
Comparing Optimizations of GTC for the Cray X1E and XT3

James B. White III∗ Nathan Wichmann† Stephane Ethier‡

Abstract

We describe a variety of optimizations of GTC, a 3D gyrokinetic particle-in-cell code, for the Cray
X1E. Using performance data from multiple points in the optimization process, we compare the relative
importance of different optimizations on the Cray X1E and their effects on Cray XT3 performance. We
also describe the performance difference between small pages and large pages on the XT3, a difference
that is particularly significant for GTC.

1 Introduction

We describe a variety of optimizations of GTC, a 3D gyrokinetic particle-in-cell code, for the Cray X1E. Using
performance data from multiple points in the optimization process, we compare the relative importance of
different optimizations on the Cray X1E and their effects on Cray XT3 performance.

GTC is a prominent application within the Department of Energy (DOE) Office of Science used to
simulate turbulent transport in fusion plasmas. It uses a 3D gyrokinetic particle-in-cell algorithm that
is intrinsically global and has scaled to more than ten-thousand processors. Versions of GTC have been
vectorized for the Cray X1 and NEC SX series, including the Earth Simulator, and their performance was
presented at past CUG meeting and SC conferences.[1][2] We started with a current version of GTC without
vector modifications to specifically target the X1E and record the full performance history of optimization
process.

The X1E and XT3 we used are part of the DOE Leadership Computing Facility at the National Center
for Computational Sciences (NCCS).[3] The X1E, named “Phoenix”, has 1,024 multi-streaming processors
(MSPs), with 2 GB of memory per MSP. All executables were generated with version 5.4 of the Programming
Environment. The XT3, named “Jaguar”, has 5,212 processors in the compute partition, where each pro-
cessor is a 2.4 GHz AMD Opteron with 2 GB of memory. The initial XT3 run used an executable generated
with version 6.0 of the Portland Group (PGI) Fortran compiler, while later runs used version 6.1.3.

In the following section, we describe the optimization process used for the X1E, including our changes
to the GTC source code and the resulting performance measurements. We then describe a few performance
experiments performed on the XT3 using versions of GTC created as part of X1E optimization. We end
with a summary of our performance measurements and comparison of GTC performance on other prominent
high-performance computers.

2 GTC on X1E

We tuned GTC on the X1E using a 64-process benchmark that is representative of current science runs.
We used an iterative process that started with a benchmark run using an executable instrumented for
performance measurement using the Cray “pat build” tool. After each run we generated a performance
profile with statistics listed by procedure and by line, using a command of the following form.

∗Oak Ridge National Laboratory
†Cray, Inc.
‡Princeton Plasma Physics Laboratory

1

pat_report -b functions,lines ...

We then committed the source code, benchmark output, and performance results to a Subversion[4] reposi-
tory.

Using the profile from “pat report” and loopmark listings from the Cray Fortran compiler, we iden-
tified expensive code blocks and potential optimizations. After implementing a potential optimization, we
regenerated loopmarks to determine if the change improved vectorization and/or multistreaming. We then
repeated the process starting with a run of the benchmark using the modified source code.

Figure 1 shows the performance results for each revision of GTC for which the benchmark was run. Each
“commit” of software modifications to the repository generated a new revision number, and we did not run
the benchmark for every revision. The performance metric is the runtime as reported by internal timers for
the main time-stepping loop. The column labeled “X1E r2” shows the runtime for the first revision measured
for performance on the X1E.

2.1 Revisions 2 to 3

The profile for revision 2 begins as follows.

Samp% | Cum.Samp% | Samp |Function
|Line

100.0% | 100.0% | 22049624 |Total
|---
| 61.5% | 61.5% | 13557450 |chargei_
||--
|| 12.2% | 12.2% | 2698466 |line.140
|| 9.2% | 21.5% | 2031530 |line.132
|| 6.4% | 27.8% | 1404587 |line.102
|| 4.8% | 32.6% | 1047693 |line.133

The procedure “chargei” dominates the runtime. The following excerpt from the “chargei” loopmark
listing indicates the performance problem.

90. 1-------------< do m=1,mi
..
93. 1 kk=kzion(m)
..
97. 1 Vs----------< do larmor=1,4
..

127. 1 Vs ij=jtion0(larmor,m)
128. 1 Vs densityi(kk,ij) = densityi(kk,ij) + wz0*wt00
129. 1 Vs densityi(kk+1,ij) = densityi(kk+1,ij) + wz1*wt00
130. 1 Vs
131. 1 Vs ij=ij+1
132. 1 Vs densityi(kk,ij) = densityi(kk,ij) + wz0*wt10
133. 1 Vs densityi(kk+1,ij) = densityi(kk+1,ij) + wz1*wt10
..

