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Survey of performance 
optimizations at PSC

• Optimizing job placement
• Generating efficient C code: a PGCC example 
• Craypat analysis of LEO
• PSCC
• NAMD



Optimizing Job Placement
• Motivation: the SeaStar’s 3D mesh interconnect 

(configured at PSC as a 3D torus) offers exceptional 
bandwidth and low latency
– however, improperly scheduled jobs produce contention that 

undermines otherwise scalable applications
– empirical observations indicated that production jobs were being

badly fragmented, seriously degrading their performance
– recently, we have quantified the impact of noncontiguous 

partitions on a variety of communication-intensive applications

• Joint work with Chad Vizino to build support for job 
layout into XT3 scheduling



Job Placement by Cabinet



Bigben Wiring Diagram



Default Scheduling Algorithm

cabinet 0 – row 0
cabinet 0 – row 1
cabinet 1 – row 0
cabinet 1 – row 1 
…
cabinet 10 – row 0
cabinet 10 – row 1

• Nodes allocated numerically from low to high from 
among free nodes:



Job placement
Nodes allocated numerically from low to high from among 
free nodes, which results the following cabinet order:

0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 0

…but cabinets are connected differently:

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0

The number of hops between numerically adjacent 
cabinets varies from 1 to 5



Hops between cabinets
0 1 2 3 4 5 6 7 8 9 10

0
1 1
2 1 2
3 2 1 3
4 2 3 1 4
5 3 2 4 1 5
6 3 4 2 5 1 5
7 4 3 5 2 5 1 4
8 4 5 3 5 2 4 1 3
9 5 4 5 3 4 2 3 1 2
10 5 5 4 4 3 3 2 2 1 1



Job placement by cabinet



Job placement by node adjacency



Job placement by node adjacency



Job placement by node adjacency



Job placement by node adjacency



Job placement by node adjacency



Results
• Broad application mix reflects different types of communication-

intensive jobs
• Non-idealized experiments: 1024p PTRANS job running concurrently

Application p placed: 
default 

scheduling 
algorithm

placed: 
optimized 

for 
adjacency

production 
average

production 
standard 
deviation

improvement   
optimized vs. 

production

PTRANS 1024 129.3 GB/s 146.5 GB/s 131.2 GB/s 21.2 GB/s 11.7%

DNS 512 316.5 s 296.0 s 310.5 s 9.2 s 4.7%

DNS 192 198.0 s 163.0 s 181.7 s 23.5 s 10.3%

NAMD 512 161.4 s 150.1 s 167.1 s 13.1 s 9.8%

NAMD 32 252.7 s 228.3 s 252.0 s 12.2 s 9.4%



Integration with job scheduler
• Default assignment of jobs to nodes is in CPA only, not 

the scheduler, which just keeps track of free node counts
• The default CPA algorithm allocates free nodes 

numerically from low to high
• PSC (Chad Vizino) developed customized infrastructure 

to dynamically support different scheduling algorithms. 
Decision of which nodes a job runs on is made by the 
scheduler, not the CPA

• MOM obtains and parses a list of nodes from the scheduler
• new CPA data structure added to contain list from MOM



Ongoing work
• Investigation and implementation of job placement algorithms

– optimized for particular applications: specify optimal dimensions
• requirement (performance necessary, e.g. real-time steering)
• preference (e.g. 8 x 8 x 8 preferred if available)
• default (schedule from available nodes, but in an optimized fashion)

– minimize external job traffic
– minimize sending messages through nodes belonging to other jobs

• Use of profiling tools to automatically generate good job dimensions 
based on communication patterns
– Craypat
– Detailed analysis of SeaStar performance registers and routing 

algorithms
– PSC 3D Monitor to detect and ameliorate high-traffic regions in the 

interconnect



Generating efficient code with C compilers:  
an example with PGCC

• C language semantics limit compiler optimizations
– unless the application provides additional information
– (the fundamental difference between performance of optimized C 

and Fortran code, limiting the performance of many C, C++, and 
UPC applications)

– e.g. MILC with key routines written in assembly is up to 17% 
faster than pure C

• Joel Welling (PSC); Doug Miles and Dave Norton (PGI)



A tale of two instructions
• Multiply, add

– the Opteron supports x87 and SSE floating-point instructions
– SSE instructions can be “packed” (2 instructions per cycle, 

“vectorized”) or unpacked
– generation of packed instructions requires data known to be 

non-overlapping in cache

• Packed instructions: mulpd, addpd
– 2 floating point operations per cycle

• Unpacked instructions: mulsd, addsd
– 1 floating point operation per cycle



Example: Matrix Multiplication

#define RANK 64
void matmul( double newMatrix[RANK*RANK],

const double M1[RANK*RANK], 
const double M2[RANK*RANK] ) {

int i,j,row,column;
for (row=0; row<RANK; row++) {

for (column=0; column<RANK; column++) {
newMatrix[(RANK*row)+column] = 0.0;

