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ABSTRACT: The Resource Allocation and Tracking System (RATS) 

is a suite of software components designed to provide resource 

management capabilities for high performance computing 

environments. RATS was initially developed as a joint effort between 

Oak Ridge National Laboratory and East Tennessee State University, 

as part of the SciDAC Scalable Systems Software Project (SSS), with 

support from the National Center for Computational Sciences.- 

 

RATS provides flexible support for various types of input data through 

the use of an adapter layer that supports foreign-to-virtual attribute 

conversion. RATS also supports the use of plug-in Python functions for 

data validation, and an architecture that decouples data collection from 

data processing. RATS currently supports resource allocation 

management on the Cray X1E, XT3 and XD1 platforms at Oak Ridge 

National Laboratory. Future directions include improved support for 

web access, improved support for configurable host management, and 

integration with LDAP, DCE, and RSA. 
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1 Introduction
1
 

 

1.1 RATS as a Well-Designed Tool for 

Account Management 

 

Accountability to program sponsors and funding 

agencies requires that large research computing 

centers document how their machine cycles are 

used. The system described in this paper, the 

Oak Ridge National Laboratory (ORNL) 

Resource Allocation and Tracking System 

(RATS), addresses a need for a database 

application that collects computer usage data 

from a heterogeneous set of computing 

platforms; provides administrators with report-

based and web-based access data on system 
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utilization; and supports the use of this data for 

admission control, based on a system of accounts 

for resource utilization. The initial phase of 

RATS system development, which was 

completed in May 2004, began in January 2003, 

after it was found that no single public domain 

accounting package met the needs that the 

National Center for Computational Sciences 

(NCCS) at ORNL confronted.  The NCCS 

continues to use RATS as a primary tool for 

system and user management. The original 

system’s architecture has proved flexible enough 

to provide a scalable solution for the needs of 

ORNL users and staff. RATS’s use of available 

open source database management systems and 

integration with the installed base of batch 

schedulers has aided in its acceptance. 

  

RATS accepts input in the form of usage log 

files from a heterogeneous set of job 

management systems. Pluggable input modules 

parse, validate, and format the data into a unified 

internal format that can be stored in a relational 
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database. This need to support heterogeneous 

platforms was originally driven by NCCS’s use 

of LoadLeveler and the Portable Batch System 

(PBS) on different research supercomputers. The 

NCCS needed to consolidate the information 

from host accounting files in a unified format 

that would allow the information to be analyzed 

for usage trends and subsequently be used to 

modify scheduler behavior. RATS provided a 

framework for accomplishing these goals. 

 

The RATS data model supports association of 

users, projects, jobs, and allocations. One or 

more users are associated with one or more 

projects. Each project has one or more resource 

allocations, and one or more users that are 

designated as primary investigator (PI) or co-PI.  

This data model captures the flow of allocation 

usage from initial allocation to usage of 

allocation by user consumption through job 

execution. 

 

RATS supports arbitrary suspension of operation 

at either front-end data gathering components or 

back-end data storage components. This feature 

is intended to allow system maintenance with 

minimal disruption. Thus, if a new input module 

is needed, the front-end can be suspended 

without affecting database operations. 

Conversely, if the database needs to be 

restructured, removing the database from 

operation for a period of time will not impede 

the continued collection of incoming usage 

records. This data, which is stored in a holding 

table between the RATS front and back ends, 

would simply be held until the database becomes 

available again. 

 

Ongoing work has included support for an 

operational model in which formal allocations of 

computer resource are designated to particular 

projects at the beginning of the fiscal year and 

then usage through the year is tracked against 

these allocations. One mandate for RATS was to 

provide the machinery to carry out this allocation 

and tracking task. 

 

Best practices used during the ongoing 

development of RATS are unit testing and code 

reviews. These techniques have aided in the 

discovery and correction of errors in both the 

design and implementation of RATS. These 

techniques aided in discovering shortcomings in 

the LoadLeveler API as well as variances in the 

PBS implementation on the Cray XT3. 

 

It was discovered that there was no way to 

retrieve processor counts from the LoadLeveler 

API. This necessitated a redesign of the data 

retrieval component for LoadLeveler. The PBS 

implementation on the Cray XT3 uses a different 

attribute for processor count than on other PBS 

installations. This variance was handled by a 

small adjustment to the implementation of the 

PBS retrieval component. The design allowed 

for quick resolutions of these issues with 

minimal effort. 