144. 1 Vs----------> enddo
145. 1-------------> enddo

ftn-6289 ftn: VECTOR File = chargei.F90, Line = 90
A loop starting at line 90 was not vectorized because a recurrence was found
on "DENSITYI" between lines 128 and 129.

2

The index variables “kk” and “ij” are not permutations, so the updates to the variable “densityi” are
not independent, and the loop over “m” cannot be vectorized or multistreamed. The fix is in the following
excerpt from revision 3.

...
15. #ifdef _UNICOSMP
16. integer, parameter :: vlen = 256
17. integer :: mv, v
18. real(wp) dnipart(mgrid,0:mzeta,vlen)
19. #endif
...
98. #ifdef _UNICOSMP
99. m-------------< do mv=1,mi,vlen
100. m !dir$ prefervector
101. m MVs---------< do m=mv,min(mv+vlen-1,mi)
102. m MVs v=m-mv+1
103. m MVs #else
104. m MVs do m=1,mi
105. m MVs #endif
...
140. m MVs 3 ij=jtion0(larmor,m)
141. m MVs 3 dnipart(ij,kk,v) = dnipart(ij,kk,v) + wz0*wt00
142. m MVs 3 dnipart(ij,kk+1,v) = dnipart(ij,kk+1,v) + wz1*wt00
...
194. ir------------< do v=1,vlen
195. ir 2----------< do kk=0,mzeta
196. ir 2 !dir$ preferstream
197. ir 2 MV-------< do ij=1,mgrid
198. ir 2 MV densityi(kk,ij) = densityi(kk,ij) + dnipart(ij,kk,v)
199. ir 2 MV-------> enddo
200. ir 2----------> enddo
201. ir------------> enddo

Preprocessor statements cause the revised code to only appear to the compiler of the Cray X1 series, for the
macro “ UNICOSMP” is automatically defined for this series.

The work array “dnipart” has an extra dimension compared to “densityi”, and the size of that dimen-
sion is “vlen=256”, where 256 is the vector length of the X1E when the entire MSP is used for a single loop.
An additional loop iterates over blocks of size “vlen”, and the “m” loop iterates over the elements of a block.
The added dimension makes the updates independent within the innermost loop, so they are vectorized and
multistreamed (“MV”). The “s” in “MVs” indicates the loop was short enough so a single series of vector
instructions performs all iterations of the loop.

A new loop nest appears after the original loops to accumulate the vectorized results. This loop is extra
work, but the work is worth it to enable vectorization. The value of “mgrid” is large, over 32,000, while the
value of “mzeta” is small for moderate to large numbers of parallel processes. For 64 or more processes, it
is only 1. Therefore we vectorize and multistream over “mgrid”.

Column “X1E r3” of Figure 1 shows the resulting performance for revision 3, a 3.2× improvement over
revision 2.

2.2 Revisions 3 to 5

The profile for revision 3 begins as follows.

Samp% | Cum.Samp% | Samp |Function

3

|Line

100.0% | 100.0% | 8768310 |Total
|--
| 30.3% | 30.3% | 2660905 |shifti_
||---------------------------------------
|| 12.3% | 12.3% | 1080482 |line.154
|| 7.3% | 19.7% | 644222 |line.206
|| 6.1% | 25.8% | 535231 |line.128
|| 2.1% | 27.9% | 186416 |line.207
|| 1.4% | 29.3% | 120175 |line.132
|| 0.2% | 29.5% | 17864 |line.190
...
| 7.5% | 93.1% | 660755 |chargei_

The procedure “chargei” is much faster, and the procedure “shifti” now dominates. The following excerpt
from “shifti” shows the performance problem.

128. r-------------< do m=m0,mi
129. r zetaright=min(2.0*pi,zion(3,m))-zetamax
130. r zetaleft=zion(3,m)-zetamin
131. r
132. r if(zetaright*zetaleft > 0)then
133. r zetaright=zetaright*0.5*pi_inv
134. r zetaright=zetaright-real(floor(zetaright))
135. r msend=msend+1
136. r kzi(msend)=m
137. r
138. r if(zetaright < 0.5)then
139. r ! # of particle to move right
140. r msendright(1)=msendright(1)+1
141. r iright(msendright(1))=m
142. r ! keep track of tracer
143. r if(nhybrid == 0 .and. m == ntracer)then
144. r msendright(2)=msendright(1)
145. r ntracer=0
146. r endif
147. r
148. r ! # of particle to move left
149. r else
150. r msendleft(1)=msendleft(1)+1
151. r ileft(msendleft(1))=m
152. r if(nhybrid == 0 .and. m == ntracer)then
153. r msendleft(2)=msendleft(1)
154. r ntracer=0
155. r endif
156. r endif
157. r endif
158. r-------------> enddo
...

ftn-6005 ftn: SCALAR File = shifti.F90, Line = 128
A loop starting at line 128 was unrolled 2 times.