}  
for (i=0;i<RANK;i++) {

for (j=0; j<RANK; j++) {
newMatrix[(RANK*row)+j] += M1[(RANK*row)+i]*M2[(RANK*i)+j];

}
}

}
}



Beginning:  pgcc -S -fastsse
# lineno: 10

movlpd -8(%rax),%xmm0
decl %edx
mulsd (%rsi),%xmm0
addsd -8(%rcx),%xmm0
movlpd %xmm0,-8(%rcx)
movlpd (%rsi),%xmm1
mulsd (%rax),%xmm1
addq $16,%rax
addsd (%rcx),%xmm1
movlpd %xmm1,(%rcx)
addq $16,%rcx
testl %edx,%edx
jg .LB224



pgcc -S -fastsse -Msafeptr
# lineno: 10

movlpd (%rdi,%rdx),%xmm1
subl $8,%eax
prefetcht0      128(%rdx,%rdi)
prefetcht0      128(%rdx,%rsi)
addl $8,%ecx
movhpd 8(%rdx,%rdi),%xmm1
mulpd %xmm0,%xmm1
addpd (%rsi,%rdx),%xmm1
movapd %xmm1,(%rsi,%rdx)
movlpd 16(%rdx,%rdi),%xmm2
movhpd 24(%rdx,%rdi),%xmm2
mulpd %xmm0,%xmm2
addpd 16(%rdx,%rsi),%xmm2
movapd %xmm2,16(%rdx,%rsi)
movlpd 32(%rdx,%rdi),%xmm1
movhpd 40(%rdx,%rdi),%xmm1
mulpd %xmm0,%xmm1
addpd 32(%rdx,%rsi),%xmm1

…

-Msafeptr causes the compiler to 
assume Fortran-like semantics, 
i.e. in this case that M1 and M2 
cannot overlap

A heavy hammer…

In general, this is not a safe 
assumption to make in C

Pragmas are a more flexible 
alternative



Declaring Data Independency via #pragma

• Instruct compiler when to assume it is safe to take 
data directly from cache

• At the routine level:

• At the pointer level:
void matmul(double newMatrix[RANK*RANK],

const double M1[RANK*RANK],
const double M2[RANK*RANK]) {

#pragma safe ( newMatrix, M1, M2 ) ...

#pragma routine -Msafeptr=arg
void matmul(double newMatrix[RANK*RANK], 

const double M1[RANK*RANK], 
const double M2[RANK*RANK]) {



Using Craypat to detect inefficiencies

• LEO: A numerical relativity code developed by Roberto Gomez, 
Simonetta Frittelli, and Willians Barreto

• Through Craypat, discovered that
27.5% of time was being spent in
MPI_Isend(), MPI_Irecv(), and
MPI_Waitall()

• Many small messages ⇒
performance suffers from effects
of latency 



LEO Optimization

• Focused attention on reducing 
communication

• Moved the communication from
inside the derivative routing to
only where absolutely necessary

• Time spent in MPI_Isend(), 
MPI_Irecv(), and MPI_Waitall() 
decreased from 27.5% to 5.1%
of the total time
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LEO: Before and After



The Effect of Bandwidth
PSCC (Parallel Spectral 
Channel Code), developed by 
Junwoo Lim at PSC, is a 
highly scalable parallel flow 
solver to enable more realistic 
simulations of turbulent 
boundary flow, including 
tracking the traces of 
massless particles under 
stably stratified conditions.

• This project is sponsored by NSF and is a 
part of the international collaboration 
research program between PSC and KISTI 
(Korea Institute of Science and Technology 
Information) Supercomputing center.

• Application: understanding the dynamics of pollutant 
particles in atmospheric stratified turbulent boundary layers.
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The effect of different FFT libraries

PSCC (512,1025,1024) on BigBen
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NAMD on the Cray-XT3

• Scalable simulation of large biomolecular systems
• 2002 Gordon Bell performance prize
• Built on Charm++: dynamic load balancing, latency hiding
• Accounts for a large proportion of usage on bigben
• Scaled to 5000 XT3 processors

(“friendly user” account at ORNL)

• Performance Enhancements
gnu malloc (-lgmalloc): 20%
-small_pages: 20-40%

Shawn Brown, PSC



The journey continues
• We are working closely with Prof. L. V. Kalé and his 

group to improve the efficiency and scaling of NAMD
on the XT3.
– developers of the CHARM++ programming language
– profiling NAMD with the “Projections” application

• Based on these profiles, we are moving forward with a 
number of performance enhancements.
– Improved MPI performance
– Native Portals implementation of Charm++

• Optimal process mapping



Grazie!
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