

CUG 2006 Proceedings 1 of 9

Optimizing Job Placement on the Cray XT3

Deborah Weisser, Nick Nystrom, Chad Vizino,
Shawn T. Brown, and John Urbanic
Pittsburgh Supercomputing Center

ABSTRACT: The Cray XT3’s SeaStar 3D mesh interconnect, which at PSC is
configured as a 3D torus, offers exceptional bandwidth and low latency. However,
improperly scheduled jobs produce contention that undermines otherwise scalable
applications. Empirical observations indicated that production jobs were being badly
fragmented, seriously degrading their performance. Recently we have quantified the
impact of non-contiguous partitions on a variety of communication-intensive
applications, including production codes, which are representative of PSC’s workload.
We are investigating different combinations of job scheduling strategies which
automatically map processors to jobs or accommodate user specifications for required
or desired layouts. A flexible placement policy supports multiple protocols to
accommodate PSC’s varied workload and users’ needs while mitigating the effects of
fragmentation.

KEYWORDS: Cray XT3, processor allocation, job placement, job scheduling,
optimization

1. Introduction

The Cray XT3’s SeaStar 3D mesh interconnect,
which is configured on BigBen1 at PSC as a 3D torus,
offers exceptional bandwidth and low latency. However,
improperly placed jobs produce contention that
undermines otherwise scalable applications. If multiple
communication-intensive jobs are running concurrently,
performance will degrade when messages for one job are
routed through processors owned by another job.

Empirical observations indicated that production jobs
were being badly fragmented, substantially degrading
their performance. The default processor-to-job
assignment policy, which assigns jobs to cabinets in
numerical order, is far from optimal because numerically
sequential cabinets are not necessarily directly connected
to each other, and even the connected subsets of
processors assigned to a job are not typically compact.
This protocol increases latency, and it also increases job
fragmentation, seriously undermining performance.

Recently we have quantified the impact of non-
contiguous job placements, described in Section 3, on a
several communication-intensive applications which are
representative of PSC’s workload. We experimented with

different job layout protocols: the default job placement
protocol, and an optimized protocol which assigns jobs to
connected cabinets of processors in row-major order. The
results are compelling: communication-intensive jobs
representative of PSC’s workload clearly show the effects
of fragmentation under the default protocol, and their
efficiency increases substantially when they are run on
compact, convex connected subsets of processors.

In addition to the optimized protocol used in the
experiments described in Section 3, we are evaluating
different job placement protocols, discussed in Section 4,
to minimize contention, maintain compactness, and
minimize fragmentation. We are investigating
combinations of different job scheduling strategies to
accommodate PSC’s varied workload and users’ priorities
and to reduce the effects of fragmentation. We are also
exploring the use of pairwise communication profiling
information obtained from CrayPat2 to automatically
generate job placements optimized for particular
applications.

The results and techniques described in this paper,
obtained on BigBen and described in the context of the
Cray XT3, can be generalized to other 3D mesh
computers.

CUG 2006 Proceedings 2 of 9

Related Work

A polynomial-time approximation scheme for
assigning processors to jobs to minimize the average
pairwise distance is described in Bender et al.3 The
algorithm guarantees a placement within d2

12 − of
optimal and was implemented on the Cray T3D. The Cray
T3E job placement protocol assigned cubes of connected
processors to jobs (or an approximation if a perfect cube
was not available).4

2. Machine Organization

PSC’s Cray XT3 has 2090 processors, of which 2068
are configured as compute processors (the remaining 22
are service I/O processors, serving as login processors,
Lustre OSTs, and network interfaces). BigBen is
physically arranged in 2 rows of 11 cabinets. Each
cabinet contains 3 cages, and each cage contains 8 blades.
Each compute blade contains 4 Opteron processors,
yielding up to 32 compute processors per cage and up to
96 compute processors per cabinet5.

The cabinets are connected to form a 3D torus. The
x-dimension cables connect cabinets within a row to each
other; every cabinet is connected to 2 other cabinets. The
y-dimension cables connect cages within a cabinet and are
internal to a cabinet, and the z-dimension cables connect
pairs of cabinets between rows. The wiring diagram for
BigBen is shown in Figure 1. There are additional y- and
z-dimension connections which are internal to a cage and
do not appear in the wiring diagram. This topic is
discussed in more detail in Section 4.2.

