure of the nanoparticle and the effects of the surrounding metallic 
random alloy.  
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1. Introduction 
 
Magnetic nanoparticles and their composites are of 

great interests to us because of their potential applications 
in data storage industry. Over the past few years, we have 
witnessed tremendous increase in the data storage density 
of magnetic disk drives, an increase at a rate of greater 
than 100% annually achieved by reducing the critical 
physical dimensions. However experiments and theory 
indicate that there is a so-called superparamagnetic limit 
to the size reduction that will soon be reached within just 
few years. In conventional magnetic recording devices, 
the recording medium, in the form of granular film, 
consists of weakly coupled magnetic grains, with grain 
sizes in the range of 10-15 nm. The signal to noise ratio 
needed for high density recording is achieved by 
statistically averaging over about 100 grains per bit. The 
thermal stability of the grain magnetization has to be 
maintained in order to store information reliably for 10 
years, a typical design criterion used by industry. 

Increasing the areal density requires a reduction of the 
grain volume and a tighter grain size distribution. 
However, decreasing the grain volume, to obtain higher 
storage densities, results in the moment orientation of 
individual grains becoming increasingly unstable due to 
thermal fluctuation. And once the areal density passes the 
superparamagnetic limit, the thermal instability will give 
rise to noise, false sensor response, and long-term data 
loss. 

Today’s magnetic storage media has reached 100 
Gbits/inch2 level, and the next milestone will be 1 
Tbits/inch2. It is clear that reaching and going beyond this 
milestone requires major scientific and technological 
breakthroughs. One possibility for such breakthroughs 
relies on a radical new design, in which magnetic 
nanoparticle composite forms a patterned media and each 
bit (0 or 1) is stored in a single magnetic nanoparticle. Of 
critical importance for such magnetic storage design is the 
length of time for which magnetic orientation of 
individual nanoparticles, once written, is stable at 
operating (room) temperature. Thus understanding the 
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relationship between materials properties and magnetic 
stability of magnetic nanocomposite is of crucial 
importance. 

Clearly, the ability to design materials at the 
nanoscale holds significant future scientific and 
technological opportunities. However, realizing the 
ultimate potential of nano-structured materials requires an 
understanding of the quantum mechanical behavior of the 
materials at the atomic scale which in fact underpins the 
new structures and phenomena unique to nanostructures. 

Over the last 2-3 decades there has been significant 
progress in our ability to calculate the properties of 
materials at the quantum level. These advances have 
largely been based on the local density approximation 
(Hedin and Lundqvist, 1971; von Barth and Hedin, 1972) 
or generalized gradient approximation (Perdew and Wang, 
1986; Perdew et al. 1996) to density functional theory 
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965). 
However, the nano-structured materials place new 
demands on these ab-initio methods because of the large 
numbers of atoms that are present in even the simplest of 
nanostructures, an example of which is a 5nm cube of 
iron that contains the order of 12,000 atoms. Fortunately, 
recent advances in the locally self-consistent multiple 
scattering (LSMS) method (Wang et al, 1995), an ab-
initio order-N scaling technique specifically implemented 
to exploit massively parallel computing, are making the 
direct quantum simulation of nano-structured materials 
possible. Previously (Wang et al, 2005), we have reported 
our preliminary results on the calculation of the electronic 
and magnetic structure of an iron nanoparticle embedded 
in iron-aluminide crystal matrix, which involves 16,000 
iron and aluminum atoms in total. This simulation was 
our first step toward the direct quantum mechanical 
simulation of the physical properties of a realistic model 
of nano-structured materials. 

The main objective of this paper is to show our 
recent study of the electronic and magnetic properties of 
FePt nanocomposites on CRAY XT3. These are the 
magnetic nano-structures that have been considered as a 
potential candidate for the next generation high density 
magnetic data storage media. This paper is organized as 
follows. The next section is a brief description of the 
LSMS method. We show the parallel performance and 
linear scaling properties of the method on CRAY XT3. 
The application of LSMS method to the electronic and 
magnetic structure of FePt nanocomposites is 
demonstrated in section 3, followed by the conclusion 
section. 