4

ftn-6254 ftn: VECTOR File = shifti.F90, Line = 128
A loop starting at line 128 was not vectorized because a recurrence was found
on "NTRACER" at line 145.

The loop starting at line 128 iterates over particles that might move to another processor. The “if” statement
on line 132 tests whether or not the particle does indeed move to another processor. The block on lines
139-146 is for particles moving “right” around the ring of the fusion device, and the block on lines 148-156
is for particles moving “left”.

A critical computation inhibiting vectorization is on lines 142-146, a test of whether the simulation’s
tracer particle is on this processor and is about to move to another processor. This computation has a
dependence on line 145, where the value of “ntracer” is reset.

The above code block from revision 3 was replaced by a completely different block in revision 5.

123. #elif defined _UNICOSMP
124.
125. V-------------< do m=m0,mi
126. V zetaright=min(2.0*pi,zion(3,m))-zetamax
127. V zetaleft=zion(3,m)-zetamin
128. V if (zetaright*zetaleft > 0) then
129. V msend=msend+1
130. V kzi(msend)=m
131. V endif
132. V-------------> enddo
133.
134. V-------------< do i=1,msend
135. V m=kzi(i)
136. V zetaright=min(2.0*pi,zion(3,m))-zetamax
137. V zetaright=zetaright*0.5*pi_inv
138. V zetaright=zetaright-real(floor(zetaright))
139. V if (zetaright < 0.5) then
140. V ! # of particle to move right
141. V msendright(1)=msendright(1)+1
142. V iright(msendright(1))=m
143. V ! # of particle to move left
144. V else
145. V msendleft(1)=msendleft(1)+1
146. V ileft(msendleft(1))=m
147. V endif
148. V-------------> enddo
149.
150. ! keep track of tracer
151. if ((nhybrid == 0) .and. (ntracer > 0)) then
152. MV------------< do i=1,msendright(1)
153. MV if (iright(i) == ntracer) msendright(2)=i
154. MV------------> enddo
155. if (msendright(2) /= 0) then
156. ntracer=0
157. else
158. MV------------< do i=1,msendleft(1)
159. MV if (ileft(i) == ntracer) msendleft(2)=i
160. MV------------> enddo
161. if (msendleft(2) /= 0) ntracer=0
162. endif

5

163. endif

The modified code is again protected by a preprocessor macro so that it is only used on the X1 series.
Lines 125-132 first find the particles that will move. The computation is similar to the Fortran “pack”

intrinsic, a pattern the compiler recognizes, and it vectorizes but does not multistream. Lines 134-148 test
whether the particles move left or right using a further generalization of “pack” that vectorizes but doesn’t
multistream. Lines 150-163 check for the tracer particle using reduction operations, “logical” analogies of
the “sum” intrinsic, which vectorize and multistream.

Column “X1E r5” of Figure 1 shows the resulting performance for revision 5, a 1.4× improvement over
revision 3.

2.3 Revisions 5 to 6

The profile for revision 5 begins as follows.

Samp% | Cum.Samp% | Samp |Function
|Line

100.0% | 100.0% | 7126472 |Total
|--
| 34.0% | 34.0% | 2422227 |pushi_
||---------------------------------------
|| 9.6% | 9.6% | 683490 |line.93
|| 4.6% | 14.2% | 330526 |line.80
|| 4.3% | 18.6% | 309770 |line.92
|| 3.8% | 22.4% | 269578 |line.94
|| 1.9% | 24.2% | 131984 |line.62
|| 1.5% | 25.7% | 107877 |line.148
|| 0.9% | 26.6% | 62389 |line.105
...
| 13.7% | 81.3% | 973509 |shifti_
...
| 9.2% | 90.5% | 654013 |chargei_

The “shifti” procedure no longer dominates, replaced by “pushi”. The following excerpt from “pushi”
shows the performance problem.

60. M-----------< do m=1,mi
...
67. M
68. M Vs--------< do larmor=1,4
69. M Vs
70. M Vs ij=jtion0(larmor,m)
71. M Vs wp0=1.0-wpion(larmor,m)
72. M Vs wt00=1.0-wtion0(larmor,m)
73. M Vs e1=e1+wp0*wt00*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
74. M Vs e2=e2+wp0*wt00*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
75. M Vs e3=e3+wp0*wt00*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))
...
96. M Vs--------> enddo
97. M
98. M wpi(1,m)=0.25*e1
99. M wpi(2,m)=0.25*e2

6

100. M wpi(3,m)=0.25*e3
101. M
102. M-----------> enddo

The compiler vectorizes a loop over just 4 elements. The outer loop is over more than 32,000 elements, so it
is appropriate to vectorize and multistream. A single directive does the trick.