Note that the x-dimension cables connect each
cabinet to 2 others, forming a folded torus to minimize
the maximum cable length. Thus along each row the
cabinets are physically located in the following order:

10 – 9 – 8 – 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0

They are connected by x-dimension cables in the
following order:

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0 – …

Figure 1. The BigBen wiring diagram shows which cabinets (and cages) are connected.

CUG 2006 Proceedings 3 of 9

Sequentially numbered cabinets are not necessarily
directly connected to each other. Table 1 is an adjacency
matrix of the number of hops along the x-axis between
pairs of cabinets.

In the next section we will examine the relation
between two job placement protocols, cabinet
connectivity, and application performance.

3. Quantifying Job Placement Strategies

3.1 Placement Based on Default Placement Policy

The default scheduling policy assigns free processors
to a job by processor number, issuing free processors
numerically from low to high. The processors are
numbered by cabinet, alternating rows; i.e. the lowest-
numbered processors are in row 0 cabinet 0, then row 1
cabinet 0, then row 0 cabinet 1, etc. As indicated in Table
1, numerically sequential processors may be in cabinets
which are separated from each other by up to 5 hops.

We use screen captures of PSC’s 3D Monitor6 to
display a typical mix of jobs on BigBen in various ways.
The processors are color-coded by job. Free, disabled,
service, and down processors are designated by white,
red, yellow, and gray blocks, respectively, and users’ jobs
are designated by a range of colors from brown to pink.

Figure 2 shows the distribution of jobs on the
processors of BigBen, where the processors are shown in
their physical locations within cabinets. The seven jobs in
Figure 2 were assigned to processors using the default job
placement algorithm, which places jobs on numerically
sequential cabinets. From the figure, there is little

Figure 2. The distribution of jobs by color on the processors of BigBen, where the
processors are shown in their physical locations within cabinets. The assignment of
processors to jobs was done with the default placement protocol.

Table 1. Number of hops messages must traverse between
cabinets within each row. Cabinets are numbered
sequentially along each row; however, to avoid long
wires, logical connectivity leapfrogs cabinets as described
in the text.
cabinet 0 1 2 3 4 5 6 7 8 9 10

0
1 1
2 1 2
3 2 1 3
4 2 3 1 4
5 3 2 4 1 5
6 3 4 2 5 1 5
7 4 3 5 2 5 1 4
8 4 5 3 5 2 4 1 3
9 5 4 5 3 4 2 3 1 2

10 5 5 4 4 3 3 2 2 1 1

CUG 2006 Proceedings 4 of 9

Figure 3. The processors of BigBen, colored by job, arranged by processor connectivity.
Processors are adjacent only if they are directly connected.

fragmentation when using cabinet numbering as the
metric: jobs are clustered together in nearby cabinets.

If we examine which processors are actually
connected to each other, the inherent fragmentation of
this policy becomes clear. Figure 3 shows processor
connections; processors are adjacent only if they are
directly connected to each other. It is clear that the default
placement protocol systematically fragments jobs,
sandwiching jobs around one another. In the case of the
pink job, shown in Figure 3 and in isolation in Figure 4,
interprocessor communication may very well occur
through processors owned by another job, in this case, the
brown job. Additionally, the pink job will bear the effects
of communication traffic generated by the tan job which
surrounds it. When the mix of jobs is communication-
intensive, as is the norm on the XT3 because of its high-
performance interconnect, this arrangement is clearly less
than ideal. In the next section, we quantitatively
demonstrate the effects of fragmentation on the
performance of important, representative communication-
intensive applications.

3.2 Quantifying the Effects of Fragmentation

In order to quantify the effects of job placement, we
measured the performance of several communication-
intensive applications under different processor allocation

algorithms. We used actual production codes and a
communication-intensive benchmark.

Toward our goal of optimizing performance on our
production system, we strove to simulate realistic
conditions, neither idealistically good nor pathologically
bad, and gather results on important, representative user
codes. We validated our experiments with the default job
placement policy by comparing results to actual
production runs under the default placement policy.