 
  

2. The LSMS method and Its Performance on 
CRAY XT3 

 
The LSMS method is a multiple scattering theory 

(Korringa, 1947; Kohn and Rostoker, 1954) based 
approach to the ab-initio electronic structure calculation. 

In the framework of multiple scattering theory, the Green 
function for the Kohn-Sham one-electron Schrödinger 
equation is readily given in such a convenient algebraic 
expression (Faulkner and Stocks, 1980) that its numerical 
calculation is clearly feasible; particularly when 
advantage is taken of the analytic properties of the 
Green’s function. An advantage for using the Green 
function is that the calculation of the crystal wave 
functions becomes unnecessary, and, as a result, there is 
no need for the time-consuming orthogonalization and 
normalization procedure, which is needed in other ab-
initio methods. Another advantage is that the only global 
operation required for obtaining the Green function is the 
calculation of a multiple scattering matrix for each atom 
which accounts for the major portion of the floating point 
operations of the entire electronic structure calculation.  

In general, given the Green function, the electron 
density and the magnetic moment density in the vicinity 
of the ith atom can be conveniently obtained as follows: 
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where the Green function ( , ; )iG εr r  is a 2 × 2 matrix in 
the spinor space and is calculated in the vicinity of atom i. 
The x, y, and z components of vector σ  are the 
corresponding Pauli matrix, and εF is the Fermi energy. 
The energy integration usually takes place along an 
energy contour in the upper half complex plane to avoid 
the singularities of the Green function on the real energy 
axis. In non-magnetic cases, the Green function matrix is 
reduced to a scalar function, and the magnetic moment 
density is simply zero. For ferromagnetic states, the 
Green function matrix is diagonal in the frame of 
references that the z-axis is along the magnetization 
direction, and the computational procedure can be much 
simplified by carrying out a spin-polarized calculation, 
for which the Green function for spin up and spin down 
states is decoupled and is calculated separately. For non-
collinear magnetic states, the Green function matrix is 
non-diagonal and its calculation, also known as spin-
canted calculation, usually takes four times longer than 
the spin-polarized calculation and eight times longer than 
a non-spin-polarized one. 

The calculation of the multiple scattering matrix itself 
scales as N3, where N is the number of atoms in the unit 
cell. The crux to making multiple scattering theory order-
N scaling is an approximation that neglects multiple 
scattering processes around an atom if they involve atoms 
from a distance greater than some cut-off radius (RLIZ). 
The space within RLIZ is called local interaction zone 
(LIZ). The idea behind this approximation is based on the 
observation that the scattering processes involving far 
away atoms influence the local electronic states less and 
less as the distance form the scatter under study is 
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increased – an example of nearsightedness (Kohn, 1996). 
Technically, this approximation is implemented as 
follows: we draw a sphere (or LIZ), with a predefined 
radius, around atom i, we calculate the multiple scattering 
matrix only for the multiple scattering processes 
involving the atoms enclosed by the sphere, and we 
calculate the Green function and use equation (1) to 
compute the electron and magnetic moment density in the 
vicinity of the atom. This procedure is repeated for each 
atom in the unit cell. Obviously, the LSMS method is 
implicitly parallel over the number of the atoms which 
makes it an ideal method for the electronic structure 
calculation for nano-structured materials.  