 

1.2 Relationship to Cray 

 

Since RATS implementation began, the NCCS 

has moved away from IBM systems, replacing 

them with Cray systems using PBS to manage 

their job stream. Thus, the need to support 

LoadLeveler has diminished. The design 

decision to make RATS data collection modules 

pluggable to ease adding or removing support for 

particular batch systems was essential. Rather 

than losing a data source, it is conceivable that 

several might have been added. New data 

sources may yet be added in the future. The 

design selected for RATS has served well by 

providing appropriate flexibility to meet the 

evolving demands of the NCCS.   

 

Due to the design of RATS, the NCCS’s XT3, 

X1E, and XD1 systems have been successfully 

integrated into the system.  

 

1.3 What Follows 

 

The remainder of this report summarizes the 

history of the RATS project (§2); discusses the 

architecture and design of RATS (§3); describes 

the system’s implementation (§4) and limitations 

(§5); and discusses plans for its future 

development (§6).  

 

2 History 

 

The project to develop a Resource Allocation 

and Tracking System (RATS) began early in 

January 2003, as a capstone project for a team of 

students from East Tennessee State University 

(ETSU) in Johnson City.  In January, 2003, 

Rebecca Fahey and Tom Barron of the NCCS 

staff and Stephen Scott, a senior research 

scientist in the Computer Science and 

Mathematics Division (CSMD) at Oak Ridge 

National Laboratory (ORNL) visited ETSU to 

interview students to work on the RATS project. 

In this joint NCCS/CSMD effort, funding was 
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provided through May 2004 for the students by 

NCCS and for their faculty advisor by CSMD. 

 

From NCCS’s operational point of view, the 

effort addressed several goals: 

 

� NCCS needed to consolidate usage data 

from  IBM computers running LoadLeveler 

and Cray and SGI computers running PBS 

for usage tracking purposes. To the extent 

practical, a requirement was to decouple the 

input mechanism from the format of the 

backend database. 

� NCCS needed a mechanism for allocating 

resources to specific projects at the 

beginning of the fiscal year and than 

tracking usage against these allocations. 

� NCCS sought to develop and enhance 

collaborative relationships with the research 

and academic communities. 

 

The project represented collaboration between 

the NCCS and CSMD’s SSS team. From the 

research perspective, the project addressed three 

primary goals. 

 

� Produce a platform for future research and 

development of center-scale resource 

management tools. 

� Explore the feasibility of XML-based input 

mechanisms for such systems. 

� Explore the practicality of research and 

production team collaborations. 

 

ETSU approached RATS with two major goals: 

 

� Train four ETSU students in the art of 

software engineering. 

� Develop and enhance the opportunity for 

collaborative projects with entities at ORNL. 

 

The work on RATS consumed about 8500 

person-hours, divided between 7280 student 

hours spread over three semesters and 1200 

hours for the team’s advisor, Dr. Phillip E. 

Pfeiffer. Most of Dr. Pfeiffer’s contribution was 

devoted to architecting RATS, serving as team 

liaison, and building a tool used to prototype the 

database (see section 4.1). 

 

2.1 Main Challenges 

 

Two challenges made the consolidation of batch 

system record formats more difficult than 

originally expected. The team had hoped to find 

open source code that would handle the resource 

accounting aspect of the system. Unfortunately, 

none of the candidates adequately addressed 

NCCS’s accounting requirements. Thus, more 

effort was required to analyze, specify, and 

design the accounting functionality. 

 

Secondly, a study of the LoadLeveler’s API for 

collecting usage information showed that 

LoadLeveler’s internal data model was 

hierarchical, meaning that the team had to not 

only map fields from one scheme to another, but 

also to normalize the hierarchical format data 

into a relational model.  

 

Despite these challenges, the format 

consolidation was completed successfully. The 

team built a web-based interface for examining 

the consolidated information to ensure validity. 

Systematic unit tests were constructed along with 

the code modules, allowing the code to be 

validated as it was built. 

