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ABSTRACT: The Cray XT3’s SeaStar 3D mesh interconnect, which at PSC is 
configured as a 3D torus, offers exceptional bandwidth and low latency. However, 
improperly scheduled jobs produce contention that undermines otherwise scalable 
applications. Empirical observations indicated that production jobs were being badly 
fragmented, seriously degrading their performance. Recently we have quantified the 
impact of non-contiguous partitions on a variety of communication-intensive 
applications, including production codes, which are representative of PSC’s workload. 
We are investigating different combinations of job scheduling strategies which 
automatically map processors to jobs or accommodate user specifications for required 
or desired layouts. A flexible placement policy supports multiple protocols to 
accommodate PSC’s varied workload and users’ needs while mitigating the effects of 
fragmentation.  
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1. Introduction 

The Cray XT3’s SeaStar 3D mesh interconnect, 
which is configured on BigBen1 at PSC as a 3D torus, 
offers exceptional bandwidth and low latency. However, 
improperly placed jobs produce contention that 
undermines otherwise scalable applications. If multiple 
communication-intensive jobs are running concurrently, 
performance will degrade when messages for one job are 
routed through processors owned by another job. 

Empirical observations indicated that production jobs 
were being badly fragmented, substantially degrading 
their performance. The default processor-to-job 
assignment policy, which assigns jobs to cabinets in 
numerical order, is far from optimal because numerically 
sequential cabinets are not necessarily directly connected 
to each other, and even the connected subsets of 
processors assigned to a job are not typically compact. 
This protocol increases latency, and it also increases job 
fragmentation, seriously undermining performance.  

Recently we have quantified the impact of non-
contiguous job placements, described in Section 3, on a 
several communication-intensive applications which are 
representative of PSC’s workload. We experimented with 

different job layout protocols: the default job placement 
protocol, and an optimized protocol which assigns jobs to 
connected cabinets of processors in row-major order. The 
results are compelling: communication-intensive jobs 
representative of PSC’s workload clearly show the effects 
of fragmentation under the default protocol, and their 
efficiency increases substantially when they are run on 
compact, convex connected subsets of processors. 

In addition to the optimized protocol used in the 
experiments described in Section 3, we are evaluating 
different job placement protocols, discussed in Section 4, 
to minimize contention, maintain compactness, and 
minimize fragmentation. We are investigating 
combinations of different job scheduling strategies to 
accommodate PSC’s varied workload and users’ priorities 
and to reduce the effects of fragmentation. We are also 
exploring the use of pairwise communication profiling 
information obtained from CrayPat2 to automatically 
generate job placements optimized for particular 
applications. 

The results and techniques described in this paper, 
obtained on BigBen and described in the context of the 
Cray XT3, can be generalized to other 3D mesh 
computers. 
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Related Work 

A polynomial-time approximation scheme for 
assigning processors to jobs to minimize the average 
pairwise distance is described in Bender et al.3 The 
algorithm guarantees a placement within d2

12 −  of 
optimal and was implemented on the Cray T3D. The Cray 
T3E job placement protocol assigned cubes of connected 
processors to jobs (or an approximation if a perfect cube 
was not available).4 

2. Machine Organization 

PSC’s Cray XT3 has 2090 processors, of which 2068 
are configured as compute processors (the remaining 22 
are service I/O processors, serving as login processors, 
Lustre OSTs, and network interfaces). BigBen is 
physically arranged in 2 rows of 11 cabinets. Each 
cabinet contains 3 cages, and each cage contains 8 blades. 
Each compute blade contains 4 Opteron processors, 
yielding up to 32 compute processors per cage and up to 
96 compute processors per cabinet5. 

The cabinets are connected to form a 3D torus. The 
x-dimension cables connect cabinets within a row to each 
other; every cabinet is connected to 2 other cabinets. The 
y-dimension cables connect cages within a cabinet and are 
internal to a cabinet, and the z-dimension cables connect 
pairs of cabinets between rows. The wiring diagram for 
BigBen is shown in Figure 1. There are additional y- and 
z-dimension connections which are internal to a cage and 
do not appear in the wiring diagram. This topic is 
discussed in more detail in Section 4.2. 

