From Peak to Peak:
Maximizing Performance on
PSC’s Cray XT3

Deborah Welsser

Nick Nystrom, Shawn Brown, Roberto Gomez,

Junwoo Lim, David O’Neal, John Urbanic, R. Reddy,

Yang Wang, Chad Vizino, Joel Welling

SUPERCOMPUTING
EEEEEE

Survey of performance
optimizations at PSC

Optimizing job placement

Generating efficient C code: a PGCC example
Craypat analysis of LEO

PSCC

NAMD

SUPERCOMPUTING
EEEEEE

Optimizing Job Placement

e Motivation: the SeaStar’s 3D mesh interconnect
(configured at PSC as a 3D torus) offers exceptional
bandwidth and low latency

— however, improperly scheduled jobs produce contention that
undermines otherwise scalable applications

— empirical observations indicated that production jobs were being
badly fragmented, seriously degrading their performance

— recently, we have quantified the impact of noncontiguous
partitions on a variety of communication-intensive applications
« Joint work with Chad Vizino to build support for job
layout into XT3 scheduling

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Job Placement by Cabinet

|
{c) 2006 PSC
May d 08 19:03

RV g .mqmm i (Il |“||L1|.|||'h'|
LTI Hﬁ]‘ﬂa &m HHIIHI“ “:ﬁlilﬂ::'" T o
L || | NS Ill B 1 ol
II]IlI]lIHImI' I'I‘ i]ill.liIi“i.l it QIII Lll!!iill' I: iy ‘|.|I|I|i|i|
%n::@ il |ﬁ|l||||!=~' Illllllll.ﬁ: ﬁli|i-l;l|||lll!IlIIIIL.||l
I
T -
g

iy
At L
il

o [T
ol -

- Node Legend -

TS

B Cown (CPA)
Disabled (PBS)

B Genvice

|:| Show all jobs

iob 31639
B ich 34878
| iob 35066
| ich 35324
Jj iob 35550
iob 35782
iob 35785

- Job Information -
Mo job selected (select one from the list above).

- Node Information -
Mo node selected (select one from the plot).

Login

Help | Copyright © 2005-2006 Pittsburgh Supercomputing Center

Bigben Wiring Diagram

PSC22 February 2005 b

70247302 4.5 M mod - Qty 66 - 2"

Class 1 s stem with 22 Cabinets Note: These colors match the color of the stripe on the cable jacket.
y [EVEN Row |
.F\'\’egear
10 9 8 7 6<% >4 3 2 1 0
D D D D D D D D D
“c¢” | Repeatthe"Y" | "¢’ a3t the "X" connechi a s] ©
)\ LA 5 [Repeat the "X" connections of cage row "0" for cage rows "1" and "2"| 2
mlA Fal connectlons of . A Fal o a ral 0 A 1 rol A T o A T 0 A [l 0 A
Anx aww = cabinet "10" for all |- BrG s we s W mnx nwew LY Rz B
=lc |EVEN row cabinets| - ; . D a ° o
c c c c c c 1
= = —— o B
 — sSsS~ A
S e Nt

SN
e

Repeat the “Z" connections Nota: Some of the colors show a black stripe lo help distinguish beiween them and olher cables of the same color_See the cable color chart.

of cabinets "9" for all | Overhead Cable Channel }
cabinet pairs across the [ODD Row |
overhead channels

HGE?B!
Cabinet
(8 7 6< | 5 [>4 3 2 1 0
D I [D D D D D D D D D
n 0] Fal " " m n Zi Zi Zi bl - il Il il Zi 20 kil Fil
2¢ ve Repeat the "Y ¢ [Repeat the "X" connections of cage row "0" for cage rows "1" and "2" | ¢ 2
A z 0 A Fal connectlons of mn A Fal o a 4l il a o 0 a 4l o N Al FL a F4l o A

|
I wvixz xivxm || x cabinet "10" for a“ o X3 Y1 XZ X1 YD XD X3 Y1 EZ X1 Y0 X0 X3 Y1 K2 K1 WD XD X3 Y1 NZ X1 YD XD NI Y1 XZ X1 Y XD Y1 HZ X1 YD X0