The applications we chose to use for our experiments
are DNSmsp7, a direct numerical simulation code for
analysis of turbulence, NAMD8, a scalable molecular
dynamics code for simulations of large biomolecular
systems, and PTRANS, a parallel matrix transpose code
which is part of the HPCC benchmark9. These
applications were chosen because they are all
communication-intensive, and they cover a wide range of
communication patterns. NAMD sends many small point-
to-point messages, and the communication pattern is
irregular. DNSmsp sends many relatively small messages
in a regular communication pattern. PTRANS sends many
large all-to-all messages. Additionally, NAMD and DNS
are production codes important to PSC’s workload.

CUG 2006 Proceedings 5 of 9

Figure 4. The processor connectivity view of one job. It is fragmented, the connected
subsets of processors are not very compact, and the connected subsets of processors
partition the machine. Both connected subsets consist of processors in cabinets facing
each other across rows, i.e. cabinets which are connected in the z-dimension and therefore
which are only connected along the long edges. For legibility, the processors are shown as
a cube, so there are connections between processors on the faces and edges which are not
shown. The two separate subsets of processors are not connected however. This topic is
discussed further in Section 4.2.

Table 2. Application performance under three different scenarios: explicitly placed according to default protocol, explicitly
placed according to an optimized protocol, and run as production jobs with default placement protocol. “Application” and
“p” specify which combinations of applications and processor counts were run. (Each combination was run separately.)
“Placed: default protocol” contains results from a controlled experiment in which the application was run concurrently with
a 1024-processor PTRANS job and placed on the machine using the default protocol. “Placed: optimized for connectivity”
contains results from a controlled experiment in which the application was run concurrently with a 1024-processor
PTRANS job and placed on the machine so that each job was in a compact, contiguous block of connected cabinets.
“Production: average” and “Production: standard deviation” contain results from at least 3 runs done at different times on
the production system with other jobs running. “Improvement: optimized vs. production” is the percent improvement of the
placed optimized performance over the production average.

Application p

Placed:
default

protocol

Placed:
optimized for
connectivity

Production:
average

Production:
standard
deviation

Improvement:
 optimized vs. production

PTRANS 1024 129.3 GB/s 146.5 GB/s 131.2 GB/s 21.2 GB/s 11.7%
DNS 512 316.5 s 296.0 s 310.5 s 9.2 s 4.7%
DNS 192 198.0 s 163.0 s 181.7 s 23.5 s 10.3%
NAMD 512 161.4 s 150.1 s 167.1 s 13.1 s 9.8%
NAMD 32 252.7 s 228.3 s 252.0 s 12.2 s 9.4%

CUG 2006 Proceedings 6 of 9

The results of the experiments and comparisons to
production runs, shown in Table 2, dramatically
demonstrate the effects of job fragmentation for
communication-intensive applications. “Placed: default
protocol” and “Placed: optimized for connectivity” show
the results of the experiments, in which each application
was placed on an empty machine along with a 1024-
processor PTRANS job to create contention. “Placed:
default protocol” contains results of the experiment using
the default placement protocol, in which processors were
assigned both jobs in numerically sequential order.
“Placed: optimized for connectivity” contains the results
of the experiment using an optimized protocol, in which
each job was placed in a contiguous block of connected
cabinets. We assigned connected cabinets in x-major
order (as opposed to z-major order) when cabinets are
connected in the z-dimension, i.e. they face each other
across rows, only the processors are only connected
between cabinets along the long edges. When two
cabinets are directly connected in the same row, every
processor in one cabinet is connected to a processor in the
other cabinet.1 This topic is discussed in depth in Section
4.2.

In order to validate our simulation of contention
under the default scheduling algorithm and gather data
about the variance in performance, we also ran the
applications as production jobs with the default job
placement policy. Each application was run at least 3
times concurrently with user production jobs.
“Production: average” and “Production: standard
deviation” contain the averages and standard deviations
of the production runs.

“Improvement: optimized vs. production” is the
percentage improvement in performance using the
optimized placement policy over the production average.
Assigning jobs to cabinets which are directly connected
to each other invariably improved performance, often by
approximately 10%. This improvement is significant and
translates directly to increased scientific throughput.

Two additional points are worth noting. First, there is
some variability, as one would expect for scheduling on a
large, production system. However, optimizing job
placement for connectivity invariably reduces execution
time. Second, similar effects are expected for other XT3
topologies, e.g. a 2D mesh, whenever there are more than
a few cabinets per row. Finally, we expect the effect of
optimized job placement to increase with XT3 system
size, both because fragmentation will increase and
because bandwidth-intensive applications can become

1 This assumes that both cages are fully populated with
compute processors; otherwise there may be some
unmatched processors.

increasingly sensitive to resource availability at higher
processor counts.