Note that the x-dimension cables connect each 
cabinet to 2 others, forming a folded torus to minimize 
the maximum cable length. Thus along each row the 
cabinets are physically located in the following order: 

10 – 9 – 8 – 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 

They are connected by x-dimension cables in the 
following order: 

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0 – …

 

 
Figure 1. The BigBen wiring diagram shows which cabinets (and cages) are connected. 
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Sequentially numbered cabinets are not necessarily 
directly connected to each other. Table 1 is an adjacency 
matrix of the number of hops along the x-axis between 
pairs of cabinets. 

In the next section we will examine the relation 
between two job placement protocols, cabinet 
connectivity, and application performance. 

 

3. Quantifying Job Placement Strategies 

3.1 Placement Based on Default Placement Policy 

The default scheduling policy assigns free processors 
to a job by processor number, issuing free processors 
numerically from low to high. The processors are 
numbered by cabinet, alternating rows; i.e. the lowest-
numbered processors are in row 0 cabinet 0, then row 1 
cabinet 0, then row 0 cabinet 1, etc. As indicated in Table 
1, numerically sequential processors may be in cabinets 
which are separated from each other by up to 5 hops. 

We use screen captures of PSC’s 3D Monitor6 to 
display a typical mix of jobs on BigBen in various ways. 
The processors are color-coded by job. Free, disabled, 
service, and down processors are designated by white, 
red, yellow, and gray blocks, respectively, and users’ jobs 
are designated by a range of colors from brown to pink. 

Figure 2 shows the distribution of jobs on the 
processors of BigBen, where the processors are shown in 
their physical locations within cabinets. The seven jobs in 
Figure 2 were assigned to processors using the default job 
placement algorithm, which places jobs on numerically 
sequential cabinets. From the figure, there is little

 
 
 
 

 
Figure 2. The distribution of jobs by color on the processors of BigBen, where the 
processors are shown in their physical locations within cabinets. The assignment of 
processors to jobs was done with the default placement protocol. 

Table 1. Number of hops messages must traverse between 
cabinets within each row. Cabinets are numbered 
sequentially along each row; however, to avoid long 
wires, logical connectivity leapfrogs cabinets as described 
in the text. 
cabinet 0 1 2 3 4 5 6 7 8 9 10 

0            
1 1           
2 1 2          
3 2 1 3         
4 2 3 1 4        
5 3 2 4 1 5       
6 3 4 2 5 1 5      
7 4 3 5 2 5 1 4     
8 4 5 3 5 2 4 1 3    
9 5 4 5 3 4 2 3 1 2   

10 5 5 4 4 3 3 2 2 1 1  
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Figure 3. The processors of BigBen, colored by job, arranged by processor connectivity. 
Processors are adjacent only if they are directly connected. 

 
 
fragmentation when using cabinet numbering as the 
metric: jobs are clustered together in nearby cabinets. 

If we examine which processors are actually 
connected to each other, the inherent fragmentation of 
this policy becomes clear. Figure 3 shows processor 
connections; processors are adjacent only if they are 
directly connected to each other. It is clear that the default 
placement protocol systematically fragments jobs, 
sandwiching jobs around one another. In the case of the 
pink job, shown in Figure 3 and in isolation in Figure 4, 
interprocessor communication may very well occur 
through processors owned by another job, in this case, the 
brown job. Additionally, the pink job will bear the effects 
of communication traffic generated by the tan job which 
surrounds it. When the mix of jobs is communication-
intensive, as is the norm on the XT3 because of its high-
performance interconnect, this arrangement is clearly less 
than ideal. In the next section, we quantitatively 
demonstrate the effects of fragmentation on the 
performance of important, representative communication-
intensive applications.  