A Y1 Xz X1 W0 A

Default Scheduling Algorithm

* Nodes allocated numerically from low to high from
among free nodes:

cabinet 0 —row O
cabinet 0 —row 1
cabinet1 —row O
cabinet 1 —row 1

cabinet 10 —row O
cabinet 10 —row 1

SUPERCOMPUTING

Job placement

Nodes allocated numerically from low to high from among
free nodes, which results the following cabinet order:

0-1-2-3-4-5-6-7-8-9-10-0
...but cabinets are connected differently:
0-2-4-6-8-10-9-7-5-3-1-0

The number of hops between numerically adjacent
cabinets varies from 1 to 5

SUPERCOMPUTING

Hops between cabinets

10

3

5|44 |3

5

10

Job placement by cabinet

- Node Legend -
| B Free o [
|l Cown (CPA)
| Disabled (PBS)
| B Service
| |:| Show all jobs

job 31639

B ich 34878

| B icb 35066

| B icb 35324

| I iob 35550

iob 35782

| iob 35785
|

R _—_— ' - Job Information -

o il . L 2 | | No j b | cted | ct 'FI' H'I |t b '
lli]lllj. Ii“i A g n||i||,||| j!llillluill.ﬂﬁﬂl”hl LU o job selected (select one from the list above)
| L i L Ry _

Rl II“MHI []L] R [| TN = LU i - Node Information -

l CCTITLLE o “lllEgI i lll|ﬂ| ; ! No node selected (select one from the plot).
ILIlI,I I.II Eui HH ¥ ilnlim' -'-.- gt
SRtgiba1 mmmnlrll!lll A e

I

= T u||l
— Illllﬂljiﬂ{‘ll ﬂl Iﬁlllllf IIIIIIIIE ||"F| ﬁ'l“."'.nh.il LT

B e

| T—

—
| —
| —

|
{c) 2006 PSC
May 4 06 19:03

Login

Help | Copyright © 2005-2006 Pittsburgh Supercomputing Center

Job placement by node adjacency

- Node Legend - N
W e

[l Cown (CPA)

Disabled (PBS)

B Gervice

|:| Show all jobs

’. I. i job 31639
EE 2 !!.]_!) icb 34878
1s ._._-gledﬂ-'f—ilial:i' i | E—F!ﬁ! T T T e B ich 35066

I | Elg B ich 35324
= — .:=_==-=!‘-.' =N J iob 35550
II UL ﬂlﬂlll job 35782
|IIJII_.. i -. e e e iob 35785
wa EIEIEIENR ENENENENEN b Tnformmation.
Mo job selected (select one from the list abave).
AR L0 A I L WNEN _
Tl o Een : - = - Node Information -
A ji A "‘ll—. T 101 1] [Ilil Mo node selected (select one from the plot),
oL T e e = = -'ﬁiil
"'l—-;"_E;'-,._— —
TL[LL
ﬂ!ﬂi—a .
T L
=]
L
Jumas

{c} ZO0E PSC
May d 06 19:03

Login

Help | Copyright © 2005-2006 Pittsburgh Supercomputing Center

Job placement by node adjacency

- Node Legend - B
N Fee
B Down (CPA)
Disabled (PBS)
B service
] Show al iobs
I! ll_. @. job 31639
.ﬁti—i%i—n_ﬂ'__—— -
= f.l 0
]IEL‘T._"LIL! B icb 35324
;.,uJ'L'"—,pJFT—"_ B iob 35550
JMH!]"I. ob 35782
job 35785
|.|“.IIII. - Job Information -

Mo job selected (select one from the list abave).

L [T T
A .

- Node Information -

L
: Mo node selected (select one from the plot).

T

_="__IL“1_1[| I
wlmt

=

A I

e Wi

ot

j.
-
L

(o) 2006 PSC
May 4 06 19:03 |

Login Help | Copyright € 2005-2006 Pittsburgh Supercomputing Center

Job placement by node adjacency

{c} ZO0E PSC
May d 06 19:03

e, W W
g g i N[

e UL LT
R g
i LT

IEI_'THT‘— [Ty
i

T

in

Help | Copyright © 2005-2006 Pittsburgh Supercomputing Center

- Node Legend -

B Free

[l Cown (CPA)
Disabled (PBS)

B Gervice

|:| Show all jobs

job 31635
B ich 34878
| ich 35066
B icb 35324
J ich 35550
job 35782
job 35785

- Job Information -
ID: 35066

NCPUS: 192

Memory: 12423KB
Time: 5:09/6:00 (85%)
Yod ID: 52052

- Node Information -
Mo node selected (select one from the plot).