 

2.2 Developer Status  

 

Each of the four RATS team members found 

employment soon after the academic portion of 

the project was completed. Two were hired by 

ORNL, one by Computer Associates, and the 

fourth by an NYSE brokerage firm 

 

3 Architecture 

 

3.1 Architectural components  

 
RATS is designed as a modular suite of 

interrelated components. The diagram in Figure 

3.1 depicts the relationship between the various 

components in a leveled, hierarchical manner. 

 
3.1.1 Database-specific front ends   

 

The architecture of RATS provides for 

components that are responsible for interfacing 

with the various front-end data sources. These 

data sources are typically in the form of 

scheduler logs created by the various batch 

schedulers (PBS, LoadLeveler, etc.). Additional 

sources can be added by the creation of new 

components tailored to accept data in any 

imaginable format.  
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3.1.1.1 Cray 

 

The Cray systems at ORNL use PBS as the batch 

scheduler. RATS has a component that parses 

PBS job logs to gather usage information. There 

are subtle differences between the PBS 

installations on each Cray (XT3, X1E, and XD1) 

with respect to field definitions (i.e., ncpus vs. 

size). Differences in the specific PBS 

installations are handled at this level with the 

component providing the needed data value 

based on the host that is being accessed.  

 

3.1.1.2 IBM 

 

The IBM system at ORNL uses LoadLeveler as 

the batch scheduler. One of the key design 

difficulties with RATS was the conversion of the 

hierarchical database LoadLeveler presents in its 

job log. The component that parses the 

LoadLeveler job logs converts the hierarchical 

database input into tabular output. To facilitate 

this conversion, an iterator design pattern was 

used in conjunction with LoadLeveler’s API to 

transform data along each branch in the job log 

into a tuple for insertion into RATS.  

 

3.1.2 Isolation layer 

 

Originally, the issue of storing the data pulled 

from the schedulers into the main database 

seemed much simpler than the problem of 

retrieving data from the heterogeneous datasets 

provided by the different schedulers. However, it 

was quickly realized that data storage was much 

the same issue as data retrieval. Just as the data 

input sources could vary, the data output 

destination might also vary. The current intended 

destination was a MySQL database, but in the 

future the destination could be as simple as a flat 

file or as complicated as an XML stream to some 

web service. Just as data retrieval was abstracted 

away using an adapter pattern, data storage was 

abstracted away with “putters” that convert 

incoming data into a standardized tuple format. 

Derived classes that implement an abstract 

“putter” interface decide how to store incoming 

data, using SQL insertion operations for a 

database, or file system calls for a flat file, or 

XML documents for a web service. 

 

This approach allowed data retrieval code to be 

updated and tested independently from the data 

storage code and vice versa—a major advantage 

for system development. A new iterator for a 

different scheduler could be coded, tested, and 

added without affecting the data storage code, 

and with minimal impact to the other iterators 

already present in the system. Similarly, a new 

data destination could be implemented without 

impacting data retrieval. 

 

3.2 Data model 

 

Figure 3.2 shows the core definitions for the 

RATS data model. The notation in Figure 3.2 is 

similar to notations in common use for defining 

the semantics of programming languages. The 

following is a rough description of how this 

model was used to realize the RATS schema: 

 

� Every type definition in Figure 3.2 helped to 

realize one or more schemas for RATS 

tables. StringType, for example, realize the 

type of all text columns in the database. 

� Names in ALL CAPITAL LETTERS were 

realized as built-in SQL column types and 

enumerations. StringType fields, for 

example, were realized as columns of type 

VARCHAR(86). Similarly, 

TypeOfResourceType fields were realized 

as MySQL enumerations with one of three 

values: JOB ACTION, TRANSFER 

ADMINISTRATIVE ACTION, or FUNDING 

ACTION. 

� Types defined using  x  (“cross-product”) 

and !  (“map-forming”) were realized as 

tuples. JobAttributesDatasetType, for 

example, was realized as a 28-tuple that 

captures data from a PBS job record. 

Definition nesting also affected tuple 

realization.  
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� Nested definitions were collapsed, where 

possible, to form individual tuples.  For 

example, TransactionLogType realized a 7-

tuple because Amount represents a pair of 

StringType values. 

� The !  operator was realized as a 

uniqueness constraint on the fields that 

precede it. For example, the RATS 

transaction log was realized as a table with a 

key field of ID. 