3.2 Quantifying the Effects of Fragmentation 

In order to quantify the effects of job placement, we 
measured the performance of several communication-
intensive applications under different processor allocation 

algorithms. We used actual production codes and a 
communication-intensive benchmark.  

Toward our goal of optimizing performance on our 
production system, we strove to simulate realistic 
conditions, neither idealistically good nor pathologically 
bad, and gather results on important, representative user 
codes. We validated our experiments with the default job 
placement policy by comparing results to actual 
production runs under the default placement policy. 

The applications we chose to use for our experiments 
are DNSmsp7, a direct numerical simulation code for 
analysis of turbulence, NAMD8, a scalable molecular 
dynamics code for simulations of large biomolecular 
systems, and PTRANS, a parallel matrix transpose code 
which is part of the HPCC benchmark9. These 
applications were chosen because they are all 
communication-intensive, and they cover a wide range of 
communication patterns. NAMD sends many small point-
to-point messages, and the communication pattern is 
irregular. DNSmsp sends many relatively small messages 
in a regular communication pattern. PTRANS sends many 
large all-to-all messages. Additionally, NAMD and DNS 
are production codes important to PSC’s workload. 
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Figure 4. The processor connectivity view of one job. It is fragmented, the connected 
subsets of processors are not very compact, and the connected subsets of processors 
partition the machine. Both connected subsets consist of processors in cabinets facing 
each other across rows, i.e. cabinets which are connected in the z-dimension and therefore 
which are only connected along the long edges. For legibility, the processors are shown as 
a cube, so there are connections between processors on the faces and edges which are not 
shown. The two separate subsets of processors are not connected however. This topic is 
discussed further in Section 4.2. 

 
 
 

 

Table 2. Application performance under three different scenarios: explicitly placed according to default protocol, explicitly 
placed according to an optimized protocol, and run as production jobs with default placement protocol. “Application” and 
“p” specify which combinations of applications and processor counts were run. (Each combination was run separately.) 
“Placed: default protocol” contains results from a controlled experiment in which the application was run concurrently with 
a 1024-processor PTRANS job and placed on the machine using the default protocol. “Placed: optimized for connectivity” 
contains results from a controlled experiment in which the application was run concurrently with a 1024-processor 
PTRANS job and placed on the machine so that each job was in a compact, contiguous block of connected cabinets. 
“Production: average” and “Production: standard deviation” contain results from at least 3 runs done at different times on 
the production system with other jobs running. “Improvement: optimized vs. production” is the percent improvement of the 
placed optimized performance over the production average.  

Application p 

Placed: 
default 

protocol 

Placed: 
optimized for 
connectivity 

Production: 
average 

Production: 
standard 
deviation 

Improvement: 
 optimized vs. production 

PTRANS 1024 129.3 GB/s 146.5 GB/s 131.2 GB/s 21.2 GB/s 11.7% 
DNS 512 316.5 s 296.0 s 310.5 s 9.2 s 4.7% 
DNS 192 198.0 s 163.0 s 181.7 s 23.5 s 10.3% 
NAMD 512 161.4 s 150.1 s 167.1 s 13.1 s 9.8% 
NAMD 32 252.7 s 228.3 s 252.0 s 12.2 s 9.4% 
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The results of the experiments and comparisons to 
production runs, shown in Table 2, dramatically 
demonstrate the effects of job fragmentation for 
communication-intensive applications. “Placed: default 
protocol” and “Placed: optimized for connectivity” show 
the results of the experiments, in which each application 
was placed on an empty machine along with a 1024-
processor PTRANS job to create contention. “Placed: 
default protocol” contains results of the experiment using 
the default placement protocol, in which processors were 
assigned both jobs in numerically sequential order. 
“Placed: optimized for connectivity” contains the results 
of the experiment using an optimized protocol, in which 
each job was placed in a contiguous block of connected 
cabinets. We assigned connected cabinets in x-major 
order (as opposed to z-major order) when cabinets are 
connected in the z-dimension, i.e. they face each other 
across rows, only the processors are only connected 
between cabinets along the long edges. When two 
cabinets are directly connected in the same row, every 
processor in one cabinet is connected to a processor in the 
other cabinet.1 This topic is discussed in depth in Section 
4.2. 

