
 1

Resource Allocation and Tracking System (RATS)
Deployment on the Cray X1E, XT3 and XD1 Platforms

Robert M. Whitten Jr., ORNL, Tom Barron, ORNL,

David L. Hulse, Computer Associates International,
Inc., Phillip E. Pfeiffer, East Tennessee State

University, and Stephen L. Scott, ORNL

ABSTRACT: The Resource Allocation and Tracking System (RATS)

is a suite of software components designed to provide resource

management capabilities for high performance computing

environments. RATS was initially developed as a joint effort between

Oak Ridge National Laboratory and East Tennessee State University,

as part of the SciDAC Scalable Systems Software Project (SSS), with

support from the National Center for Computational Sciences.-

RATS provides flexible support for various types of input data through

the use of an adapter layer that supports foreign-to-virtual attribute

conversion. RATS also supports the use of plug-in Python functions for

data validation, and an architecture that decouples data collection from

data processing. RATS currently supports resource allocation

management on the Cray X1E, XT3 and XD1 platforms at Oak Ridge

National Laboratory. Future directions include improved support for

web access, improved support for configurable host management, and

integration with LDAP, DCE, and RSA.

KEYWORDS: XT3, X1E, Cray, RATS, resource management,

allocation

1 Introduction
1

1.1 RATS as a Well-Designed Tool for

Account Management

Accountability to program sponsors and funding

agencies requires that large research computing

centers document how their machine cycles are

used. The system described in this paper, the

Oak Ridge National Laboratory (ORNL)

Resource Allocation and Tracking System

(RATS), addresses a need for a database

application that collects computer usage data

from a heterogeneous set of computing

platforms; provides administrators with report-

based and web-based access data on system

1
 Research supported by the Mathematics, Information and Computational

Sciences Office, Office of Advanced Scientific Computing Research,

Office of Science, U. S. Department of Energy, under contract

No.DE-AC05-00OR22725 with UT-Battelle, LLC.

utilization; and supports the use of this data for

admission control, based on a system of accounts

for resource utilization. The initial phase of

RATS system development, which was

completed in May 2004, began in January 2003,

after it was found that no single public domain

accounting package met the needs that the

National Center for Computational Sciences

(NCCS) at ORNL confronted. The NCCS

continues to use RATS as a primary tool for

system and user management. The original

system’s architecture has proved flexible enough

to provide a scalable solution for the needs of

ORNL users and staff. RATS’s use of available

open source database management systems and

integration with the installed base of batch

schedulers has aided in its acceptance.

RATS accepts input in the form of usage log

files from a heterogeneous set of job

management systems. Pluggable input modules

parse, validate, and format the data into a unified

internal format that can be stored in a relational

 2

database. This need to support heterogeneous

platforms was originally driven by NCCS’s use

of LoadLeveler and the Portable Batch System

(PBS) on different research supercomputers. The

NCCS needed to consolidate the information

from host accounting files in a unified format

that would allow the information to be analyzed

for usage trends and subsequently be used to

modify scheduler behavior. RATS provided a

framework for accomplishing these goals.

The RATS data model supports association of

users, projects, jobs, and allocations. One or

more users are associated with one or more

projects. Each project has one or more resource

allocations, and one or more users that are

designated as primary investigator (PI) or co-PI.

This data model captures the flow of allocation

usage from initial allocation to usage of

allocation by user consumption through job

execution.

RATS supports arbitrary suspension of operation

at either front-end data gathering components or

back-end data storage components. This feature

is intended to allow system maintenance with

minimal disruption. Thus, if a new input module

is needed, the front-end can be suspended

without affecting database operations.

Conversely, if the database needs to be

restructured, removing the database from

operation for a period of time will not impede

the continued collection of incoming usage

records. This data, which is stored in a holding

table between the RATS front and back ends,

would simply be held until the database becomes

available again.

Ongoing work has included support for an

operational model in which formal allocations of

computer resource are designated to particular

projects at the beginning of the fiscal year and

then usage through the year is tracked against

these allocations. One mandate for RATS was to

provide the machinery to carry out this allocation

and tracking task.

Best practices used during the ongoing

development of RATS are unit testing and code

reviews. These techniques have aided in the

discovery and correction of errors in both the

design and implementation of RATS. These

techniques aided in discovering shortcomings in

the LoadLeveler API as well as variances in the

PBS implementation on the Cray XT3.

It was discovered that there was no way to

retrieve processor counts from the LoadLeveler

API. This necessitated a redesign of the data

retrieval component for LoadLeveler. The PBS

implementation on the Cray XT3 uses a different

attribute for processor count than on other PBS

installations. This variance was handled by a

small adjustment to the implementation of the

PBS retrieval component. The design allowed

for quick resolutions of these issues with

minimal effort.