� Names of types like TransactionLogType 

that realized RATS tables are highlighted in 

boldface. Other type definitions, like 

StringType, were created for clarity or to 

express relationships amongst types—i.e., 

“join constraints” in ER diagrams. 

� Field names like ProjectID were realized as 

column names. The transaction log’s 

columns, for example, are named ID, Type, 

Source, Sink, Amount.ComputingResources, 

and Amount.Value. 

� Types defined using  +  (“disjoint union”) 

were realized as one or more fields that  

collectively contain one of several distinct 

types of data. 

NamedComputingResourceType, for 

example, was realized as a column that can 

contain one of three types of data:  the name 

of a CPU; the name of a disk; or the name of 

a main memory element. 

� The notation 2
SomeType

 denotes a set of items 

of SomeType. A field F of type 2
SomeType 

was 

realized by defining a supporting table that 

paired values of SomeType with numbers 

that identified the sets to which they 

belonged. These numbers were then entered 

in field F. For example, sets of subprojects 

for the Project Data Table, a table of type 

ProjectDataType, were realized by creating 

a single, all-inclusive supporting table that 

paired subproject IDs with the IDs of the 

sets to which they belonged, then entering 

these set IDs into the project data table’s 

Subprojects column.  

 

This type-based approach for defining RATS 

content provided a precise, flexible, and fast 

basis for developing the data model. The need 

for agility and precision became apparent at the 

project’s outset, after an day-long JAD session 

failed to produce agreement on an initial 

accounting model—let alone substantive 

requirements for the RATS database. Additional 

concerns about the difficulty of scheduling 

follow-on meetings suggested a need to present 

clients with simple, carefully defined models that 

they could critique independently. 

 

The notation shown in Figure 3.2 met the needs 

described above. The notation is clear, in the 

sense that it presents clients with a hierarchical 

taxonomy of definitions: a strategy for 

expressing data models that seems more intuitive 

to clients than E-R diagrams. The notation is 

flexible, in the sense of being modular: 

definitions at one level of the taxonomy can 

typically be changed without affecting dependent 

definitions. Finally, the notation is precise, in the 

sense that straightforward procedures can be 

defined for transforming these type definitions 

into SQL CREATE TABLE statements. 

 

4 Implementation 

 

RATS is implemented using a variety of 

technologies. The job monitor component is 

composed of a series of information retrieval 

modules in conjunction with an equivalent set of 

storage modules. An abstraction layer that 

defines the various attributes that RATS will 

manage separates the retrieval and storage 

modules. These modules are implemented as 

C++ classes with three total classes per attribute. 

One class each represents retrieval, storage, and 

abstraction.  Modules currently exist for 

accessing PBS, LoadLeveler, and text file data 

sources. MySQL and text file modules exist for 

storing normalized data values for subsequent 

querying and processing. Data validation 

modules exist in the form of Python scripts, 

which act as filters between data retrieval 

modules and abstraction modules to provide 

flexible value checking of raw data inputs before 

storage by the data storage modules. These 

validation modules use regular expression 

parsing to validate data based on predefined 

criteria. The validation schema also provides for 

disabling of all validation in cases of 

performance issues or testing. 

 

RATS currently uses MySQL for all data 

collection and reporting. One reason for 

choosing MySQL was its feature set. MySQL 

provides all the standard kinds of functionality 

one expects from a database, including 

transaction processing, simple SQL queries, and 

report generation. Others included MySQL’s 

speed, simplicity, and a desire to avoid the use of 

special features in more complex databases, as a 

way of keeping NCCS’s options open if the need 

to switch databases would ever arise. There was 
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nothing esoteric about how the database was 

used—some other standard RDBMS like Oracle 

or Sybase could be used in place of MySQL. 

 

4.1 Realizing the Data Model 

The concerns about the difficulty of establishing 

requirements, coupled with concerns about the 

need to accommodate last-minute changes to the 

model, led to the development of the markup-

language-based data modeling language depicted 

in Figures 4.1.1 and 4.1.2, and a compiler for 

transforming a model rendered in this language, 

Model-T, into an SQL program for creating a 

database’s tables. The final Model-T definition 

of the RATS data model, which was produced in 

Spring 2004, consisted of 116 definitions, 35 of 

which were compiled into tables. 

