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Optimizing Job Placement

e Motivation: the SeaStar’s 3D mesh interconnect
(configured at PSC as a 3D torus) offers exceptional
bandwidth and low latency

— however, improperly scheduled jobs produce contention that
undermines otherwise scalable applications

— empirical observations indicated that production jobs were being
badly fragmented, seriously degrading their performance

— recently, we have quantified the impact of noncontiguous
partitions on a variety of communication-intensive applications
« Joint work with Chad Vizino to build support for job
layout into XT3 scheduling
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Job Placement by Cabinet
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Bigben Wiring Diagram
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Default Scheduling Algorithm

* Nodes allocated numerically from low to high from
among free nodes:

cabinet 0 —row O
cabinet 0 —row 1
cabinet1 —row O
cabinet 1 —row 1

cabinet 10 —row O
cabinet 10 —row 1
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Job placement

Nodes allocated numerically from low to high from among
free nodes, which results the following cabinet order:

0-1-2-3-4-5-6-7-8-9-10-0
...but cabinets are connected differently:
0-2-4-6-8-10-9-7-5-3-1-0

The number of hops between numerically adjacent
cabinets varies from 1 to 5
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Hops between cabinets
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Job placement by cabinet
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Job placement by node adjacency
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Job placement by node adjacency
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Job placement by node adjacency
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- Job Information -
ID: 35066

NCPUS: 192

Memory: 12423KB
Time: 5:09/6:00 (85%)
Yod ID: 52052

- Node Information -
Mo node selected (select one from the plot).




Job placement by node adjacency
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- Job Information -
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Memory: 51700KB
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acement by node adjacency
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Results

» Broad application mix reflects different types of communication-
iIntensive jobs

* Non-idealized experiments: 1024p PTRANS job running concurrently

Application

p placed: placed: production | production improvement
default optimized average standard optimized vs.
senzelulig e deviation production
algorithm adjacency
PTRANS 1024 | 129.3 GB/s | 146.5 GB/s | 131.2 GB/s 21.2 GB/s 11.7%
DNS 512 316.5s 296.0 s 310.5s 9.2s 4.7%
DNS 192 198.0 s 163.0 s 181.7 s 23.5s 10.3%
NAMD 512 161.4s 150.1s 167.1s 13.1s 9.8%
NAMD 32 252.7 s 228.3 s 252.0s 12.2s 9.4%
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Integration with job scheduler

» Default assignment of jobs to nodes is in CPA only, not
the scheduler, which just keeps track of free node counts

 The default CPA algorithm allocates free nodes
numerically from low to high

« PSC (Chad Vizino) developed customized infrastructure
to dynamically support different scheduling algorithms.
Decision of which nodes a job runs on is made by the
scheduler, not the CPA

« MOM obtains and parses a list of nodes from the scheduler
 new CPA data structure added to contain list from MOM
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Ongoing work

* Investigation and implementation of job placement algorithms
— optimized for particular applications: specify optimal dimensions

* requirement (performance necessary, e.g. real-time steering)
» preference (e.g. 8 x 8 x 8 preferred if available)
» default (schedule from available nodes, but in an optimized fashion)

— minimize external job traffic
— minimize sending messages through nodes belonging to other jobs

» Use of profiling tools to automatically generate good job dimensions
based on communication patterns

Craypat

Detailed analysis of SeaStar performance registers and routing
algorithms

PSC 3D Monitor to detect and ameliorate high-traffic regions in the
interconnect
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Generating efficient code with C compllers:
an example with PGCC

« C language semantics limit compiler optimizations
— unless the application provides additional information

— (the fundamental difference between performance of optimized C
and Fortran code, limiting the performance of many C, C++, and
UPC applications)

— e.g. MILC with key routines written in assembly is up to 17%
faster than pure C

o Joel Welling (PSC); Doug Miles and Dave Norton (PGI)
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A tale of two Instructions

e Multiply, add
— the Opteron supports x87 and SSE floating-point instructions

— SSE instructions can be “packed” (2 instructions per cycle,
“vectorized”) or unpacked

— generation of packed instructions requires data known to be
non-overlapping in cache

« Packed instructions: mulpd, addpd
— 2 floating point operations per cycle

« Unpacked instructions: mulsd, addsd
— 1 floating point operation per cycle
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Example: Matrix Multiplication

#define RANK 64
void matmul ( double newMatrix][RANK*RANK],
const double M1[RANK*RANK],
const double M2JRANK*RANK] ) {
int 1,j,row,column;
for (row=0; row<RANK; row++) {
for (column=0; column<RANK; column++) {
newMatrix[ (RANK*row)+collumn] = 0.0;
+
for (1=0;1<RANK;iI1++) {
for (J=0; jJ<RANK; j++) {
newMatrix[ (RANK*row)+j] += MI[(RANK*row)+i]*M2[ (RANK*i)+j];
}
+
+
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Beginning: pgcc -S -fastsse