1.2 Relationship to Cray

Since RATS implementation began, the NCCS

has moved away from IBM systems, replacing

them with Cray systems using PBS to manage

their job stream. Thus, the need to support

LoadLeveler has diminished. The design

decision to make RATS data collection modules

pluggable to ease adding or removing support for

particular batch systems was essential. Rather

than losing a data source, it is conceivable that

several might have been added. New data

sources may yet be added in the future. The

design selected for RATS has served well by

providing appropriate flexibility to meet the

evolving demands of the NCCS.

Due to the design of RATS, the NCCS’s XT3,

X1E, and XD1 systems have been successfully

integrated into the system.

1.3 What Follows

The remainder of this report summarizes the

history of the RATS project (§2); discusses the

architecture and design of RATS (§3); describes

the system’s implementation (§4) and limitations

(§5); and discusses plans for its future

development (§6).

2 History

The project to develop a Resource Allocation

and Tracking System (RATS) began early in

January 2003, as a capstone project for a team of

students from East Tennessee State University

(ETSU) in Johnson City. In January, 2003,

Rebecca Fahey and Tom Barron of the NCCS

staff and Stephen Scott, a senior research

scientist in the Computer Science and

Mathematics Division (CSMD) at Oak Ridge

National Laboratory (ORNL) visited ETSU to

interview students to work on the RATS project.

In this joint NCCS/CSMD effort, funding was

 3

provided through May 2004 for the students by

NCCS and for their faculty advisor by CSMD.

From NCCS’s operational point of view, the

effort addressed several goals:

� NCCS needed to consolidate usage data

from IBM computers running LoadLeveler

and Cray and SGI computers running PBS

for usage tracking purposes. To the extent

practical, a requirement was to decouple the

input mechanism from the format of the

backend database.

� NCCS needed a mechanism for allocating

resources to specific projects at the

beginning of the fiscal year and than

tracking usage against these allocations.

� NCCS sought to develop and enhance

collaborative relationships with the research

and academic communities.

The project represented collaboration between

the NCCS and CSMD’s SSS team. From the

research perspective, the project addressed three

primary goals.

� Produce a platform for future research and

development of center-scale resource

management tools.

� Explore the feasibility of XML-based input

mechanisms for such systems.

� Explore the practicality of research and

production team collaborations.

ETSU approached RATS with two major goals:

� Train four ETSU students in the art of

software engineering.

� Develop and enhance the opportunity for

collaborative projects with entities at ORNL.

The work on RATS consumed about 8500

person-hours, divided between 7280 student

hours spread over three semesters and 1200

hours for the team’s advisor, Dr. Phillip E.

Pfeiffer. Most of Dr. Pfeiffer’s contribution was

devoted to architecting RATS, serving as team

liaison, and building a tool used to prototype the

database (see section 4.1).

2.1 Main Challenges

Two challenges made the consolidation of batch

system record formats more difficult than

originally expected. The team had hoped to find

open source code that would handle the resource

accounting aspect of the system. Unfortunately,

none of the candidates adequately addressed

NCCS’s accounting requirements. Thus, more

effort was required to analyze, specify, and

design the accounting functionality.

Secondly, a study of the LoadLeveler’s API for

collecting usage information showed that

LoadLeveler’s internal data model was

hierarchical, meaning that the team had to not

only map fields from one scheme to another, but

also to normalize the hierarchical format data

into a relational model.

Despite these challenges, the format

consolidation was completed successfully. The

team built a web-based interface for examining

the consolidated information to ensure validity.

Systematic unit tests were constructed along with

the code modules, allowing the code to be

validated as it was built.

2.2 Developer Status

Each of the four RATS team members found

employment soon after the academic portion of

the project was completed. Two were hired by

ORNL, one by Computer Associates, and the

fourth by an NYSE brokerage firm

3 Architecture

3.1 Architectural components

RATS is designed as a modular suite of

interrelated components. The diagram in Figure

3.1 depicts the relationship between the various

components in a leveled, hierarchical manner.

3.1.1 Database-specific front ends

The architecture of RATS provides for

components that are responsible for interfacing

with the various front-end data sources. These

data sources are typically in the form of

scheduler logs created by the various batch

schedulers (PBS, LoadLeveler, etc.). Additional

sources can be added by the creation of new

components tailored to accept data in any

imaginable format.