In Section 3.3 we discuss specific changes made by
PSC to the job scheduling infrastructure. In Section 4, we
discuss details of some job placement protocols being
explored at PSC. We also discuss an overall strategy of
incorporating a combination of job layout protocols to
accommodate PSC’s varied workload and users’ priorities
and to reduce fragmentation.

3.3 PSC Modifications to the Scheduling Infrastructure
to Support Customized Job Placement

PSC modified the job scheduling infrastructure,
including PBS Pro10 to support dynamic assignment of
processors to jobs by moving processor to job assignment
from the CPA (compute processor allocator) to the
scheduler11. The default assignment of processors to jobs
had previously been made by the CPA, always in
numerical order from low to high from the list of free
processors, and the scheduler merely provided the CPA
with a count of the number of free processors. At PSC,
the scheduling infrastructure was modified so that the list
of free processors is passed to the MOM from the
scheduler, and the MOM in turn passes the list of
processors for a given job to the CPA. A new CPA data
structure was added to contain the processor list.

These modifications enable flexible, dynamic job
scheduling. The processor allocation algorithm can be
modified on the fly, and processors can be allocated
differently for different jobs.

4. Ongoing and Future Work
A flexible, dynamic job placement strategy which

supports different job placement algorithms best suits the
diverse workload and priorities of users at PSC, while
reducing fragmentation. We first describe our overall
strategy for using a combination of job placement
protocols and then discuss specific job placement
protocols in detail.

4.1 Overall Strategy: Different Placement Protocols for
Different Jobs

Some applications are more sensitive to job
placement than others, and users have different
preferences regarding the balance between performance
and throughput. Our goal is an overall job placement
strategy which accommodates our varied workload and
user needs while keeping fragmentation in check. We
provide several different options for job placement:

CUG 2006 Proceedings 7 of 9

Required shape: For a given x, y, and z, the scheduler
waits until [connected] free processors in the required
shape are available. With some codes, communication
patterns are well-understood, and it is possible to directly
determine optimal x, y, and z dimensions for job layout.
In other cases, optimized dimensions can be inferred
through pair-wise communication profiling with CrayPat.

Preferred shape: For a given x, y, and z, the scheduler
tries to place the job on [connected] free processors in the
preferred shape if they are available. Otherwise it places
the job on available free processors, attempting to
minimize communication interference between jobs as
described in Section 4.2.

Optimized for communication: The scheduler places the
job on free processors, attempting to minimize
communication interference between jobs as described in
Section 4.2.

Not optimized for communication: The scheduler places
the job on scattered clusters of free processors, starting
with the smallest cluster first, reserving large contiguous
blocks for communication-intensive jobs.

4.2 Minimizing Communication Interference Between
Jobs and Avoiding Excessive Fragmentation Over Time

 In this section we discuss job placement protocols in
the case where optimization for communication is
desired, and explicit x, y, and z dimensions are not being
used. We are currently evaluating protocols for job layout
in terms of performance over time, which is affected by
fragmentation as well as communication interference and
latency. Over time, fragmentation of free processors is
inevitable. We seek a balance between minimizing
communication interference by placing jobs compactly on
processors and minimizing fragmentation over time. We
are evaluating performance and fragmentation over time
using protocols described below.

4.2.1 Processor Ordering

If the job placement protocol always attempts to
assign jobs to processors which are connected in cubes or
near-cubes for example, initially communication
contention will be low and compactness will be high.
Given a mix of job sizes, fragmentation will be an issue
over time, however, reducing opportunities for compact,
contiguous job placement. We are exploring approaches
which can sustain optimized job placement over time on a
production system with a varied workload.

The job placement strategy we used in our optimized
experiment was to assign jobs to processors which are in
directly connected cabinets. In this strategy we assign free
processors by cabinet in x-major order:

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0 …

When all processors of one row are assigned, processors
are assigned from the other row in the identical order.