58. !dir$ prefervector
...
61. MV----------< do m=1,mi
...
69. MV 2--------< do larmor=1,4
70. MV 2
71. MV 2 ij=jtion0(larmor,m)
72. MV 2 wp0=1.0-wpion(larmor,m)
73. MV 2 wt00=1.0-wtion0(larmor,m)
74. MV 2 e1=e1+wp0*wt00*(wz0*evector(1,kk,ij)+wz1*evector(1,kk+1,ij))
75. MV 2 e2=e2+wp0*wt00*(wz0*evector(2,kk,ij)+wz1*evector(2,kk+1,ij))
76. MV 2 e3=e3+wp0*wt00*(wz0*evector(3,kk,ij)+wz1*evector(3,kk+1,ij))
...
97. MV 2--------> enddo
98. MV
99. MV wpi(1,m)=0.25*e1
100. MV wpi(2,m)=0.25*e2
101. MV wpi(3,m)=0.25*e3
102. MV
103. MV----------> enddo

The directive on line 58 is the only change, and it appears as a comment to non-vector compilers.
Column “X1E r6” of Figure 1 shows the resulting performance for revision 6, a 1.8× improvement over

revision 5.

2.4 Revisions 6 to 8

The profile for revision 6 begins as follows.

Samp% | Cum.Samp% | Samp |Function
|Line

100.0% | 100.0% | 5146367 |Total
|--
| 25.4% | 25.4% | 1306364 |MPI_CRAY_fast_barrier
...
||=======================================
| 22.2% | 47.6% | 1144908 |rng_number_s1_
...
||=======================================
| 19.2% | 66.9% | 989615 |shifti_
||---------------------------------------
|| 12.3% | 59.9% | 631146 |line.248
|| 4.2% | 64.1% | 214897 |line.249
|| 1.0% | 65.1% | 51156 |line.128

7

The procedure “MPI CRAY fast barrier” is inside the Cray MPI library, and it dominates because of load
imbalance in the setup of the benchmark. The benchmark run is short, and the setup time is not included
in the performance measurement, so this procedure is not relevant for optimization targeting real science
runs. The procedure “rng number s1” is used to generate reproducible random numbers so the output
of benchmark runs can be easily compared for correctness. It is also not included in the performance
measurement, and it is replaced by more-efficient random-number generators for science runs.

Thus the procedure “shifti” returns as the bottleneck. The following excerpt from “shifti” shows the
performance problem.

240. lasth=msend
241. 1-------------< do i=1,msend
242. 1 m=kzi(i)
243. 1 if (m > mi) exit !Break out of the DO loop if m > mi
244. 1 2-----------< do while(mtop == kzi(lasth))
245. 1 2 mtop=mtop-1
246. 1 2 lasth=lasth-1
247. 1 2-----------> enddo
248. 1 if(nhybrid == 0 .and. mtop == ntracer)ntracer=m
249. 1 r V M--<><><> zion(1:nparam,m)=zion(1:nparam,mtop)
250. 1 f----------<> zion0(1:nparam,m)=zion0(1:nparam,mtop)
251. 1 mtop=mtop-1
252. 1 if (mtop == mi) exit !Break out of the DO loop
253. 1-------------> enddo

ftn-6254 ftn: VECTOR File = shifti.F90, Line = 241
A loop starting at line 241 was not vectorized because a recurrence was found
on "NTRACER" at line 248.

This code block packs local particles into the holes left by sent particles. The loop starting on line 241
iterates over the sent particles. Again the computation of the tracer particle inhibits vectorization. Loops
on lines 249-250 are vectorized and multistreamed, but the value of “nparam” is no larger than 7, so the
loops are very short.

This block from revision 6 was replaced by a completely different block in revision 8.

246. #ifdef _UNICOSMP
247. r V M-----<><><> zmask(mi+1:mtop) = .true.
248. V M---------<><> i0=count(kzi(1:msend) <= mi)
249. r V M-----<><><> zmask(kzi(i0+1:msend)) = .false.
250. nholes=0
251. V--------------< do m=mtop,mi+1,-1
252. V if (zmask(m)) then
253. V nholes=nholes+1
254. V jzi(nholes)=m
255. V endif
256. V--------------> enddo
257. !dir$ concurrent, prefervector
258. Vm-------------< do i=1,nholes
259. Vm r 3 M--<><><> zion(1:nparam,kzi(i))=zion(1:nparam,jzi(i))
260. Vm f----------<> zion0(1:nparam,kzi(i))=zion0(1:nparam,jzi(i))
261. Vm-------------> enddo
262. if (nhybrid == 0 .and. ntracer > mi) then
263. itracer=0
264. MV-------------< do i=1,nholes

8

265. MV if (ntracer == jzi(i)) itracer=i
266. MV-------------> enddo
267. ntracer=kzi(itracer)
268. endif

Lines 247-256 identify the particles at the end of the array that will be used to fill in the holes. Lines 248-249
ensure that holes are not used to fill in other holes. Lines 251-256 perform a “pack”-like operation. Lines
258-261 copy the particles into the holes, vectorizing over holes and multistreaming over “nparam”, which
again is at most 7. Lines 262-268 move the tracer particle if necessary, again using a “logical” reduction.