 4

Jobs Monitor
Metascheduler

Admissibility

Tester

Submit Job

Query
 Jo

b/R
ec eiv

e J ob
 I nf

o

Job Submit Notification

Submitted Job

Check Job Validity /Ack

Test Job Validity

Stats from

Consumption
Resource

Consumption Report

Report Job

Charges

Check Scheduled Job

Info/Remove Info

Job ID Registration

Update Resources

wrt Job ID Validate Charges

Validate RATS Users

Validate Platform Users

Send Machine

Availability

Sch N...Sch 0
Cycle Servers

Send Machine

Availability

Send Configuration

Information

Check Machine

Availability/Ack

Check/Request

Configuration

Availability/Ack

Relate Job with

Job Status

Relate Job with

Job Stats

Validate Scheduled Job with

Possible Machines

Host

Configuration

Host Conf
Dataset

Resource Status

Resource Status

Dataset

Static Attributes Static Attributes

Dataset

Platform Users
Platform Users

Dataset

RATS Users

RATS Users

Dataset

Projects

Projects
Dataset

Project Resource

Charges Project
Resource

Dataset

Scheduled Jobs

Manager

Scheduled Jobs

Dataset

Jobs ID Log

Manager

Jobs ID Log

Job Statistics

Job Statistics

Dataset

Job Status

Job Status

Dataset

Figure 3.1

3.1.1.1 Cray

The Cray systems at ORNL use PBS as the batch

scheduler. RATS has a component that parses

PBS job logs to gather usage information. There

are subtle differences between the PBS

installations on each Cray (XT3, X1E, and XD1)

with respect to field definitions (i.e., ncpus vs.

size). Differences in the specific PBS

installations are handled at this level with the

component providing the needed data value

based on the host that is being accessed.

3.1.1.2 IBM

The IBM system at ORNL uses LoadLeveler as

the batch scheduler. One of the key design

difficulties with RATS was the conversion of the

hierarchical database LoadLeveler presents in its

job log. The component that parses the

LoadLeveler job logs converts the hierarchical

database input into tabular output. To facilitate

this conversion, an iterator design pattern was

used in conjunction with LoadLeveler’s API to

transform data along each branch in the job log

into a tuple for insertion into RATS.

3.1.2 Isolation layer

Originally, the issue of storing the data pulled

from the schedulers into the main database

seemed much simpler than the problem of

retrieving data from the heterogeneous datasets

provided by the different schedulers. However, it

was quickly realized that data storage was much

the same issue as data retrieval. Just as the data

input sources could vary, the data output

destination might also vary. The current intended

destination was a MySQL database, but in the

future the destination could be as simple as a flat

file or as complicated as an XML stream to some

web service. Just as data retrieval was abstracted

away using an adapter pattern, data storage was

abstracted away with “putters” that convert

incoming data into a standardized tuple format.

Derived classes that implement an abstract

“putter” interface decide how to store incoming

data, using SQL insertion operations for a

database, or file system calls for a flat file, or

XML documents for a web service.

This approach allowed data retrieval code to be

updated and tested independently from the data

storage code and vice versa—a major advantage

for system development. A new iterator for a

different scheduler could be coded, tested, and

added without affecting the data storage code,

and with minimal impact to the other iterators

already present in the system. Similarly, a new

data destination could be implemented without

impacting data retrieval.

3.2 Data model

Figure 3.2 shows the core definitions for the

RATS data model. The notation in Figure 3.2 is

similar to notations in common use for defining

the semantics of programming languages. The

following is a rough description of how this

model was used to realize the RATS schema:

� Every type definition in Figure 3.2 helped to

realize one or more schemas for RATS

tables. StringType, for example, realize the

type of all text columns in the database.

� Names in ALL CAPITAL LETTERS were

realized as built-in SQL column types and

enumerations. StringType fields, for

example, were realized as columns of type

VARCHAR(86). Similarly,

TypeOfResourceType fields were realized

as MySQL enumerations with one of three

values: JOB ACTION, TRANSFER

ADMINISTRATIVE ACTION, or FUNDING

ACTION.

� Types defined using x (“cross-product”)

and ! (“map-forming”) were realized as

tuples. JobAttributesDatasetType, for

example, was realized as a 28-tuple that

captures data from a PBS job record.

Definition nesting also affected tuple

realization.

 5

� Nested definitions were collapsed, where

possible, to form individual tuples. For

example, TransactionLogType realized a 7-

tuple because Amount represents a pair of

StringType values.

� The ! operator was realized as a

uniqueness constraint on the fields that

precede it. For example, the RATS

transaction log was realized as a table with a

key field of ID.

� Names of types like TransactionLogType

that realized RATS tables are highlighted in

boldface. Other type definitions, like

StringType, were created for clarity or to

express relationships amongst types—i.e.,

“join constraints” in ER diagrams.

� Field names like ProjectID were realized as

column names. The transaction log’s

columns, for example, are named ID, Type,

Source, Sink, Amount.ComputingResources,

and Amount.Value.

� Types defined using + (“disjoint union”)

were realized as one or more fields that

collectively contain one of several distinct

types of data.

NamedComputingResourceType, for

example, was realized as a column that can

contain one of three types of data: the name

of a CPU; the name of a disk; or the name of

a main memory element.