The reason that the list of free processors is in x-
major order is that on the Cray XT3, most connections
which leave a cage or a cabinet are along the x-axis, as
shown in Table 3. Of the connections which leave a cage,
72.7% are along the x-axis, and of the connections which
leave a cabinet, 88.9% are along the x-axis. 100% of x-
dimension connections are between 2 cabinets, 25% of y-
dimension connections are between 2 cages (always
internal to a cabinet), and 12.5% of z-dimension
connections are between 2 cabinets. Thus when
considering two cabinets facing each other across a row,
i.e. connected in the z-dimension, only 12.5% of the
processors in one cabinet are connected to a processor in
another cabinet. When two cabinets are directly
connected in the same row, every processor in one
cabinet is connected to a processor in the other cabinet1.

In order to increase compactness and reduce
fragmentation, we are also examining a strategy, currently
in use at PSC, where we assign jobs to processors in
contiguously connected cages. In this strategy we assign
free processors by row, cage position within a cabinet,
and cabinet, so that successive cages, designated by

1 This assumes that both cabinets are fully populated with
compute processors; otherwise there may be some
unmatched processors.
2 This includes connections leaving a cage and remaining
in the same cabinet (y-dimension) and connections
leaving the cabinet and therefore the cage (x- and z-
dimensions).
3 For each compute processor, there are 2 connections for
each dimension, one for each direction. Therefore there
are 2 × 32 connections per cage and 2 × 96 connections
per cabinet when the cage is fully populated with
compute processors; otherwise the numbers vary slightly.

Table 3. Each processor has 2 connections in each
dimension, one for each direction. This table contains the
number of external connections per cage and per cabinet by
dimension. It also contains the percentage of all
connections leaving a cage or cabinet in each dimension.

Connections
 Leaving Cage2

Connections
Leaving Cabinet

Dimension Number
(out of 64)

3

% of
those

leaving
Number

 (out of 192)2

% of
those

leaving

x 64 72.7 192 88.9

y 16 18.2 0 0

z 8 9.1 24 11.1

CUG 2006 Proceedings 8 of 9

(cabinet, cage position, row) triples, are directly
connected to each other in x-major order. Table 4 shows
the (cabinet, cage position, row) order we use.

Since all x-dimension connections are between two
cabinets, allocating processors by cage in x-major order
will generally result in more compact sets of processors
than allocating by cabinet. Every cage of processors
forms a subplane in the connection graph shown in Figure
3. Each processor is connected to at most 4 processors in
its cage (and cabinet) out of 6 connections. Two cages in
the same cabinet are only connected along one edge.
When two cages in the same cage position (0, 1, or 2) and
row (0 or 1) are in directly connected cabinets, every
processor in one cage is connected to a processor in the
other cage.1

4.2.2 Assigning Jobs to Processors

We are exploring different strategies for optimizing
the assignment of jobs to particular groups of cabinets or
cages. In the case of cage-wise job placement, we can
keep track of the number of free processors within each
cage. If the number of free processors is above a certain
threshold, we consider that cage to be eligible for
assignment. We can keep track of lists of contiguous
eligible cages, ordered as in Table 4. We then assign a job
to the smallest ordered sublist of contiguous, eligible
cages which can accommodate the job. For example,
suppose that the threshold for a cage to be considered
eligible is 28. If the only eligible cages are the (cabinet,
cage position, row) triples (1,1,0), (3,1,0), (4,1,0), (2,1,0),
(0,1,0), and (0,2,0), a 48-processor job will be placed on
processors in cages (1,1,0) and (3,1,0) with this protocol.

1 This includes connections leaving a cage and remaining
in the same cabinet (y-dimension) and connections
leaving the cabinet and therefore the cage (x- and z-
dimensions)

The same strategy can be applied to cabinet-wise
assignment or a more flexible cage-wise assignment
strategy. In the protocol discussed above, the cages are
considered to be contiguous if they occur sequentially in
the (cabinet, cage position, row) ordering shown in Table
4. We can instead generalize this approach to consider all
clusters of contiguous eligible cages, where cages are
considered to be contiguous if they are directly connected
in any dimension, with weighted preferences based on the
number of connections and cable length.

4.3 Future Work

Future work includes supporting the ordering of
processors within a job. Additionally, while we can
already use CrayPat to learn about communication
patterns, we are exploring the automatic generation of job
layouts and processor orderings within jobs with pairwise
communication profiling information obtained from
CrayPat.