In order to validate our simulation of contention 
under the default scheduling algorithm and gather data 
about the variance in performance, we also ran the 
applications as production jobs with the default job 
placement policy. Each application was run at least 3 
times concurrently with user production jobs. 
“Production: average” and “Production: standard 
deviation” contain the averages and standard deviations 
of the production runs.  

“Improvement: optimized vs. production” is the 
percentage improvement in performance using the 
optimized placement policy over the production average. 
Assigning jobs to cabinets which are directly connected 
to each other invariably improved performance, often by 
approximately 10%. This improvement is significant and 
translates directly to increased scientific throughput.   

Two additional points are worth noting. First, there is 
some variability, as one would expect for scheduling on a 
large, production system. However, optimizing job 
placement for connectivity invariably reduces execution 
time. Second, similar effects are expected for other XT3 
topologies, e.g. a 2D mesh, whenever there are more than 
a few cabinets per row. Finally, we expect the effect of 
optimized job placement to increase with XT3 system 
size, both because fragmentation will increase and 
because bandwidth-intensive applications can become 

                                                 
1 This assumes that both cages are fully populated with 
compute processors; otherwise there may be some 
unmatched processors. 
 

increasingly sensitive to resource availability at higher 
processor counts. 

In Section 3.3 we discuss specific changes made by 
PSC to the job scheduling infrastructure. In Section 4, we 
discuss details of some job placement protocols being 
explored at PSC. We also discuss an overall strategy of 
incorporating a combination of job layout protocols to 
accommodate PSC’s varied workload and users’ priorities 
and to reduce fragmentation. 

3.3 PSC Modifications to the Scheduling Infrastructure 
to Support Customized Job Placement 

PSC modified the job scheduling infrastructure, 
including PBS Pro10 to support dynamic assignment of 
processors to jobs by moving processor to job assignment 
from the CPA (compute processor allocator) to the 
scheduler11. The default assignment of processors to jobs 
had previously been made by the CPA, always in 
numerical order from low to high from the list of free 
processors, and the scheduler merely provided the CPA 
with a count of the number of free processors. At PSC, 
the scheduling infrastructure was modified so that the list 
of free processors is passed to the MOM from the 
scheduler, and the MOM in turn passes the list of 
processors for a given job to the CPA. A new CPA data 
structure was added to contain the processor list. 

These modifications enable flexible, dynamic job 
scheduling. The processor allocation algorithm can be 
modified on the fly, and processors can be allocated 
differently for different jobs.  

4. Ongoing and Future Work 
A flexible, dynamic job placement strategy which 

supports different job placement algorithms best suits the 
diverse workload and priorities of users at PSC, while 
reducing fragmentation. We first describe our overall 
strategy for using a combination of job placement 
protocols and then discuss specific job placement 
protocols in detail. 

4.1 Overall Strategy: Different Placement Protocols for 
Different Jobs 

Some applications are more sensitive to job 
placement than others, and users have different 
preferences regarding the balance between performance 
and throughput. Our goal is an overall job placement 
strategy which accommodates our varied workload and 
user needs while keeping fragmentation in check. We 
provide several different options for job placement: 
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Required shape: For a given x, y, and z, the scheduler 
waits until [connected] free processors in the required 
shape are available. With some codes, communication 
patterns are well-understood, and it is possible to directly 
determine optimal x, y, and z dimensions for job layout. 
In other cases, optimized dimensions can be inferred 
through pair-wise communication profiling with CrayPat. 