� The notation 2
SomeType

 denotes a set of items

of SomeType. A field F of type 2
SomeType

was

realized by defining a supporting table that

paired values of SomeType with numbers

that identified the sets to which they

belonged. These numbers were then entered

in field F. For example, sets of subprojects

for the Project Data Table, a table of type

ProjectDataType, were realized by creating

a single, all-inclusive supporting table that

paired subproject IDs with the IDs of the

sets to which they belonged, then entering

these set IDs into the project data table’s

Subprojects column.

This type-based approach for defining RATS

content provided a precise, flexible, and fast

basis for developing the data model. The need

for agility and precision became apparent at the

project’s outset, after an day-long JAD session

failed to produce agreement on an initial

accounting model—let alone substantive

requirements for the RATS database. Additional

concerns about the difficulty of scheduling

follow-on meetings suggested a need to present

clients with simple, carefully defined models that

they could critique independently.

The notation shown in Figure 3.2 met the needs

described above. The notation is clear, in the

sense that it presents clients with a hierarchical

taxonomy of definitions: a strategy for

expressing data models that seems more intuitive

to clients than E-R diagrams. The notation is

flexible, in the sense of being modular:

definitions at one level of the taxonomy can

typically be changed without affecting dependent

definitions. Finally, the notation is precise, in the

sense that straightforward procedures can be

defined for transforming these type definitions

into SQL CREATE TABLE statements.

4 Implementation

RATS is implemented using a variety of

technologies. The job monitor component is

composed of a series of information retrieval

modules in conjunction with an equivalent set of

storage modules. An abstraction layer that

defines the various attributes that RATS will

manage separates the retrieval and storage

modules. These modules are implemented as

C++ classes with three total classes per attribute.

One class each represents retrieval, storage, and

abstraction. Modules currently exist for

accessing PBS, LoadLeveler, and text file data

sources. MySQL and text file modules exist for

storing normalized data values for subsequent

querying and processing. Data validation

modules exist in the form of Python scripts,

which act as filters between data retrieval

modules and abstraction modules to provide

flexible value checking of raw data inputs before

storage by the data storage modules. These

validation modules use regular expression

parsing to validate data based on predefined

criteria. The validation schema also provides for

disabling of all validation in cases of

performance issues or testing.

RATS currently uses MySQL for all data

collection and reporting. One reason for

choosing MySQL was its feature set. MySQL

provides all the standard kinds of functionality

one expects from a database, including

transaction processing, simple SQL queries, and

report generation. Others included MySQL’s

speed, simplicity, and a desire to avoid the use of

special features in more complex databases, as a

way of keeping NCCS’s options open if the need

to switch databases would ever arise. There was

 6

nothing esoteric about how the database was

used—some other standard RDBMS like Oracle

or Sybase could be used in place of MySQL.

4.1 Realizing the Data Model

The concerns about the difficulty of establishing

requirements, coupled with concerns about the

need to accommodate last-minute changes to the

model, led to the development of the markup-

language-based data modeling language depicted

in Figures 4.1.1 and 4.1.2, and a compiler for

transforming a model rendered in this language,

Model-T, into an SQL program for creating a

database’s tables. The final Model-T definition

of the RATS data model, which was produced in

Spring 2004, consisted of 116 definitions, 35 of

which were compiled into tables.

The Model-T compiler allowed the RATS team

to implement last-minute changes to the data

model quickly, as the vision for what the

database should do crystallized. A typical Spring

2004 review of the model yielded a set of

changes that could be implemented in 20

minutes, including 3-5 minutes worth of time to

compile a new schema. The clients quickly

become comfortable enough with the notation to

review the Model-T characterization of the

database directly.

The approach’s primary drawback was the time

needed to develop the Model-T compiler. The

effort, a one-person project, took about 8

months’ worth of steady work. The first two

months of this effort were used to master XML,

DTDs, SAX, and the compiler’s implementation

language, Python. A third month was spent on

the development of a rule-based test harness,

ADEPT, that used Python’s eval() operator to

eliminate the need for procedural test code

[ADEPT]. An initial, 12,000 line version of the

Model-T compiler was developed during the

next four months of the project, together with a

12,000-case test suite. The final month was

devoted to cleanup, including a

metaprogramming-based rewrite of Model-T that

cut the program’s size and supporting test suite

in half. The development work included support

for definition reordering and various types of

error management: e.g., checks for improperly

formed SQL expressions, and the ability to

continue compilation in the presence of

malformed definitions.

The work on Model-T also created friction

between the clients, who felt that the developer’s

time would be better spent on more immediate

concerns, and the developer, who saw the tool as

a hedge against last-minute changes in

requirements. Both perspectives, in retrospect,

had merit: the compiler took far longer to

develop than anticipated, but proved useful for

rapid database development at a critical juncture

in the project’s life cycle.

