
From Peak to Peak:
Maximizing Performance on

PSC’s Cray XT3

Deborah Weisser

Nick Nystrom, Shawn Brown, Roberto Gomez,
Junwoo Lim, David O’Neal, John Urbanic, R. Reddy,

Yang Wang, Chad Vizino, Joel Welling

Survey of performance
optimizations at PSC

• Optimizing job placement
• Generating efficient C code: a PGCC example
• Craypat analysis of LEO
• PSCC
• NAMD

Optimizing Job Placement
• Motivation: the SeaStar’s 3D mesh interconnect

(configured at PSC as a 3D torus) offers exceptional
bandwidth and low latency
– however, improperly scheduled jobs produce contention that

undermines otherwise scalable applications
– empirical observations indicated that production jobs were being

badly fragmented, seriously degrading their performance
– recently, we have quantified the impact of noncontiguous

partitions on a variety of communication-intensive applications

• Joint work with Chad Vizino to build support for job
layout into XT3 scheduling

Job Placement by Cabinet

Bigben Wiring Diagram

Default Scheduling Algorithm

cabinet 0 – row 0
cabinet 0 – row 1
cabinet 1 – row 0
cabinet 1 – row 1
…
cabinet 10 – row 0
cabinet 10 – row 1

• Nodes allocated numerically from low to high from
among free nodes:

Job placement
Nodes allocated numerically from low to high from among
free nodes, which results the following cabinet order:

0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 0

…but cabinets are connected differently:

0 – 2 – 4 – 6 – 8 – 10 – 9 – 7 – 5 – 3 – 1 – 0

The number of hops between numerically adjacent
cabinets varies from 1 to 5

Hops between cabinets
0 1 2 3 4 5 6 7 8 9 10

0
1 1
2 1 2
3 2 1 3
4 2 3 1 4
5 3 2 4 1 5
6 3 4 2 5 1 5
7 4 3 5 2 5 1 4
8 4 5 3 5 2 4 1 3
9 5 4 5 3 4 2 3 1 2
10 5 5 4 4 3 3 2 2 1 1

Job placement by cabinet

Job placement by node adjacency

Job placement by node adjacency

Job placement by node adjacency

Job placement by node adjacency

Job placement by node adjacency

Results
• Broad application mix reflects different types of communication-

intensive jobs
• Non-idealized experiments: 1024p PTRANS job running concurrently

Application p placed:
default

scheduling
algorithm

placed:
optimized

for
adjacency

production
average

production
standard
deviation

improvement
optimized vs.

production

PTRANS 1024 129.3 GB/s 146.5 GB/s 131.2 GB/s 21.2 GB/s 11.7%

DNS 512 316.5 s 296.0 s 310.5 s 9.2 s 4.7%

DNS 192 198.0 s 163.0 s 181.7 s 23.5 s 10.3%

NAMD 512 161.4 s 150.1 s 167.1 s 13.1 s 9.8%

NAMD 32 252.7 s 228.3 s 252.0 s 12.2 s 9.4%

Integration with job scheduler
• Default assignment of jobs to nodes is in CPA only, not

the scheduler, which just keeps track of free node counts
• The default CPA algorithm allocates free nodes

numerically from low to high
• PSC (Chad Vizino) developed customized infrastructure

to dynamically support different scheduling algorithms.
Decision of which nodes a job runs on is made by the
scheduler, not the CPA

• MOM obtains and parses a list of nodes from the scheduler
• new CPA data structure added to contain list from MOM

Ongoing work
• Investigation and implementation of job placement algorithms

– optimized for particular applications: specify optimal dimensions
• requirement (performance necessary, e.g. real-time steering)
• preference (e.g. 8 x 8 x 8 preferred if available)
• default (schedule from available nodes, but in an optimized fashion)

– minimize external job traffic
– minimize sending messages through nodes belonging to other jobs

• Use of profiling tools to automatically generate good job dimensions
based on communication patterns
– Craypat
– Detailed analysis of SeaStar performance registers and routing

algorithms
– PSC 3D Monitor to detect and ameliorate high-traffic regions in the

interconnect

Generating efficient code with C compilers:
an example with PGCC

• C language semantics limit compiler optimizations
– unless the application provides additional information
– (the fundamental difference between performance of optimized C

and Fortran code, limiting the performance of many C, C++, and
UPC applications)

– e.g. MILC with key routines written in assembly is up to 17%
faster than pure C

• Joel Welling (PSC); Doug Miles and Dave Norton (PGI)

A tale of two instructions
• Multiply, add

– the Opteron supports x87 and SSE floating-point instructions
– SSE instructions can be “packed” (2 instructions per cycle,

“vectorized”) or unpacked
– generation of packed instructions requires data known to be

non-overlapping in cache

• Packed instructions: mulpd, addpd
– 2 floating point operations per cycle

• Unpacked instructions: mulsd, addsd
– 1 floating point operation per cycle

Example: Matrix Multiplication

#define RANK 64
void matmul(double newMatrix[RANK*RANK],

const double M1[RANK*RANK],
const double M2[RANK*RANK]) {

int i,j,row,column;
for (row=0; row<RANK; row++) {

for (column=0; column<RANK; column++) {
newMatrix[(RANK*row)+column] = 0.0;

}
for (i=0;i<RANK;i++) {

for (j=0; j<RANK; j++) {
newMatrix[(RANK*row)+j] += M1[(RANK*row)+i]*M2[(RANK*i)+j];