Preferred shape: For a given x, y, and z, the scheduler 
tries to place the job on [connected] free processors in the 
preferred shape if they are available. Otherwise it places 
the job on available free processors, attempting to 
minimize communication interference between jobs as 
described in Section 4.2. 

Optimized for communication: The scheduler places the 
job on free processors, attempting to minimize 
communication interference between jobs as described in 
Section 4.2. 

Not optimized for communication: The scheduler places 
the job on scattered clusters of free processors, starting 
with the smallest cluster first, reserving large contiguous 
blocks for communication-intensive jobs. 

4.2 Minimizing Communication Interference Between 
Jobs and Avoiding Excessive Fragmentation Over Time 

 In this section we discuss job placement protocols in 
the case where optimization for communication is 
desired, and explicit x, y, and z dimensions are not being 
used. We are currently evaluating protocols for job layout 
in terms of performance over time, which is affected by 
fragmentation as well as communication interference and 
latency. Over time, fragmentation of free processors is 
inevitable. We seek a balance between minimizing 
communication interference by placing jobs compactly on 
processors and minimizing fragmentation over time. We 
are evaluating performance and fragmentation over time 
using protocols described below. 

4.2.1 Processor Ordering 

If the job placement protocol always attempts to 
assign jobs to processors which are connected in cubes or 
near-cubes for example, initially communication 
contention will be low and compactness will be high. 
Given a mix of job sizes, fragmentation will be an issue 
over time, however, reducing opportunities for compact, 
contiguous job placement. We are exploring approaches 
which can sustain optimized job placement over time on a 
production system with a varied workload. 

The job placement strategy we used in our optimized 
experiment was to assign jobs to processors which are in 
directly connected cabinets. In this strategy we assign free 
processors by cabinet in x-major order: 

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0 … 

When all processors of one row are assigned, processors 
are assigned from the other row in the identical order. 

The reason that the list of free processors is in x-
major order is that on the Cray XT3, most connections 
which leave a cage or a cabinet are along the x-axis, as 
shown in Table 3. Of the connections which leave a cage, 
72.7% are along the x-axis, and of the connections which 
leave a cabinet, 88.9% are along the x-axis. 100% of x-
dimension connections are between 2 cabinets, 25% of y-
dimension connections are between 2 cages (always 
internal to a cabinet), and 12.5% of z-dimension 
connections are between 2 cabinets. Thus when 
considering two cabinets facing each other across a row, 
i.e. connected in the z-dimension, only 12.5% of the 
processors in one cabinet are connected to a processor in 
another cabinet. When two cabinets are directly 
connected in the same row, every processor in one 
cabinet is connected to a processor in the other cabinet1. 

In order to increase compactness and reduce 
fragmentation, we are also examining a strategy, currently 
in use at PSC, where we assign jobs to processors in 
contiguously connected cages. In this strategy we assign 
free processors by row, cage position within a cabinet, 
and cabinet, so that successive cages, designated by 

                                                 
1 This assumes that both cabinets are fully populated with 
compute processors; otherwise there may be some 
unmatched processors.  
2 This includes connections leaving a cage and remaining 
in the same cabinet (y-dimension) and connections 
leaving the cabinet and therefore the cage (x- and z-
dimensions). 
3 For each compute processor, there are 2 connections for 
each dimension, one for each direction. Therefore there 
are 2 × 32 connections per cage and 2 × 96 connections 
per cabinet when the cage is fully populated with 
compute processors; otherwise the numbers vary slightly.  

Table 3. Each processor has 2 connections in each 
dimension, one for each direction. This table contains the 
number of external connections per cage and per cabinet by 
dimension. It also contains the percentage of all 
connections leaving a cage or cabinet in each dimension. 

Connections 
 Leaving Cage2 

Connections  
Leaving Cabinet 

Dimension Number 
(out of 64) 

3 

% of 
those 

leaving 
Number 

 (out of 192)2

% of 
those 

leaving

x 64 72.7 192 88.9 

y 16 18.2 0 0 

z 8 9.1 24 11.1 
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(cabinet, cage position, row) triples, are directly 
connected to each other in x-major order. Table 4 shows 
the (cabinet, cage position, row) order we use.  