4.2 Data validation

RATS supports a flexible mechanism for data

validation: one that allows checks on incoming

data to be updated dynamically without stopping

the system. This flexibility was achieved with a

supporting, stand-alone (Python) application that

accepts an attribute, validates the attribute’s

value against a pluggable validation rule, and

then returns a response. These validation rules

can be framed in terms of regular expression

matching as well as explicit matching.

Validation can also be a pass-through operation

where no actual validation occurs. Pass-through

validation has proven useful for testing and

diagnostic purposes.

Any data that cannot be validated is placed in a

suspense file for later examination by an

administrator. Currently, if a single attribute fails

validation, the entire record is considered suspect

and is excluded from the production database. It

is possible to configure the validation to accept

suspect records into the production database.

However, it was determined that allowing this

practice might lead to an abundance of corrupt

data and is therefore disabled.

The validation is performed as each new record

is being processed by RATS. The validation

rules are organized as a mapping between

attribute names to lambda expression (Figure

4.2). This allows for flexible definitions on a per

attribute basis. The validation scheme can also

be changed dynamically by modifying the rules

and then reinitializing the validation process.

In practice, the need for validation of this kind is

real. Errors from the schedulers have been

detected by the validation process. However,

further refinements are still needed. For instance,

verifying that a project identifier exists in not

sufficient. What is needed is verification that a

project exists and that a particular user has

authorization to charge against that project. This

 7

additional level of checking is beyond the scope

of individual attribute validation but can be

implemented using the validation design present

in RATS. Validating relationships involving two

or more attributes would also be useful: an

example of this would be verifying that a project

is valid for a given host and user.

4.3 Isolation layer

The isolation layer allows for the separation of

data gathering and data query. The isolation

layer consists of a data holding area that stores

RATS data awaiting final movement to the long

term data store. This architecture allows for

maintenance or development on the main data

store while data gathering continues from the

schedulers or other data sources. This further

allows data to be queried from the long term data

store while data gathering from data sources is

suspended for maintenance or development.

The isolation layer is implemented using

database tables as the long term storage and

holding area. Data input from the data gathering

components are stored in the holding area table.

A transfer utility periodically moves data from

the holding area to long term storage. During this

transfer, data is stored in multiple tables that

separate job statistics from executable statistics.

If it is deemed useful at a later date, greater

separation of the gathered data could be achieved

by refining the transfer procedures.

This approach is similar in design to the

asynchronous publish-subscribe pattern. The

data gathering components can be thought of as

the publisher. The database can be thought of as

the sole subscriber. One divergence from the

asynchronous publish-subscribe is that the

database itself is not responsible for pulling data;

instead all data is pushed to the database system.

The isolation layer is moderately useful in

production. Currently, data is read with a

resolution of a day. The need to suspend data

gathering for more than a day has not been

required. However, should the system be

required to read data in a closer to real time

manner, the ability to suspend parts of the data

acquisition while allowing operation to continue

will be essential.

4.4 Data Access

Data access is accomplished through the use of

various scripts which are written in Perl, Python,

PHP, or C++. The use of MySQL as the database

back-end has allowed scripts to be written in any

of these languages with little knowledge needed

of RATS internals by the individual script writer.

This allows various developers, system

administrators, and support staff to develop

scripts to access RATS data that are tailored to

their individual needs.

4.5 Unit testing

Unit testing was conducted on all classes and

components initially developed. The primary

unit testing framework was CppUnit. This

provided a common framework and ensures a

consistent regimen. The development regimen

consisted of implementing a test class for each

class developed. This increase in workload

yielded a system that has seen little refactoring to

correct errors. Most refactoring has been to add

features or correct design flaws as opposed to

syntax or semantic errors.

One difficulty with providing access with

different technologies (PHP, Perl, etc) is that unit

testing becomes more difficult and time

consuming, in part due to the difficulty of getting

multiple developers to unit-test their custom

scripts. Code reviews and stricter configuration

management than are currently in place will

eventually be needed to maintain the quality of

the RATS code base.

5 Limitations

The RATS project was tasked to devise a system

that integrated information from three kinds of

data sources: a relational database, PBS; a

hierarchical database, LoadLeveler; and a set of

XML documents defined by the SciDAC SSS

standards for wire-level data transfer [Jackson].

The team achieved the goal of integrating data

from PBS and LoadLeveler, but achieved only

limited progress towards the third.

Data from XML documents could be loaded into

the current RATS database by creating an

adaptor, similar to the LoadLeveler adaptor, that

would (1) use an iterator to enumerate every path

from the original document’s root to one of its

leaf nodes; (2) recast this series of elements as an

ordered tuple; then (3) store the tuple’s

component subtuples in the appropriate RATS

 8

tables, according to a strategy that would be

determined from the document’s format. The

relative positions of node siblings could also be

captured by an iterator, if needed, and stored in a

specially designated field.