Job placement by node adjacency

L,
Ay

tcy 2008 PSC
May 4 06 19103

|
o

I
(U
"|"=|IL I

11 mﬁl““”"l.
ml |
RELTT
'| -'|;:fiu“-”||ﬂ

Login

- Node Legend -

W Fre=

|l Down (CPA)
Dizabled (PBS)

B Service

|:| Show all jobs

iob 31639
I ich 34878
| iob 35066
| ich 35324
| iob 35550
job 35782
iob 35785

- Job Information -
ID: 34873

MNCPUS: 448

Memory: 51700KB
Time: 3:44/4:55 (75%)
Yod ID: 52072

- Node Information -
Mo node selected (select one from the plot).

Help | Copyright © 2005-2006 Pittsburgh Supercomputing Center

acement by node adjacency

- Node Legend - B
N Fee
|l Cown (CPA)
Disabled (PBS)
B Service
|:| Show all jobs

job 31639
B ich 34878
B icb 35066
B ich 35324
job 35550
iob 35782
iob 35785

- Job Information -
ID: 35785

NCPUS: 256

| Memary: 10740KB
Time: 0:06/5:55 (1%%)
Yod ID: 52085

- Node Information -
Mo node selected (select one from the plot).

(o) 2006 PSC
May 4 06 19:03

Login Help | Copyright € 2005-2006 Pittsburgh Supercomputing Center

Results

» Broad application mix reflects different types of communication-
iIntensive jobs

* Non-idealized experiments: 1024p PTRANS job running concurrently

Application

p placed: placed: production | production improvement
default optimized average standard optimized vs.
senzelulig e deviation production
algorithm adjacency
PTRANS 1024 | 129.3 GB/s | 146.5 GB/s | 131.2 GB/s 21.2 GB/s 11.7%
DNS 512 316.5s 296.0 s 310.5s 9.2s 4.7%
DNS 192 198.0 s 163.0 s 181.7 s 23.5s 10.3%
NAMD 512 161.4s 150.1s 167.1s 13.1s 9.8%
NAMD 32 252.7 s 228.3 s 252.0s 12.2s 9.4%

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Integration with job scheduler

» Default assignment of jobs to nodes is in CPA only, not
the scheduler, which just keeps track of free node counts

 The default CPA algorithm allocates free nodes
numerically from low to high

« PSC (Chad Vizino) developed customized infrastructure
to dynamically support different scheduling algorithms.
Decision of which nodes a job runs on is made by the
scheduler, not the CPA

« MOM obtains and parses a list of nodes from the scheduler
 new CPA data structure added to contain list from MOM

SUPERCOMPUTING

Ongoing work

* Investigation and implementation of job placement algorithms
— optimized for particular applications: specify optimal dimensions

* requirement (performance necessary, e.g. real-time steering)
» preference (e.g. 8 x 8 x 8 preferred if available)
» default (schedule from available nodes, but in an optimized fashion)

— minimize external job traffic
— minimize sending messages through nodes belonging to other jobs

» Use of profiling tools to automatically generate good job dimensions
based on communication patterns

Craypat

Detailed analysis of SeaStar performance registers and routing
algorithms

PSC 3D Monitor to detect and ameliorate high-traffic regions in the
interconnect

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Generating efficient code with C compllers:
an example with PGCC

« C language semantics limit compiler optimizations
— unless the application provides additional information

— (the fundamental difference between performance of optimized C
and Fortran code, limiting the performance of many C, C++, and
UPC applications)

— e.g. MILC with key routines written in assembly is up to 17%
faster than pure C

o Joel Welling (PSC); Doug Miles and Dave Norton (PGI)

PITTSBURGH
SUPERCOMPUTING
C E N T E R

A tale of two Instructions

e Multiply, add
— the Opteron supports x87 and SSE floating-point instructions

— SSE instructions can be “packed” (2 instructions per cycle,
“vectorized”) or unpacked

— generation of packed instructions requires data known to be
non-overlapping in cache

« Packed instructions: mulpd, addpd
— 2 floating point operations per cycle

« Unpacked instructions: mulsd, addsd
— 1 floating point operation per cycle

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Example: Matrix Multiplication