The LSMS method was originally implemented 
based on one (atom) to one (processor) mapping scheme, 
which was necessary in the early days when the 
computing power and memory size was much limited.  
The code has essentially been rewritten entirely to take 
advantage of the modularization feature of FORTRAN 
90/95 and one-sided communication feature of MPI-2 and, 
most importantly, to allow flexible association between 
atoms and processors such that multiple atoms can be 
mapped onto one processor. The latest measurement of its 
order-N property on Cray-XT3 is shown in figure 1, in 
which the number of float operations is plotted against the 
problem size, i.e., the number of atoms involved in the 
simulation. Pushing the LIZ size to an extreme (including 
136 neighboring atoms), where the entire calculation is 
dominated by the BLAS routine ZGEMM because of 
large size of the large multiple scattering matrix 
(3472×3472 double complex matrix), we are able to run 
LSMS at 80% of the peak performance of the system. The 
results of strong scaling measurement of LSMS code on a 
Cray XT3 are shown in figure 2. In this plot, the elapsed 
time for a fixed size problem, the electronic structure 
calculation for a magnetic Fe nanoparticle embedded in 
FeAl matrix with 16,000 atoms altogether, is measured 
against the number of nodes employed. The ideal strong 
scaling curve (solid line) representing 100% parallel 
efficiency is also shown. Departure from the ideal strong 
scaling at the large number of CPUs usually indicates the 
existence of the serial components, i.e., tasks that can not 
be parallelized, and such other factors as the latency for 
communication, the time spent in performing I/O, etc. 

 
 
3. The Electronic Structure Calculation for 
Magnetic Nanocomposites 

 
Here we report our recent studies of electronic and 

magnetic properties of FePt nanocomposites using LSMS 
method. The nanocomposite is made of a FePt 
nanoparticle embedded in Fe0.5Pt0.5 random alloy in a 
face-centered tetragonal (fct) lattice structure. The FePt 
nanoparticle itself is an ordered compound in L10 lattice 
structure, and has the same lattice constants, a0 = b0 = 
3.8525 Å and c0 = 3.7133 Å, as the Fe0.5Pt0.5 random alloy.  

We considered spherical FePt nanoparticles of three 
different dimensional sizes, 2.5 nm, 3.86 nm, and 5.0 nm 
in diameter. Each of these nanoparticles contains 711, 
2,195, and 4,777 Fe and Pt atoms, respectively. The entire 
unit cell sample (the nanoparticle plus the random alloy) 
for each case contains 14,400 Fe and Pt atoms in total.  

We performed spin-polarized LSMS calculation for 
the unit cell samples described above using 1,200 nodes 
on CRAY XT3, with 12 atoms per node. We simplified 
the calculation by making the muffin-tin approximation to 
the potential in which the one-electron potential is 
assumed to be spherically symmetric within the muffin-
tin sphere around each atom and is assumed to be 
constant within the interstitial region between the muffin-
tin spheres. This is a reasonable approximation for most 
simple and transition metals and intermetallic alloys due 
to the nature of metallic bonding. In our calculations, we 
choose the LIZ for each atom to include 54 neighboring 
atoms which has be proved to be sufficient for close-
packed structures.  

The calculated results for the electronic and magnetic 
structure turn out to be very much similar for the three 
different nanoparticle sizes. We therefore only show the 
calculated results for the case that the nanoparticle is 3.86 
nm in diameter. Figure 3 is a sliced view of the magnetic 
moment distribution within the nanoparticle and the 
random alloy. The amount of magnetic moment on each 
atom is coded in the following color scheme: The balls in 
silver color are the Pt atoms and the balls in red color are 
the Fe atoms. The darker color means less magnetic 
moment value. Obviously, in the interior region, the 
magnetic moment on Fe and Pt atoms has a rather 
uniform distribution pattern, that is all the Fe atoms have 
the same moment and all the Pt atoms also have the same 
moment. The inhomogeniety effect from the external 
random alloy has essentially been screened out by the 
surface layers, the shield region, of the nanoparticle.  