Unfortunately, the task of recovering an arbitrary

XML document from an RDBMS is a more

difficult problem to manage. This task could be

accomplished by first using joins to generate

tuples that correspond to the root-to-leaf-node

paths from the original document, then fusing the

tuples. This code, however, would be harder to

write, due to the use of joins and uncertainties

about the size of the original document.

The problem of developing support for the SSS

protocols, moreover, was complicated by two

additional concerns. The first was a requirement

for processing SSS messages that represented

XQuery-like requests for data in the RATS

database: a problem that would have required the

implementation of a XML query processing

engine on top of RATS, in addition to document

reconstitution. The second was the relative

immaturity of the SSS protocols at this time,

which used internally developed, non-W3C

standards for defining queries. Furthermore,

because of the ongoing development of SSS

protocols, they changed somewhat throughout

the course of the RATS project. This instability

made the development of a set of ad hoc

interfaces between RATS and the SSS protocols

a long-term risk for maintenance.

XQuery-based access to RATS could, in theory,

be supported by extending the Model-T compiler

so that it automatically generates an XQuery-to-

SQL interface as it generates a schema from a set

of type definitions. An alternative approach to

generating XML views of RDBMSs that uses

predefined queries as a basis for reconstituting

documents is described in [SilkRoute].

6 Future development

Further RATS development will involve

improving the user interfaces, host configuration

support, and integration with system data sources

such as LDAP.

6.1 Web-enabled RATS

Retrieving usage statistics and allocation reports

are of vital concern to NCCS management and

project Principal Investigators (PI). Increasing

the accessibility of RATS via a web interface

will facilitate timely management decisions.

Using MySQL as the database backend assists in

developing robust web applications to provide

this functionality to users. Technologies such as

PHP or JSP have established techniques for

accessing MySQL.

6.2 Host configuration

Part of completing the feedback loop for RATS

involves enabling usage trend information from

RATS to affect the configuration and usage of

the systems being managed. This is envisioned to

include aspects like cluster configuration, fair

share scheduling, accessibility, and detecting and

quarantining failing nodes so they do not affect

future jobs.

With appropriate feedback, RATS can provide a

single point of control for managing host

configuration across clusters. This is less

applicable for more tightly integrated systems

like most Cray machines.

Fair share scheduling involves monitoring usage

patterns and adjusting resource availability to

match user allocations over time. Not all

scheduling systems support fair share scheduling

directly, but a goal for the RATS project is to

facilitate fair share scheduling based on usage

data.

RATS can provide a single point of management

for controlling user and project access to system

resources. Since RATS can accommodate

multiple systems in its database, it can manage a

database of users across multiple systems,

controlling access by resource.

Detecting and quarantining failing nodes can

help maximize system availability by avoiding

situations in which a failing node hangs a job

and locks up the other nodes claimed by the job.

6.3 LDAP/DCE/RSA integration

The computing resources at NCCS utilize several

different tools and technologies to provide

systems access, security, and legacy support. The

Lightweight Directory Access Protocol (LDAP)

is used in conjunction with RSA SecurID to

provide one time passwords and system access.

IBM’s Distributed Computing Environment

(DCE) support is required for legacy systems

such as the High Performance Storage System

 9

(HPSS). Maintaining these various data sources

can be error prone and consumes significant staff

resources to maintain the consistency of user

data.

Integrating RATS with these services will

alleviate many of the consistency and validity

issues that can occur. RATS would serve as the

authoritative, central data source. In this role,

additions and modification can be made in

RATS and then this data can be distributed to all

other systems via a push-pull design. Automated

scripts will be used to synchronize the various

data sets. This will reduce the number of updates

a staff member has to make as well as provide a

uniform interface.

7 Conclusion

RATS was developed to address the resource

management issues presented in a high

performance computing environment. Using a

modular design, RATS successfully addresses

the problem of multiple data sources of usage

information. Using pluggable modules for

validation, storage, and retrieval of usage data

allows for flexibility and scalability. These

features of RATS are well suited for deployment

on Cray architectures.

8 References

[ADEPT] Pfeiffer, P., Twelve Thousand

Test Cases and Counting: a Critique of

Lightweight Methodologies in Python Program

Development, PyCon 2004, Washington DC, 25

March 2004.

http://www.python.org/pycon/dc2004/papers/8/

[Jackson] Jackson, S., Bode, B., Jackson,

D., Walker, K., Scalable Systems Software

Resource Management and Accounting Protocol

(SSSRMAP) Wire Protocol, Resource

Management and Accounting Notebook,

http://www.scidac.org/ScalableSystems/

[SilkRoute] Fernandez, M., Kadiyska, Y.,

Suciu, D., Morishima, A., and Tan, W.-T., Silk

route: A framework for publishing relational data

in XML, ACM Transactions on Database

Systems, 2002, 27(4):438-493.