 

The Model-T compiler allowed the RATS team 

to implement last-minute changes to the data 

model quickly, as the vision for what the 

database should do crystallized. A typical Spring 

2004 review of the model yielded a set of 

changes that could be implemented in 20 

minutes, including 3-5 minutes worth of time to 

compile a new schema. The clients quickly 

become comfortable enough with the notation to 

review the Model-T characterization of the 

database directly. 

 

The approach’s primary drawback was the time 

needed to develop the Model-T compiler. The 

effort, a one-person project, took about 8 

months’ worth of steady work. The first two 

months of this effort were used to master XML, 

DTDs, SAX, and the compiler’s implementation 

language, Python. A third month was spent on 

the development of a rule-based test harness, 

ADEPT, that used Python’s eval() operator to 

eliminate the need for procedural test code 

[ADEPT]. An initial, 12,000 line version of the 

Model-T compiler was developed during the 

next four months of the project, together with a 

12,000-case test suite. The final month was 

devoted to cleanup, including a 

metaprogramming-based rewrite of Model-T that 

cut the program’s size and supporting test suite 

in half. The development work included support 

for definition reordering and various types of 

error management: e.g., checks for improperly 

formed SQL expressions, and the ability to 

continue compilation in the presence of 

malformed definitions. 

 

The work on Model-T also created friction 

between the clients, who felt that the developer’s 

time would be better spent on more immediate 

concerns, and the developer, who saw the tool as 

a hedge against last-minute changes in 

requirements. Both perspectives, in retrospect, 

had merit: the compiler took far longer to 

develop than anticipated, but proved useful for 

rapid database development at a critical juncture 

in the project’s life cycle. 

 

4.2 Data validation 

 

RATS supports a flexible mechanism for data 

validation: one that allows checks on incoming 

data to be updated dynamically without stopping 

the system. This flexibility was achieved with a 

supporting, stand-alone (Python) application that 

accepts an attribute, validates the attribute’s 

value against a pluggable validation rule, and 

then returns a response. These validation rules 

can be framed in terms of regular expression 

matching as well as explicit matching. 

Validation can also be a pass-through operation 

where no actual validation occurs. Pass-through 

validation has proven useful for testing and 

diagnostic purposes. 

 

Any data that cannot be validated is placed in a 

suspense file for later examination by an 

administrator. Currently, if a single attribute fails 

validation, the entire record is considered suspect 

and is excluded from the production database. It 

is possible to configure the validation to accept 

suspect records into the production database. 

However, it was determined that allowing this 

practice might lead to an abundance of corrupt 

data and is therefore disabled. 

 

The validation is performed as each new record 

is being processed by RATS. The validation 

rules are organized as a mapping between 

attribute names to lambda expression (Figure 

4.2). This allows for flexible definitions on a per 

attribute basis. The validation scheme can also 

be changed dynamically by modifying the rules 

and then reinitializing the validation process. 

 

In practice, the need for validation of this kind is 

real. Errors from the schedulers have been 

detected by the validation process. However, 

further refinements are still needed. For instance, 

verifying that a project identifier exists in not 

sufficient. What is needed is verification that a 

project exists and that a particular user has 

authorization to charge against that project. This 
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additional level of checking is beyond the scope 

of individual attribute validation but can be 

implemented using the validation design present 

in RATS. Validating relationships involving two 

or more attributes would also be useful: an 

example of this would be verifying that a project 

is valid for a given host and user.  

 

4.3 Isolation layer 

 

The isolation layer allows for the separation of 

data gathering and data query. The isolation 

layer consists of a data holding area that stores 

RATS data awaiting final movement to the long 

term data store. This architecture allows for 

maintenance or development on the main data 

store while data gathering continues from the 

schedulers or other data sources. This further 

allows data to be queried from the long term data 

store while data gathering from data sources is 

suspended for maintenance or development.  

 

The isolation layer is implemented using 

database tables as the long term storage and 

holding area. Data input from the data gathering 

components are stored in the holding area table. 

A transfer utility periodically moves data from 

the holding area to long term storage. During this 

transfer, data is stored in multiple tables that 

separate job statistics from executable statistics. 

If it is deemed useful at a later date, greater 

separation of the gathered data could be achieved 

by refining the transfer procedures. 