Revision 8 corrects an additional performance problem appearing later in “shifti”. The version from
revision 6 is as follows.

332. M-------------< do m=1,mrecvleft(1)
333. M V 3------<><> zion(1:nparam,m+mi)=recvleft(1:nparam,m)
334. M f----------<> zion0(1:nparam,m+mi)=recvleft(nparam+1:nzion,m)
335. M-------------> enddo
...
339. M-------------< do m=1,mrecvright(1)
340. M V 3------<><> zion(1:nparam,m+mi+mrecvleft(1))=recvright(1:nparam,m)
341. M f----------<> zion0(1:nparam,m+mi+mrecvleft(1))=recvright(nparam+1:nzion,m)
342. M-------------> enddo

ftn-6294 ftn: VECTOR File = shifti.F90, Line = 332
A loop starting at line 332 was not vectorized because a better candidate was
found at line 333.

ftn-6294 ftn: VECTOR File = shifti.F90, Line = 339
A loop starting at line 339 was not vectorized because a better candidate was
found at line 340.

The compiler does not know that “nparam” is small and chooses to vectorize the wrong loop. Directives solve
the vectorization problem, and the compiler multistreams over the “nparam” loop, which is appropriate.

363. !dir$ prefervector
364. Vm-------------< do m=1,mrecvleft(1)
365. Vm r 3 M--<><><> zion(1:nparam,m+mi)=recvleft(1:nparam,m)
366. Vm f----------<> zion0(1:nparam,m+mi)=recvleft(nparam+1:nzion,m)
367. Vm-------------> enddo

371. !dir$ prefervector
372. Vm-------------< do m=1,mrecvright(1)
373. Vm r 3 M--<><><> zion(1:nparam,m+mi+mrecvleft(1))=recvright(1:nparam,m)
374. Vm f----------<> zion0(1:nparam,m+mi+mrecvleft(1))=recvright(nparam+1:nzion,m)
375. Vm-------------> enddo

Column “X1E r8” of Figure 1 shows the resulting performance for revision 8, a 1.6× improvement over
revision 6.

2.5 Revisions 8 to 9

The profile for revision 8 begins as follows.

Samp% | Cum.Samp% | Samp |Function
|Line

9

100.0% | 100.0% | 4205531 |Total
|--
| 30.9% | 30.9% | 1297644 |MPI_CRAY_fast_barrier
||---------------------------------------
...
||=======================================
| 26.8% | 57.7% | 1127354 |rng_number_s1_
||---------------------------------------
...
||=======================================
| 15.5% | 73.2% | 652792 |chargei_
||---------------------------------------
...
||=======================================
| 11.6% | 84.7% | 486147 |pushi_
||---------------------------------------
...
||=======================================
| 2.4% | 92.4% | 100005 |shifti_
||---------------------------------------

Again, “MPI CRAY fast barrier” and “rng number s1” are not relevant. The “shifti” procedure is now
much faster, but “chargei” and “shifti” are back near the top of the profile. The loopmark listing
for “chargei” showed no obvious performance problems, but the loopmark listing for “pushi” did. The
problems were not clear, however, looking at just the loops themselves. Here is an example.

259. MV----------< do m=1,mi
260. MV ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))
261. MV dtem(ip)=dtem(ip)+wpi(2,m)*zion(5,m)
262. MV dden(ip)=dden(ip)+1.0
263. MV----------> enddo

301. MV----------< do m=1,mi
...
305. MV ip=max(1,min(mflux,1+int((r-a0)*d_inv)))
306. MV ii=max(0,min(mpsi,int((r-a0)*delr+0.5)))
...
310. MV hfluxpsi(ii)=hfluxpsi(ii)+vdrenergy ! energy flux profile
...
313. MV rmarker(ip)=rmarker(ip)+zion0(6,m)
314. MV eflux(ip)=eflux(ip)+vdrenergy
...
324. MV dmark(ip)=dmark(ip)+wpi(1,m)*r
325. MV dden(ip)=dden(ip)+1.0
326. MV----------> enddo

These loops look fine; they are vectorized and multistreamed. Looks are deceiving, however, as indicated by
the comments later in the loopmark listing.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 259
A vectorized loop contains potential conflicts due to indirect addressing at

10

line 262, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 259
A vectorized loop contains potential conflicts due to indirect addressing at
line 261, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 301
A vectorized loop contains potential conflicts due to indirect addressing at
line 310, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 301
A vectorized loop contains potential conflicts due to indirect addressing at
line 314, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 301
A vectorized loop contains potential conflicts due to indirect addressing at
line 325, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 301
A vectorized loop contains potential conflicts due to indirect addressing at
line 313, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.f90, Line = 301
A vectorized loop contains potential conflicts due to indirect addressing at
line 324, causing less efficient code to be generated.