About the authors

Tom Barron is a member of the HPC Operations

Group of the National Center for Computational

Sciences at Oak Ridge National Laboratory.

David Hulse is employed by Computer

Associates International, Inc. Phillip Pfeiffer,

Ph.D., is a professor of computer science at East

Tennessee State University, Johnson City, TN,

and can be reached at phil@etsu.edu. Stephen L.

Scott, Ph.D., is a Senior Research Scientist in the

Network and Cluster Computing Group of the

Computer Science and Mathematics Division at

Oak Ridge National Laboratory. Robert Whitten

Jr. is a member of the User Assistance and

Outreach Group of the National Center for

Computational Sciences at Oak Ridge National

Laboratory and can be reached at

whittenrm1@ornl.gov.

 10

Figures

ProjectDataType: ProjectID: StringType ! (Account: ResourceAccountType x Subprojects: 2
ProjectIDType

)

ResourceAccountType:

 ResourceAccountID: StringType ! (SetOfTransactions: 2
TransactionIDType

 x OverdraftPrivileges: BooleanType x

 Balances: BalancesType x IsFrozen: BooleanType)

BalancesType:

 SiteName: SiteNameType x HostName: HostNameType x Resource: ResourceNameType !

 Value: ResourceValueType

TransactionLogType:

 ID: TransactionIDType ! (Type:TransactionType x Source:FundingAccountIDType x

 Sink: FundingAccountIDType x Amount: ChargeType)

TransactionIDType: StringType

TransactionType: ENUM(JOB ACTION, TRANSFER ADMINISTRATIVE ACTION, FUNDING EXPIRATION)

FundingAccountIDType: StringType

ChargeType: ComputingResources: NamedComputingResourceType x Value: ResourceValueType

UserDataType:

 UserName: UserNameType ! (SiteName: SiteNameType x SetOfRatsRoles: 2
RatsRoleType

 x

 FullName: StringType x Phone: StringType x AlternatePhone: StringType x E-mail: StringType)

RatsRoleType: ENUM(SYS ADMIN, SYSTEM TASK, USER, RATS ADMIN, RATS DEVELOPER, RATS USER, RATS

TASK)

CostOfResourceType:

 Site: SiteNameType x Host: StringType x ResourceType: TypeOfResourceType x

 Resource: NamedComputingResourceType ! Value: ResourceValueType

SiteNameType: StringType

TypeOfResourceType: ENUM(CPU, DISK, MAIN MEMORY)

NamedComputingResourceType :

 (CPU: ResourceNameType + Disk: ResourceNameType + MainMemory: ResourceNameType)

ResourceNameType: StringType

ResourceValueType: FixedPointType

JobAttributesDatasetType:

 JobName: StringType x StepID: StringType x ErrorPath: StringType x GroupName: StringType x

 JobClass: StringType x OutputPath: StringType x ShellPath: StringType x AccountNumber: StringType x

 StepComment: StringType x StepCompletionCode: IntType x StepCompletionDate: TimeType x

 StepHostList: StringType x StepInputFile: StringType x StepMachineCount: IntType x

 StepParallelMode: IntType x StepPriority: IntType x StepStartDate: TimeType x

 StepWallClockLimitHard: TimeType x StepWallClockLimitSoft: TimeType x UserName: StringType x

 CreateTime: TimeType x Depend: StringType x JobSubmitTime: TimeType x JobSubmitHost: StringType x

 InteractiveJob: IntType x ExecutionTime: TimeType x EnvironVarList: StringType x

 StopDispatchTime: TimeType

StringType: VARCHAR(86)

TimeType: TIME

FixedPointType: DOUBLE

IntType: INT

BooleanType: BOOL Figure 3.2: RATS data model (abridged).

 11

Figure 4.1.1: Grammar for the Markup-Oriented DEfinition Language with Types, a.k.a. Model-T

<!ENTITY % BOOLEAN " (True | False) " >

<!ENTITY % TYPENAME-ATTR " type-name CDATA #REQUIRED ">

<!ENTITY % CODEGEN-ATTR " suppress-codegen %BOOLEAN; 'False' ">

<!ENTITY % FIELDNAME-ATTR " field-name CDATA #REQUIRED ">

<!ENTITY % CODE-FILE-ATTR " code-file-name CDATA #IMPLIED " >

<!ENTITY % LOG-FILE-ATTR " log-file-name CDATA #IMPLIED " >

<!ENTITY % COL-NAME-CONTROL-ATTR " use-field-names-as-column-names %BOOLEAN; #IMPLIED ">

<!ENTITY % AUTOINC-CONTROL-ATTR " autoincrement-numeric-keys %BOOLEAN; #IMPLIED " >