Since all x-dimension connections are between two 
cabinets, allocating processors by cage in x-major order 
will generally result in more compact sets of processors 
than allocating by cabinet. Every cage of processors 
forms a subplane in the connection graph shown in Figure 
3. Each processor is connected to at most 4 processors in 
its cage (and cabinet) out of 6 connections. Two cages in 
the same cabinet are only connected along one edge. 
When two cages in the same cage position (0, 1, or 2) and 
row (0 or 1) are in directly connected cabinets, every 
processor in one cage is connected to a processor in the 
other cage.1 

4.2.2 Assigning Jobs to Processors 

We are exploring different strategies for optimizing 
the assignment of jobs to particular groups of cabinets or 
cages. In the case of cage-wise job placement, we can 
keep track of the number of free processors within each 
cage. If the number of free processors is above a certain 
threshold, we consider that cage to be eligible for 
assignment. We can keep track of lists of contiguous 
eligible cages, ordered as in Table 4. We then assign a job 
to the smallest ordered sublist of contiguous, eligible 
cages which can accommodate the job. For example, 
suppose that the threshold for a cage to be considered 
eligible is 28. If the only eligible cages are the (cabinet, 
cage position, row) triples (1,1,0), (3,1,0), (4,1,0), (2,1,0), 
(0,1,0), and (0,2,0), a 48-processor job will be placed on 
processors in cages (1,1,0) and (3,1,0) with this protocol. 

                                                                               
 
1 This includes connections leaving a cage and remaining 
in the same cabinet (y-dimension) and connections 
leaving the cabinet and therefore the cage (x- and z-
dimensions) 
 

The same strategy can be applied to cabinet-wise 
assignment or a more flexible cage-wise assignment 
strategy. In the protocol discussed above, the cages are 
considered to be contiguous if they occur sequentially in 
the (cabinet, cage position, row) ordering shown in Table 
4. We can instead generalize this approach to consider all 
clusters of contiguous eligible cages, where cages are 
considered to be contiguous if they are directly connected 
in any dimension, with weighted preferences based on the 
number of connections and cable length. 

4.3 Future Work 

Future work includes supporting the ordering of 
processors within a job. Additionally, while we can 
already use CrayPat to learn about communication 
patterns, we are exploring the automatic generation of job 
layouts and processor orderings within jobs with pairwise 
communication profiling information obtained from 
CrayPat. 

5. Conclusions 
We have realistically quantified the effects of the 

default job layout protocol and an optimized protocol on 
communication-intensive applications on the Cray XT3. 
We ran our experiments on applications, including 
production codes, which are representative of our 
workload and span a variety of communication patterns 
under realistic conditions, verified by comparison to 
production runs. The results of our experiments clearly 
indicate the performance penalty paid by poorly placed 
communication-intensive applications. 

We are studying different job placement protocols 
with the goal of minimizing communication interference 
and latency over time on a production machine with a 
varied job mix. With that goal in mind, we are 
investigating different combinations of job placement 
protocols to improve performance of communication-
intensive jobs while keeping fragmentation in check over 
time.  

Although the results and methods presented in this 
paper were obtained on BigBen and described in the 
context of the Cray XT3, they can be generalized to other 
3D mesh computers. 
 

Table 4. (cabinet, cage position, row) ordering used to 
assign free processors to jobs in x-major cage-wise 
ordering, i.e. the order is (0,0,0), (2,0,0), …, (3,0,0), 
(1,0,0), (1,1,0), (3,1,0), …, (1,2,0), (1,2,1), …, (0,0,1) 

Cabinet Order (x) Cage Position (y) Row (z)

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 0 0 

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 1 0 

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 2 0 

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 2 1 

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 1 1 

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 0 1 
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