More detailed pictures of the electronic and magnetic 
structure of the nanocomposite are shown in figures 4 and 
5, where 14,400 data points, each of which corresponds to 
the number of excess electrons (figure 4) or the magnetic 
moment (figure 5) on each atom, are plotted against the 
atom distance measured from the center of the 
nanoparticle. Not surprisingly, we find that atoms in the 
interior region of the nanoparticle have essentially the 
same amount of net charge and magnetic moment as in 
the bulk of L10-FePt crystal. Note that Fe atoms are 
gaining electrons from the Pt atoms and therefore are 
negatively charged, while Pt atoms losing electrons are 
positively charged. For those atoms inside the shield 
region, the shaded area in the figures in figures 4 and 5, 
the net charge and the magnetic moment show rather 
dramatic fluctuations, induced by the influence from the 
random alloy. This shield region extends as deep as 4 Å 
inward from the nanoparticle surface, and this depth 
seems independent of the nanoparticle size. In the random 
alloy region, as expected, the distribution of the net 
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charge and the magnetic moment is very much random. 
However, most Fe atoms are negatively charged and carry 
a magnetic moment larger than 2.6µB, while most Pt 
atoms are positively charged and carry a small magnetic 
moment, less than 0.4µB. 

Knowing the charge and moment distribution within 
a nanoparticle helps to understand the size effect as well 
as the effect of the surrounding environment. It also helps 
to determine the electrostatic interaction and the exchange 
coupling between nanoparticles. A multi-scale model for 
complex nanocomposites or nano-structured devices in 
which each nanoparticle is treated as a point particle with 
proper charge and multipole moment, determined from 
the quantum mechanical calculation, can thus be built. 

 
 
4. Conclusion 

 
In summary, we have performed direct quantum 

mechanical simulation of magnetic FePt nanoparticle 
composites on CRAY XT3. The results reveal that there 
exists a shield region, about 4 Å in depth, below the 
surface of the nanoparticle. This region, whose size is 
found independent of the nanoparticle dimension, plays 
an essential role as an electromagnetic shield that screens 
the effect of the random alloys from influencing the 
interior region of the FePt nanoparticle. As a result, the 
electronic and magnetic structure of the interior region 
shows no difference from the FePt crystal. 

The ab initio electronic and magnetic structure 
calculations employing LSMS method and teraflop high 
performance supercomputers are clearly possible for the 
large unit cells necessary for modeling interfaces, 
surfaces, defects, and especially, the nano-structured 
materials while allowing a rigorous treatment of their 
electronic and magnetic properties. Despite the successes 
with our LSMS code, it is clear that nanotechnology, 
especially new discoveries in nano-structured spintronic 
devices, pose challenges that go much beyond the 
capability we just demonstrated. To meet the challenges, 
we are required to develop computational techniques 
capable of characterizing the electronic and magnetic 
structures on sub-hundred nanometers length scales and 
over a wide range of time scales.  Evidently, going from 
several nanometers to sub-hundred nanometers, an order 
of magnitude increase in length scale, increases the 
problem size from tens of thousands to millions of atoms, 
and consequently increases the computational cost by a 
factor of hundreds, even assuming the continued order-N 
scaling of our methods. In addition to the challenges in 
terms of the length scale requirement, we are also facing 
the challenges in terms of the time scale requirement 
which can range from picoseconds, for the simulation of 
the magnetic moment rotation, to tens of nanoseconds or 
more, for the simulation of nanoparticle movement. 
Clearly, the success of direct quantum mechanical 

simulation of nanostructured electronic devices relies on 
the birth of petaflop computing technology.  
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Figure 1. The order-N scaling of LSMS code on CRAY XT3. The performance test is a set of non-collinear spin-
canted calculations for bcc Fe with 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 atoms, respectively. Each 
atom is mapped onto a node. The measurement is performed at Pittsburgh Supercomputing Center. With LIZ = 
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Figure 3. A sliced view of the magnetic FePt nanoparticle together with the surrounding FePt random alloy 
matrix. The magnetic moment distribution within the nanoparticle and its surrounding atoms is indicated by the 
color change from the center to the edge. The silver colored balls in the interior region of the nanoparticle 
represent the Pt atoms and the red balls the Fe atoms. The darker color is used for the atoms with less magnetic 
moment value. 
CUG 2006 Proceedings 8 of 10 
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