<!ENTITY % DISCRIM-ATTR " discrim-field-name CDATA #IMPLIED ">

<!ENTITY % DEFAULT-VARIANT-ATTR " default-variant-field CDATA #IMPLIED ">

<!ENTITY % ENUMLIST-ATTR " enum-list CDATA #REQUIRED ">

<!ENTITY % ENUMSEP-ATTR " enum-list-separator CDATA ' ' ">

<!ENTITY % ENUM-DEFAULT-VALUE-ATTR " default-value CDATA #IMPLIED ">

<!ENTITY % TARGET-DB-TYPE-ATTR " as-type CDATA #REQUIRED ">

<!ENTITY % CONFORMING-TYPE-ATTR " value-check-expr CDATA 'object' ">

<!ENTITY % TARGET-DB-DEFAULT-VALUE-ATTR " default-value CDATA #IMPLIED ">

<!ENTITY % TYPE-INITIAL-ONLY " set | map " >

<!ENTITY % TYPE-INITIAL-OR-FOLLOWER " tuple | union " >

<!ENTITY % TYPE-FINAL " instance-of | reference | dest-type | enum" >

<!ENTITY % TYPE-FOLLOWER " %TYPE-INITIAL-OR-FOLLOWER; | %TYPE-FINAL; " >

<!ENTITY % TYPE-FORMER " %TYPE-INITIAL-ONLY; | %TYPE-FOLLOWER; " >

<!—Root element for grammar -->

<!ELEMENT dataset-specification (define-type)* >

<!ATTLIST dataset-specification %CODE-FILE-ATTR; %LOG-FILE-ATTR;

 %COL-NAME-CONTROL-ATTR; %AUTOINC-CONTROL-ATTR; >

<!-- subgrammar for supporting type definitions -->

<!-- type-defining elements -->

<!ELEMENT define-type (%TYPE-FORMER;) >

<!ATTLIST define-type %TYPENAME-ATTR; %CODEGEN-ATTR; >

<!-- non-final type-forming elements -->

<!ELEMENT set (%TYPE-FOLLOWER;) >

<!ELEMENT map (map-field, map-field+) >

<!ELEMENT map-field (%TYPE-FOLLOWER;) >

<!ATTLIST map-field %FIELDNAME-ATTR; >

<!ELEMENT tuple (tuple-field+) >

<!ELEMENT tuple-field (%TYPE-FOLLOWER;) >

<!ATTLIST tuple-field %FIELDNAME-ATTR; >

<!ELEMENT union (union-field+) >

<!ATTLIST union %DEFAULT-VARIANT-ATTR; %DISCRIM-ATTR; >

<!ELEMENT union-field (%TYPE-FOLLOWER;) >

<!ATTLIST union-field %FIELDNAME-ATTR; >

<!-- final type-forming elements -->

<!ELEMENT reference EMPTY >

<!ATTLIST reference %TYPENAME-ATTR; >

<!ELEMENT instance-of EMPTY >

<!ATTLIST instance-of %TYPENAME-ATTR; >

<!ELEMENT enum EMPTY >

 <!ATTLIST enum %ENUMLIST-ATTR; %ENUMSEP-ATTR; %ENUM-DEFAULT-VALUE-ATTR; >

<!ELEMENT dest-type EMPTY >

 <!ATTLIST dest-type

 %TARGET-DB-TYPE-ATTR; %CONFORMING-TYPE-ATTR; %TARGET-DB-DEFAULT-VALUE-ATTR; >

 12

 <define-type type-name="ProjectDataType">

 <map>

 <map-field field-name="ProjectID"> <instance-of type-name="ProjectIDType"/> </map-field>

 <map-field field-name="ProjectData">

 <tuple>

 <tuple-field field-name="Account"> <instance-of type-name="ResourceAccountType"/> </tuple-field>

 <tuple-field field-name="Subprojects"> <reference type-name="SetOfProjectIDsType"/> </tuple-field>

 </tuple>

 </map-field>

 </map>

 </define-type>

<define-type type-name="SetOfProjectIDsType">

 <set> <instance-of type-name="ProjectIDType"/> </set>

 </define-type>

 Figure 4.1.2: Partial definition for ProjectDataType, rendered in Model-T

ValMap['GROUPNAME'] = ((lambda x: StringValidator(x)), (lambda x: x.isAlphaNumeric()))

ValMap['INTERACTIVE'] = ((lambda x: int(x)), (lambda x: 0 <= x <= 1))

ValMap['COMPLETIONTIME'] = ((lambda x: StringValidator(x)), (lambda x: x.isDateTime()))

ValMap['JOBID'] = ((lambda x: StringValidator(x)), (lambda x: x.isJobID()))

Figure 4.2 Example Validation Rule Mapping