# lineno: 10
movipd -8(%rax),%xmmO
decl %edx
mulsd (%rsi) ,%xmmO
addsd -8 (%rcx) ,%xmmO
movipd %xmmO,-8(%rcx)
movipd (%rsi),%xmml
mulsd (%rax) , %xmml
addq $16,%rax
addsd (%rcx) , %xmml
movipd %xmml, (%rcx)
addq $16,%rcx
testl Y%edx ,%edx
Jjg -LB224
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pgcc -S -fastsse -Msafeptr

# lineno: 10 -Msafeptr causes the compiler to
movipd (%rdi,%rdx),%xmml assume Fortran-like semantics,
subl $8, %eax i.e. in this case that M1 and M2
prefetchtO 128 (%rdx,%rdi)

: cannot overlap
prefetchtO 128 (%rdx,%rsi)

addl $8,%ecx
movhpd 8(%rdx,%rdi) ,%xmml
mulpd %xmmO , %xmml

A heavy hammer...

addpd (%rsi ,%rdx) ,%xmml In general, this is not a safe
movapd %xmml, (%rsi,%rdx) assumption to make in C
movipd 16(%rdx,%rdi) ,%xmm2

movhpd 24 (%rdx,%rdi),%xmm2 Pragmas are a more flexible
mulpd %xmmO , %xmm2 alternative

addpd 16 (%rdx,%rsi) ,%xmm2
movapd %xmm2,16(%rdx,%rsi)
movipd 32(%rdx,%rdi),%xmml
movhpd 40(%rdx,%rdi) ,%xmml
mulpd %xmmO , %xmml

addpd 32(%rdx,%rsi) ,%xmml
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Declaring Data Independency via #pragma

 Instruct compiler when to assume it is safe to take
data directly from cache

e At the routine level:

#pragma routine -Msafeptr=arg
void matmul(double newMatrix[RANK*RANK],
const double M1[RANK*RANK],

const double M2[RANK*RANK]) {

o At the pointer level:

void matmul (double newMatrix[RANK*RANK],
const double M1JRANK*RANK],
const double M2[RANK*RANK]) {

#pragma safe ( newMatrix, M1, M2 ) ...
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Using Craypat to detect inefficiencies

LEO: A numerical relativity code developed by Roberto Gomez,
Simonetta Frittelli, and Willians Barreto

Through Craypat, discovered that
27.5% of time was being spent in
MPI _Isend(), MPI_Irecv(), and
MPI_Waitall()

Many small messages =
performance suffers from effects
of latency

Help
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LEO Optimization

» Focused attention on reducing
communication

 Moved the communication from
iInside the derivative routing to
only where absolutely necessary

 Time spent in MPI_Isend(),
MPI_Irecv(), and MPI_Waitall()
decreased from 27.5% to 5.1%
of the total time
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Effect of Optimizing Communications in LEO

14 -
39.5% improvement
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6 x 64 x 64 x 256 grid OroCessors 6 x 128 x 128 x 512 grid



LEQO: Before and After
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The Effect of Bandwidth

PSCC
PSCC (Parallel Spectral

12
Channel Code), developed by Performance greatly exceeds
Junwoo Lim at PSC, isa 2.4x processor speed ratio

highly scalable parallel flow

128 x 513 x 512

3
|_
solver to enable more realistic > g - /
simulations of turbulent E ,/
boundary flow, including 5 6 - /
tracking the traces of 2 512 x 1025 x 1024
massless particles under % 4 -
stably stratified conditions. £
g 2
@
0] T T
10 100 1000 10000
processors

» Application: understanding the dynamics of pollutant
particles in atmospheric stratified turbulent boundary layers.

e This project is sponsored by NSF and is a
part of the international collaboration
research program between PSC and KISTI
(Korea Institute of Science and Technology

Information) Supercomputing center.



The effect of different FFT libraries

PSCC (512,1025,1024) on BigBen
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40
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O | |
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NAMD on the Cray-XT3

Scalable simulation of large biomolecular systems

2002 Gordon Bell performance prize

Built on Charm++: dynamic load balancing, latency hiding
Accounts for a large proportion of usage on bigben

Scaled to 5000 XT3 processors
(“friendly user” account at ORNL)

Performance Enhancements
= gnu malloc (-lgmalloc): 20%
= -small_pages: 20-40%

Shawn Brown, PSC




The journey continues

« We are working closely with Prof. L. V. Kalé and his

group to improve the efficiency and scaling of NAMD
on the XT3.

— developers of the CHARM++ programming language
— profiling NAMD with the “Projections” application

« Based on these profiles, we are moving forward with a
number of performance enhancements.
— Improved MPI performance
— Native Portals implementation of Charm++

e Optimal process mapping
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Grazie!
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