 

This approach is similar in design to the 

asynchronous publish-subscribe pattern. The 

data gathering components can be thought of as 

the publisher. The database can be thought of as 

the sole subscriber. One divergence from the 

asynchronous publish-subscribe is that the 

database itself is not responsible for pulling data; 

instead all data is pushed to the database system. 

 

The isolation layer is moderately useful in 

production. Currently, data is read with a 

resolution of a day. The need to suspend data 

gathering for more than a day has not been 

required. However, should the system be 

required to read data in a closer to real time 

manner, the ability to suspend parts of the data 

acquisition while allowing operation to continue 

will be essential. 

 

4.4 Data Access  

 

Data access is accomplished through the use of 

various scripts which are written in Perl, Python, 

PHP, or C++. The use of MySQL as the database 

back-end has allowed scripts to be written in any 

of these languages with little knowledge needed 

of RATS internals by the individual script writer. 

This allows various developers, system 

administrators, and support staff to develop 

scripts to access RATS data that are tailored to 

their individual needs.  

  

4.5 Unit testing 

 

Unit testing was conducted on all classes and 

components initially developed. The primary 

unit testing framework was CppUnit. This 

provided a common framework and ensures a 

consistent regimen. The development regimen 

consisted of implementing a test class for each 

class developed. This increase in workload 

yielded a system that has seen little refactoring to 

correct errors. Most refactoring has been to add 

features or correct design flaws as opposed to 

syntax or semantic errors.  

 

One difficulty with providing access with 

different technologies (PHP, Perl, etc) is that unit 

testing becomes more difficult and time 

consuming, in part due to the difficulty of getting 

multiple developers to unit-test their custom 

scripts. Code reviews and stricter configuration 

management than are currently in place will 

eventually be needed to maintain the quality of 

the RATS code base. 

 

5 Limitations 

  

The RATS project was tasked to devise a system 

that integrated information from three kinds of 

data sources: a relational database, PBS; a 

hierarchical database, LoadLeveler; and a set of 

XML documents defined by the SciDAC SSS 

standards for wire-level data transfer [Jackson]. 

The team achieved the goal of integrating data 

from PBS and LoadLeveler, but achieved only 

limited progress towards the third.  

 

Data from XML documents could be loaded into 

the current RATS database by creating an 

adaptor, similar to the LoadLeveler adaptor, that 

would (1) use an iterator to enumerate every path 

from the original document’s root to one of its 

leaf nodes; (2) recast this series of elements as an 

ordered tuple; then (3) store the tuple’s 

component subtuples in the appropriate RATS 



 8 

tables, according to a strategy that would be 

determined from the document’s format. The 

relative positions of node siblings could also be 

captured by an iterator, if needed, and stored in a 

specially designated field. 

 

Unfortunately, the task of recovering an arbitrary 

XML document from an RDBMS is a more 

difficult problem to manage. This task could be 

accomplished by first using joins to generate 

tuples that correspond to the root-to-leaf-node 

paths from the original document, then fusing the 

tuples. This code, however, would be harder to 

write, due to the use of joins and uncertainties 

about the size of the original document.  

 

The problem of developing support for the SSS 

protocols, moreover, was complicated by two 

additional concerns. The first was a requirement 

for processing SSS messages that represented 

XQuery-like requests for data in the RATS 

database: a problem that would have required the 

implementation of a XML query processing 

engine on top of RATS, in addition to document 

reconstitution.  The second was the relative 

immaturity of the SSS protocols at this time, 

which used internally developed, non-W3C 

standards for defining queries.  Furthermore, 

because of the ongoing development of SSS 

protocols, they changed somewhat throughout 

the course of the RATS project. This instability 

made the development of a set of ad hoc 

interfaces between RATS and the SSS protocols 

a long-term risk for maintenance. 

 

XQuery-based access to RATS could, in theory, 

be supported by extending the Model-T compiler 

so that it automatically generates an XQuery-to-

SQL interface as it generates a schema from a set 

of type definitions. An alternative approach to 

generating XML views of RDBMSs that uses 

predefined queries as a basis for reconstituting 

documents is described in [SilkRoute]. 

 

6 Future development 

 

Further RATS development will involve 

improving the user interfaces, host configuration 

support, and integration with system data sources 

such as LDAP.  

  

6.1 Web-enabled RATS 

 

Retrieving usage statistics and allocation reports 

are of vital concern to NCCS management and 

project Principal Investigators (PI). Increasing 

the accessibility of RATS via a web interface 

will facilitate timely management decisions. 