#define RANK 64
void matmul (double newMatrix][RANK*RANK],
const double M1[RANK*RANK],
const double M2JRANK*RANK]) {
int 1,j,row,column;
for (row=0; row<RANK; row++) {
for (column=0; column<RANK; column++) {
newMatrix[(RANK*row)+collumn] = 0.0;
+
for (1=0;1<RANK;iI1++) {
for (J=0; jJ<RANK; j++) {
newMatrix[(RANK*row)+j] += MI[(RANK*row)+i]*M2[(RANK*i)+j];
}
+
+

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Beginning: pgcc -S -fastsse

lineno: 10
movipd -8(%rax),%xmmO
decl %edx
mulsd (%rsi) ,%xmmO
addsd -8 (%rcx) ,%xmmO
movipd %xmmO,-8(%rcx)
movipd (%rsi),%xmml
mulsd (%rax) , %xmml
addq $16,%rax
addsd (%rcx) , %xmml
movipd %xmml, (%rcx)
addq $16,%rcx
testl Y%edx ,%edx
Jjg -LB224

PITTSBURGH
SUPERCOMPUTING
C E N T E R

pgcc -S -fastsse -Msafeptr

lineno: 10 -Msafeptr causes the compiler to
movipd (%rdi,%rdx),%xmml assume Fortran-like semantics,
subl $8, %eax i.e. in this case that M1 and M2
prefetchtO 128 (%rdx,%rdi)

: cannot overlap
prefetchtO 128 (%rdx,%rsi)

addl $8,%ecx
movhpd 8(%rdx,%rdi) ,%xmml
mulpd %xmmO , %xmml

A heavy hammer...

addpd (%rsi ,%rdx) ,%xmml In general, this is not a safe
movapd %xmml, (%rsi,%rdx) assumption to make in C
movipd 16(%rdx,%rdi) ,%xmm2

movhpd 24 (%rdx,%rdi),%xmm2 Pragmas are a more flexible
mulpd %xmmO , %xmm2 alternative

addpd 16 (%rdx,%rsi) ,%xmm2
movapd %xmm2,16(%rdx,%rsi)
movipd 32(%rdx,%rdi),%xmml
movhpd 40(%rdx,%rdi) ,%xmml
mulpd %xmmO , %xmml

addpd 32(%rdx,%rsi) ,%xmml

PITTSBURGH
SUPERCOMPUTING
C ENTE R

Declaring Data Independency via #pragma

 Instruct compiler when to assume it is safe to take
data directly from cache

e At the routine level:

#pragma routine -Msafeptr=arg
void matmul(double newMatrix[RANK*RANK],
const double M1[RANK*RANK],

const double M2[RANK*RANK]) {

o At the pointer level:

void matmul (double newMatrix[RANK*RANK],
const double M1JRANK*RANK],
const double M2[RANK*RANK]) {

#pragma safe (newMatrix, M1, M2) ...

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Using Craypat to detect inefficiencies

LEO: A numerical relativity code developed by Roberto Gomez,
Simonetta Frittelli, and Willians Barreto

Through Craypat, discovered that
27.5% of time was being spent in
MPI _Isend(), MPI_Irecv(), and
MPI_Waitall()

Many small messages =
performance suffers from effects
of latency

Help

Sort by Calls

MPI_lsend:18.8%

4

psc_sylm_m_fact_:17.0%

MPI_lrecv:18.8%

psc_sync_m_Interpc_9.4% i nerg: 21,99

MPI_|send:1n &ac

MP1_Waitall: 9. 5%

MPI_Irecv.7. 5%

psc_eth_m_psc_eth_f_:5.6% _. 120,39,

Sort by Time

-

psc_bondi_m_psc_u_:12.89

psc_bondi_m_psc_j_:19.4%

psc_bondi_m_psc_w_: 5.3%,
[157707.27 tokens/secs (86739 tokens in 0.55 secs)]

PITTSBURGH

SUPERCOMPUTING
C E N T E R

LEO Optimization

» Focused attention on reducing
communication

 Moved the communication from
iInside the derivative routing to
only where absolutely necessary

 Time spent in MPI_Isend(),
MPI_Irecv(), and MPI_Waitall()
decreased from 27.5% to 5.1%
of the total time

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Effect of Optimizing Communications in LEO

14 -
39.5% improvement
12

@ original 55.5% improvement

10

@ optimized

t(s)