5. Conclusions
We have realistically quantified the effects of the

default job layout protocol and an optimized protocol on
communication-intensive applications on the Cray XT3.
We ran our experiments on applications, including
production codes, which are representative of our
workload and span a variety of communication patterns
under realistic conditions, verified by comparison to
production runs. The results of our experiments clearly
indicate the performance penalty paid by poorly placed
communication-intensive applications.

We are studying different job placement protocols
with the goal of minimizing communication interference
and latency over time on a production machine with a
varied job mix. With that goal in mind, we are
investigating different combinations of job placement
protocols to improve performance of communication-
intensive jobs while keeping fragmentation in check over
time.

Although the results and methods presented in this
paper were obtained on BigBen and described in the
context of the Cray XT3, they can be generalized to other
3D mesh computers.

Table 4. (cabinet, cage position, row) ordering used to
assign free processors to jobs in x-major cage-wise
ordering, i.e. the order is (0,0,0), (2,0,0), …, (3,0,0),
(1,0,0), (1,1,0), (3,1,0), …, (1,2,0), (1,2,1), …, (0,0,1)

Cabinet Order (x) Cage Position (y) Row (z)

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 0 0

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 1 0

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 2 0

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 2 1

0, 2, 4, 6, 8, 10, 9, 7, 5, 3, 1 1 1

1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0 0 1

CUG 2006 Proceedings 9 of 9

Acknowledgments
The authors would like to thank Dennis Abts of Cray

Inc. for useful discussions.

This material is based upon work supported by the
National Science Foundation under Cooperative
Agreement No. SCI-0456541.

About the Authors

Deborah Weisser, a member of PSC’s Strategic
Applications Group, is active in a variety of topics,
including performance modeling, system and application
performance, and parallel algorithms.

Nick Nystrom is Director of Strategic Applications at
PSC, focused on advancing understanding through
computational science. Nick has been active in
developing and optimizing applications for Cray
architectures range from the X-MP through the XT3.

Chad Vizino is a member of the Scientific
Computing Systems group at PSC and is currently
working on scheduling systems, resource management
and accounting.

Shawn T. Brown, the Senior Support Specialist in
computational chemistry at PSC, has worked in the
development of quantum chemistry code and is now
active in the application and development of massively
parallel computational chemistry software.

John Urbanic is a Computational Science Consultant
in the Strategic Applications group at PSC. He is focused
on getting real applications to scale to full machine sizes
and is always looking for new challenges.

The authors’ email addresses are [dweisser, nystrom,
vizino, stbrown, urbanic]@psc.edu.

References

1 http://www.psc.edu/machines/cray/xt3/bigben.html
2 L. DeRose, S. Kaufmann, D. Johnson, and B. Homer,

The New Generation of Cray Performance Tools, CUG
2005, Albuquerque, NM, May 2005.

3 M. Bender, D. Bunde, E. Demaine, S. Fekete, V. Leung,
H. Meijer, and C. Phillips, Communication-Aware
Processor Allocation for Supercomputers. Proceedings
of the 9th Workshop on Algorithms and Data Structures
(WADS), 2005.

4 Cray T3E Architecture Overview, Cray Inc.
5 Cray XT3 System Hardware Configuration Guide EDS-

1019-1, Cray Inc.
6 J. Yanovich, R. Budden, and D. Simmel, XT3DMON

3D visual system monitor for PSC’s Cray XT3. (2006).
Native clients: http://www.psc.edu/~yanovich/xt3dmon
Limited web version: http://bigben-monitor.psc.edu

7 P. K. Yeung, S. B. Pope, and B. L. Sawford. Reynolds
number dependence of Lagrangian statistics in large
numerical simulations of isotropic turbulence.
Submitted to J. Turbulence.
http://www.psc.edu/science/2005/yeung.

8 L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A.
Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K.
Varadarajan, and K. Schulten, NAMD2: Greater
scalability for parallel molecular dynamics. J. Comp.
Phys., 151:283-312, 1999.

9 J. Dongarra and P. Luszczek, Introduction to the
HPCChallenge Benchmark Suite, ICL Technical
Report, ICL-UT-05-01, (Also appears as CS Dept. Tech
Report UT-CS-05-544), 2005.

10 http://www.altair.com/software/pbspro.htm
11 C. Vizino, Batch Scheduling on the Cray XT3, Cray

User Group 2005 Proceedings, Albuquerque, New
Mexico, 2005.