The problem in the above code fragment is that the index variables “ii” and “ip” are not permutations.
The fix is to use work arrays with an extra, vectorizable dimension, like for “chargei” in revision 3.

19. #ifdef _UNICOSMP
20. integer, parameter :: vlen=256
21. integer :: mv, v
22. real(wp) :: vdtem(vlen,mflux), vdden(vlen,mflux)
23. real(wp) :: vhfluxpsi(0:mpsi,vlen),

vrmarker(vlen,mflux), veflux(vlen,mflux),
vdmark(vlen,mflux)

24. #endif

It is important to note the size of the original dimension for each variable to efficiently implement the
reduction over the added dimension. The value of “mpsi” is as much as 192, so it is good to vectorize over
when reducing “vhfluxpsi” and thus it appears as the first dimension. The value of “mflux”, however, is
just 5, so it is better to perform a vector reduction over “vlen” for the other variables, with the “mflux”
dimension second.

As an example of using these work variables, lines 259-263 above were replaced with the following.

264. #ifdef _UNICOSMP
265. Vw V M----<><><> vdtem=0
266. f-------------<> vdden=0
267. m--------------< do mv=1,mi,vlen
268. m MVs----------< do m=mv,min(mv+vlen-1,mi)
269. m MVs v=m-mv+1
270. m MVs ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))
271. m MVs vdtem(v,ip)=vdtem(v,ip)+wpi(2,m)*zion(5,m)

11

272. m MVs vdden(v,ip)=vdden(v,ip)+1.0
273. m MVs----------> enddo
274. m--------------> enddo
275. M--------------< do i=1,mflux
276. M Vw V 4--<><><> dtem(i)=sum(vdtem(:,i))
277. M f-----------<> dden(i)=sum(vdden(:,i))
278. M--------------> enddo

Lines 265-274 update the new work variables, and lines 275-278 sum the results. This is a small example
within “pushi”; other loops with more operations were also modified.

Column “X1E r9” of Figure 1 shows the resulting performance for revision 9, a 1.1× improvement over
revision 8.

2.6 Revisions 9 to 12

Here is an excerpt from the profile for revision 9.

| 16.3% | 77.1% | 651612 |chargei_
...
| 9.4% | 86.5% | 375015 |pushi_
...
| 1.6% | 93.2% | 64880 |shifti_
...
| 0.6% | 96.1% | 22933 |poisson_
...
| 0.2% | 98.1% | 9468 |poisson_initial_

There is no clear target for optimization among the most-costly procedures. We instead went for the
remaining “low-hanging fruit”, scattered optimizations that should not adversely affect performance on
non-vector systems.

In “pushi”, we undid the modification to lines 259-263 described above because it was not worth the
additional overhead. The analogous modifications for other, larger loops in “pushi” were worth the mod-
ification, however. In “shifti”, we manually blocked a “pack” operation for multistreaming and moved
multistreaming away from some “nparam” loops. In “smooth”, we again applied the added-dimension tech-
nique to vectorize dependent updates.

We did perform one optimization technique not already described, in “poisson”. Here is the original
code.

86. m iW M-----------< do i=1,mgrid
87. m iW M ptilde(i)=0.0
88. m iW M Vr--------< do j=1,nindex(i,k)
89. m iW M Vr ptilde(i)=ptilde(i)

+ring(j,i,k)*phitmp(indexp(j,i,k))
90. m iW M Vr--------> enddo
91. m iW M-----------> enddo

All values of “nindex” are 65 or less, while “mgrid” is over 32,000. Therefore, it is better to vectorize the
“i” loop, but the “j” loop must have constant loop bounds to allow this. Because unused elements of “ring”
are set to zero, we can use the maximum value of “nindex” and vectorize the outer loop at the potential
cost of extra work for the inner loop.

312. V M-----------<><> max_nindex=maxval(nindex)

87. m iW MVr---------< do i=1,mgrid

12

88. m iW MVr ptilde(i)=0.0
89. m iW MVr #ifdef _UNICOSMP
90. m iW MVr r-------< do j=1,max_nindex
91. m iW MVr r #else
92. m iW MVr r do j=1,nindex(i,k)
93. m iW MVr r #endif
94. m iW MVr r ptilde(i)=ptilde(i)

+ring(j,i,k)*phitmp(indexp(j,i,k))
95. m iW MVr r-------> enddo
96. m iW MVr---------> enddo

Line 312 comes from a separate initialization routine, but it is listed above the dependent code fragment for
simplicity.