24 384

6 x 64 x 64 x 256 grid OroCessors 6 x 128 x 128 x 512 grid

LEQO: Before and After

Eile Help ‘ Eile Help
w report.xmi | w report.xml |
w Overview | w Overview |

Sort by Calls Sort by Calls

MPI_lsend:18.8%

MPI_lrecv:18.8%
psc_sylm_m_fact :17.0%

psc_sync_m_interpc_: 9'4%0thers: 21 99,

Sort by Time

A i

psc_bondi_m_psc_u_:12.8%

MPI_lsend:1n &t
psc_bondi_m_psc_j_:19.4%

MP1_Waitall:9.5%

psc_eth_m_psc_eth_f_:5.6%___. 20,35,

psc_bondi_m_psc_) 5.3‘5"-

Sort by Time

psc_sylm_m_fact_:60.0%

sc_bondi_m_psc_j_28.6%
psc_bondi_m_pst_u_ <u.o% R

Al Others:10. 2% psc_bondi_m_psc_w_:8.4%

psc_eth_m_psc_eth_f_:9.7% E

psc_eth_m_psc_ethb f_:6.99: 5.4%
T —

psc_eth_m_psc_eth_f :.--'-.1'9’;“ hers:20. 2%

psc_eth_m_psc_ethb_f_: 5.4%'

157707 .27 tokens/secs (86739 tokens in 0.55 secs)

I

|1 98025.00 tokens/secs (23763 tokens in 0.12 secs)

The Effect of Bandwidth

PSCC
PSCC (Parallel Spectral

12
Channel Code), developed by Performance greatly exceeds
Junwoo Lim at PSC, isa 2.4x processor speed ratio

highly scalable parallel flow

128 x 513 x 512

3
|_
solver to enable more realistic > g - /
simulations of turbulent E ,/
boundary flow, including 5 6 - /
tracking the traces of 2 512 x 1025 x 1024
massless particles under % 4 -
stably stratified conditions. £
g 2
@
0] T T
10 100 1000 10000
processors

» Application: understanding the dynamics of pollutant
particles in atmospheric stratified turbulent boundary layers.

e This project is sponsored by NSF and is a
part of the international collaboration
research program between PSC and KISTI
(Korea Institute of Science and Technology

Information) Supercomputing center.

The effect of different FFT libraries

PSCC (512,1025,1024) on BigBen

70
60 - ——+—10/30/2005 + vecFFT
" 10/30/2005 + FETW
—a—12/9/2005 + FFTW + gcc
40
D
30 -
10 -
O | |
256 512 768

processors

NAMD on the Cray-XT3

Scalable simulation of large biomolecular systems

2002 Gordon Bell performance prize

Built on Charm++: dynamic load balancing, latency hiding
Accounts for a large proportion of usage on bigben

Scaled to 5000 XT3 processors
(“friendly user” account at ORNL)

Performance Enhancements
= gnu malloc (-lgmalloc): 20%
= -small_pages: 20-40%

Shawn Brown, PSC

The journey continues

« We are working closely with Prof. L. V. Kalé and his

group to improve the efficiency and scaling of NAMD
on the XT3.

— developers of the CHARM++ programming language
— profiling NAMD with the “Projections” application

« Based on these profiles, we are moving forward with a
number of performance enhancements.
— Improved MPI performance
— Native Portals implementation of Charm++

e Optimal process mapping

PITTSBURGH
SUPERCOMPUTING
C E N T E R

Grazie!

PITTSBURGH
SUPERCOMPUTING
C E N T E R

	From Peak to Peak:Maximizing Performance onPSC’s Cray XT3
	Survey of performance optimizations at PSC
	Optimizing Job Placement
	Job Placement by Cabinet
	Bigben Wiring Diagram
	Default Scheduling Algorithm
	Job placement
	Hops between cabinets
	Job placement by cabinet
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Job placement by node adjacency
	Results
	Integration with job scheduler
	Ongoing work
	Generating efficient code with C compilers: an example with PGCC
	A tale of two instructions
	Example: Matrix Multiplication
	Beginning: pgcc -S -fastsse
	pgcc -S -fastsse -Msafeptr
	Declaring Data Independency via #pragma
	Using Craypat to detect inefficiencies
	LEO Optimization
	Effect of Optimizing Communications in LEO
	LEO: Before and After
	The Effect of Bandwidth
	The effect of different FFT libraries
	NAMD on the Cray-XT3
	The journey continues
	