}
}

}
}

Beginning: pgcc -S -fastsse
lineno: 10

movlpd -8(%rax),%xmm0
decl %edx
mulsd (%rsi),%xmm0
addsd -8(%rcx),%xmm0
movlpd %xmm0,-8(%rcx)
movlpd (%rsi),%xmm1
mulsd (%rax),%xmm1
addq $16,%rax
addsd (%rcx),%xmm1
movlpd %xmm1,(%rcx)
addq $16,%rcx
testl %edx,%edx
jg .LB224

pgcc -S -fastsse -Msafeptr
lineno: 10

movlpd (%rdi,%rdx),%xmm1
subl $8,%eax
prefetcht0 128(%rdx,%rdi)
prefetcht0 128(%rdx,%rsi)
addl $8,%ecx
movhpd 8(%rdx,%rdi),%xmm1
mulpd %xmm0,%xmm1
addpd (%rsi,%rdx),%xmm1
movapd %xmm1,(%rsi,%rdx)
movlpd 16(%rdx,%rdi),%xmm2
movhpd 24(%rdx,%rdi),%xmm2
mulpd %xmm0,%xmm2
addpd 16(%rdx,%rsi),%xmm2
movapd %xmm2,16(%rdx,%rsi)
movlpd 32(%rdx,%rdi),%xmm1
movhpd 40(%rdx,%rdi),%xmm1
mulpd %xmm0,%xmm1
addpd 32(%rdx,%rsi),%xmm1

…

-Msafeptr causes the compiler to
assume Fortran-like semantics,
i.e. in this case that M1 and M2
cannot overlap

A heavy hammer…

In general, this is not a safe
assumption to make in C

Pragmas are a more flexible
alternative

Declaring Data Independency via #pragma

• Instruct compiler when to assume it is safe to take
data directly from cache

• At the routine level:

• At the pointer level:
void matmul(double newMatrix[RANK*RANK],

const double M1[RANK*RANK],
const double M2[RANK*RANK]) {

#pragma safe (newMatrix, M1, M2) ...

#pragma routine -Msafeptr=arg
void matmul(double newMatrix[RANK*RANK],

const double M1[RANK*RANK],
const double M2[RANK*RANK]) {

Using Craypat to detect inefficiencies

• LEO: A numerical relativity code developed by Roberto Gomez,
Simonetta Frittelli, and Willians Barreto

• Through Craypat, discovered that
27.5% of time was being spent in
MPI_Isend(), MPI_Irecv(), and
MPI_Waitall()

• Many small messages ⇒
performance suffers from effects
of latency

LEO Optimization

• Focused attention on reducing
communication

• Moved the communication from
inside the derivative routing to
only where absolutely necessary

• Time spent in MPI_Isend(),
MPI_Irecv(), and MPI_Waitall()
decreased from 27.5% to 5.1%
of the total time

0

2

4

6

8

10

12

14

24 384
processors

t(s
)

original
optimized

Effect of Optimizing Communications in LEO

6 × 64 × 64 × 256 grid 6 × 128 × 128 × 512 grid

39.5% improvement

55.5% improvement

LEO: Before and After

The Effect of Bandwidth
PSCC (Parallel Spectral
Channel Code), developed by
Junwoo Lim at PSC, is a
highly scalable parallel flow
solver to enable more realistic
simulations of turbulent
boundary flow, including
tracking the traces of
massless particles under
stably stratified conditions.

• This project is sponsored by NSF and is a
part of the international collaboration
research program between PSC and KISTI
(Korea Institute of Science and Technology
Information) Supercomputing center.

• Application: understanding the dynamics of pollutant
particles in atmospheric stratified turbulent boundary layers.

0

2

4

6

8

10

12

10 100 1000 10000
processors

Ex
ec

ut
io

n
ra

te
 o

n
XT

3
vs

. T
C

S 128 × 513 × 512

512 × 1025 × 1024

PSCC

Performance greatly exceeds
2.4× processor speed ratio

The effect of different FFT libraries

PSCC (512,1025,1024) on BigBen

0

10

20

30

40

50

60

70

256 512 768 1024

processors

t (
s)

10/30/2005 + vecFFT
10/30/2005 + FFTW
12/9/2005 + FFTW + gcc

NAMD on the Cray-XT3

• Scalable simulation of large biomolecular systems
• 2002 Gordon Bell performance prize
• Built on Charm++: dynamic load balancing, latency hiding
• Accounts for a large proportion of usage on bigben
• Scaled to 5000 XT3 processors

(“friendly user” account at ORNL)

• Performance Enhancements
gnu malloc (-lgmalloc): 20%
-small_pages: 20-40%

Shawn Brown, PSC

The journey continues
• We are working closely with Prof. L. V. Kalé and his

group to improve the efficiency and scaling of NAMD
on the XT3.
– developers of the CHARM++ programming language
– profiling NAMD with the “Projections” application

• Based on these profiles, we are moving forward with a
number of performance enhancements.
– Improved MPI performance
– Native Portals implementation of Charm++

• Optimal process mapping

Grazie!

	From Peak to Peak:Maximizing Performance onPSC’s Cray XT3
	Survey of performance optimizations at PSC
	Optimizing Job Placement
	Job Placement by Cabinet
	Bigben Wiring Diagram
	Default Scheduling Algorithm
	Job placement
	Hops between cabinets
	Job placement by cabinet
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Results
	Integration with job scheduler
	Ongoing work
	Generating efficient code with C compilers: an example with PGCC
	A tale of two instructions
	Example: Matrix Multiplication
	Beginning: pgcc -S -fastsse
	pgcc -S -fastsse -Msafeptr
	Declaring Data Independency via #pragma
	Using Craypat to detect inefficiencies
	LEO Optimization
	Effect of Optimizing Communications in LEO
	LEO: Before and After
	The Effect of Bandwidth
	The effect of different FFT libraries
	NAMD on the Cray-XT3
	The journey continues
	