Column “X1E r12” of Figure 1 shows the resulting performance for revision 12, a 1.06× improvement
over revision 9.

2.7 Revisions 12 to 24

The profile for revision 12 begins as follows.

Samp% | Cum.Samp% | Samp |Function
|Line

100.0% | 100.0% | 3994895 |Total
|--
...
||=======================================
| 16.3% | 77.1% | 651612 |chargei_
||---------------------------------------
|| 3.6% | 64.5% | 145767 |line.120
|| 2.3% | 66.8% | 93233 |line.76
|| 2.0% | 68.8% | 80616 |line.55
|| 1.9% | 70.8% | 77887 |line.153
|| 1.1% | 71.9% | 44914 |line.149
...
||=======================================
| 9.4% | 86.5% | 375015 |pushi_
||---------------------------------------
|| 1.3% | 78.4% | 50273 |line.99
|| 1.2% | 79.6% | 48823 |line.100

Performance of “chargei” can be improved no further without affecting performance on other systems or
dramatically decreasing code maintainability, for the improvements require changing the order of dimensions
for global variables. The following excerpt from “chargei” shows a representative performance problem.

265. M-------------< do i=0,mpsi
266. M !dir$ prefervector
267. M V-----------< do j=1,mtheta(i)
268. M V r---------< do k=1,mzeta
269. M V r ij=igrid(i)+j
270. M V r zonali(i)=zonali(i)+0.25*densityi(k,ij)
271. M V r densityi(k,ij)=0.25*densityi(k,ij)*markeri(k,ij)
272. M V r---------> enddo

13

273. M V-----------> enddo
274. M-------------> enddo

Vectorization is over the second dimension of “density” and “markeri”. A different code block has a similar
problem.

101. m MVs---------< do m=mv,min(mv+vlen-1,mi)
102. m MVs v=m-mv+1
...
112. m MVs 3-------< do larmor=1,4
113. m MVs 3 wp1=wpion(larmor,m)
114. m MVs 3 wp0=1.0-wp1
...
140. m MVs 3 ij=jtion0(larmor,m)
141. m MVs 3 vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt00
...
175. m MVs 3-------> enddo
176. m MVs---------> enddo
177. m #ifdef _UNICOSMP
178. m-------------> enddo

Vectorization is again over the second dimension, this time for “wpion”, “jtion0”, and others. (Note that
the “larmor” loop iterates over strided vector operations.)

We improved performance on the X1E by changing the order of dimensions for various variables so that
the vectorized dimension was first. We modified the following variables: “densityi”, “dnitmp”, “markeri”,
“jtion0”, “jtion1”, “wpion”, “wtion0”, “wtion1”, “markere”, “densitye”, “zion”, “zion0”. These mod-
ifications affected the following files, all with the “.F90” suffix: “shifte”, “shifti”, “pushi”, “poisson”,
“chargee”, “snapshot”, “setup”, “chargei”, “smooth”, “restart”, “tracking”, “set random values”.

Previous optimizations only affect the X1 series; on other systems, they are either ignored as comments
or deleted by the preprocessor. The changes in dimension order affect all systems, however.

Column “X1E r24” of Figure 1 shows the resulting performance for revision 24, a 1.26× improvement
over revision 12.

3 GTC on XT3

We did not perform an orderly performance-optimization process on the XT3, unlike on the X1E. Optimizing
for Opterons or other super-scalar processors is not as systematic as optimizing for vector processors, but
they can also be far less sensitive than vector processors to performance degradation from un-optimized
code.

We present XT3 results that test sensitivity to three variations: small or large memory pages, changes in
dimension order, and changes in compiler version. Column “XT3 r2 6.0” of Figure 1 shows the performance
of revision 2 of the code, compiled with version 6.0 of the PGI compilers, using the default, large page size.
Column “XT3 r2 6.1.3” shows the performance of the same code using version 6.1.3 of the compilers, a 1.05×
improvement. Column “XT3 r2 small” shows the performance of the code compiled with the version 6.1.3
compilers and run with the option “-small pages”. Small pages provide a 1.4× performance improvement.
Column “XT3 r24” shows the performance of revision 24 of the code, compiled with the 6.1.3 compilers
and using the default page size. This column shows that the changes of dimension order that improved
performance on X1E degrade performance on XT3 by a factor of 0.57. Column “XT3 r24 small” shows the
performance of the same revision run with the “-small pages” option. The degradation of performance
versus revision 2 is smaller than for large pages, but performance is still significantly lower for revision 24,
at 0.87×.

The performance of GTC on the XT3 has an unusually high sensitivity to the memory page size. We
speculate that this sensitivity comes from the irregular memory access patterns that arise naturally from

14

“particle pushing”. For large pages, the translation-lookaside buffer (TLB) on the Opteron has just 8 entries,
whereas it has 512 entries for small pages.[5] GTC can use a number of variables within the same loop, with
irregular access to those variables. With large pages, GTC may use more distinct pages within a single loop
iteration than there are TLB entries, leading to “thrashing” of the TLB. With small pages, the TLB should
have enough entries to cover the different pages used within a single loop iteration.

4 Results

Figure 2 shows performance results for the GTC benchmark used for X1E optimization.[2] We used 64-
processor runs for optimization, while the figure has results for a wide range of processor counts and a wide
variety of systems. The benchmark is weak scaling, meaning the number of particles per processor stays
constant as the number of processors increases.

The X1E results use our revision 24, while the other vector systems use an earlier vector version not
described here. The XT3 results use revision 2 with version 6.0 of the PGI compilers. Version 6.1.3 compilers
should produce slightly better performance. The Blue Gene/L results come from using a single processor
per node for computation, though two are available on each node. Also, the results are for a different
configuration of the benchmark, one using a tenth of the number of particles per node because of memory
limitations.

With the differing versions, the X1E is the fastest system per processor, faster than the Earth Simulator
and the NEC SX-8. The Earth Simulator remains the fastest system overall, but it may be overtaken by the
XT3 after upgrades scheduled for later in 2006.[3] The Blue Gene/L system at 16,000 nodes has performance
equivalent to about 1,000 MSPs of the X1E, with the caveats that the problem size per processor is smaller
and only 16,000 of the 32,000 dedicated processors were used for computation. Meanwhile, 4,000 processors
on the XT3 beat 1,000 X1E MSPs.

Through significant effort, we were able to dramatically improve the performance of GTC on the X1E,
making the X1E the fastest system per processor. Yet XT3 performance may be equally impressive; with
the simple runtime switch to small pages, the XT3 provides better than one fourth the performance per
processor relative to X1E without any source-code optimization. Since the peak performance of an X1E
MSP is 18 GF and the peak a 2.4 GHz Opteron is 4.8 GF, the efficiencies are roughly equivalent.

In 2005, we performed GTC science runs on the X1E at groundbreaking resolutions, over a billion
particles, to explore the convergence properties of GTC. Now, runs with tens of billions of particles are
performed regularly on the XT3 using 4,800 processors at a time, consuming millions of processor hours.
Future upgrades to the XT3 will enable runs that are larger still.

Acknowledgments

James Schwarzmeier of Cray, Inc., performed optimizations on earlier versions of GTC, and some of his ideas
were applied here. In particular, he used the technique of adding a dimension to eliminate accumulation
dependences, followed by a reduction over the added dimension.

This research was sponsored by the Mathematical, Information, and Computational Sciences Division,
Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

References

[1] Stephane Ethier. “Performance Study of the 3D Particle-in-Cell Code GTC on the Cray X1.” CUG 2004.

[2] Leonid Oliker, Jonathan Carter, Michael Wehner, Andrew Canning, Stephane Ethier, Art Mirin, David
Parks, Patrick H. Worley, Shigemune Kitawaki, Yoshinori Tsuda. “Leading Computational Methods on
Scalar and Vector HEC Platforms.” SC 2005.

15

[3] Arthur Bland, Ann Baker, R. Shane Canon, Ricky Kendall, Jeffrey Nichols, and Julia White. “Leadership
Computing at the NCCS.” CUG 2006.

[4] http://subversion.tigris.org/

[5] Hans de Vries. “Understanding the detailed Architecture of AMD’s 64 bit Core.” September 21, 2003.
http://www.chip-architect.com/news/2003 09 21 Detailed Architecture of AMDs 64bit Core.html

16

GTC Runtime

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
on

ds
)

XT3 r2 6.0
X1E r2
X1E r3
X1E r5
X1E r6
X1E r8
X1E r9
X1E r12
X1E r24
XT3 r2 6.1.3
XT3 r2 small
XT3 r24
XT3 r24 small

Figure 1: Runtime of a 64-process GTC benchmark on X1E and XT3 for various revisions of source code.
“XT3 r2 6.0” is from revision 2 on the XT3 using version 6.0 of the PGI compiler. “X1E rn” is from revision
n on the X1E. Columns marked “small” were run on the XT3 using small pages.

17

Figure 2: “Compute power” of GTC, as measured using a weak-scaling benchmark.[2] As noted, the X1E line
represents a different version than the Earth Simulator and SX-8 lines—in particular, the version described
in this paper. The XT3 line represents an older version of the OS and version 6.0 of the PGI compiler. The
Blue Gene/L line uses a slightly different benchmark, one that has a tenth of the number of particles per
processor because of memory limitations.

18