Using MySQL as the database backend assists in 

developing robust web applications to provide 

this functionality to users. Technologies such as 

PHP or JSP have established techniques for 

accessing MySQL. 

  

6.2 Host configuration 

 

Part of completing the feedback loop for RATS 

involves enabling usage trend information from 

RATS to affect the configuration and usage of 

the systems being managed. This is envisioned to 

include aspects like cluster configuration, fair 

share scheduling, accessibility, and detecting and 

quarantining failing nodes so they do not affect 

future jobs. 

 

With appropriate feedback, RATS can provide a 

single point of control for managing host 

configuration across clusters. This is less 

applicable for more tightly integrated systems 

like most Cray machines. 

 

Fair share scheduling involves monitoring usage 

patterns and adjusting resource availability to 

match user allocations over time. Not all 

scheduling systems support fair share scheduling 

directly, but a goal for the RATS project is to 

facilitate fair share scheduling based on usage 

data. 

 

RATS can provide a single point of management 

for controlling user and project access to system 

resources. Since RATS can accommodate 

multiple systems in its database, it can manage a 

database of users across multiple systems, 

controlling access by resource. 

 

Detecting and quarantining failing nodes can 

help maximize system availability by avoiding 

situations in which a failing node hangs a job 

and locks up the other nodes claimed by the job. 

 

6.3 LDAP/DCE/RSA integration 

 

The computing resources at NCCS utilize several 

different tools and technologies to provide 

systems access, security, and legacy support. The 

Lightweight Directory Access Protocol (LDAP) 

is used in conjunction with RSA SecurID to 

provide one time passwords and system access. 

IBM’s Distributed Computing Environment 

(DCE) support is required for legacy systems 

such as the High Performance Storage System 
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(HPSS). Maintaining these various data sources 

can be error prone and consumes significant staff 

resources to maintain the consistency of user 

data.  

 

Integrating RATS with these services will 

alleviate many of the consistency and validity 

issues that can occur.  RATS would serve as the 

authoritative, central data source. In this role, 

additions and modification can be made in 

RATS and then this data can be distributed to all 

other systems via a push-pull design. Automated 

scripts will be used to synchronize the various 

data sets. This will reduce the number of updates 

a staff member has to make as well as provide a 

uniform interface.  

 

7 Conclusion 

 

RATS was developed to address the resource 

management issues presented in a high 

performance computing environment. Using a 

modular design, RATS successfully addresses 

the problem of multiple data sources of usage 

information. Using pluggable modules for 

validation, storage, and retrieval of usage data 

allows for flexibility and scalability. These 

features of RATS are well suited for deployment 

on Cray architectures.  

 

8 References 

 

[ADEPT] Pfeiffer, P., Twelve Thousand 

Test Cases and Counting: a Critique of 

Lightweight Methodologies in Python Program 

Development, PyCon 2004, Washington DC, 25 

March 2004. 

http://www.python.org/pycon/dc2004/papers/8/ 

[Jackson] Jackson, S., Bode, B., Jackson, 

D., Walker, K., Scalable Systems Software 

Resource Management and Accounting Protocol 

(SSSRMAP) Wire Protocol, Resource 

Management and Accounting Notebook, 

http://www.scidac.org/ScalableSystems/ 

[SilkRoute] Fernandez, M., Kadiyska, Y., 

Suciu, D., Morishima, A., and Tan, W.-T., Silk 

route: A framework for publishing relational data 

in XML, ACM Transactions on Database 

Systems, 2002, 27(4):438-493. 

About the authors 

Tom Barron is a member of the HPC Operations 

Group of the National Center for Computational 

Sciences at Oak Ridge National Laboratory. 

David Hulse is employed by Computer 

Associates International, Inc. Phillip Pfeiffer, 

Ph.D., is a professor of computer science at East 

Tennessee State University, Johnson City, TN, 

and can be reached at phil@etsu.edu. Stephen L. 

Scott, Ph.D., is a Senior Research Scientist in the 

Network and Cluster Computing Group of the 

Computer Science and Mathematics Division at 

Oak Ridge National Laboratory. Robert Whitten 

Jr. is a member of the User Assistance and 

Outreach Group of the National Center for 

Computational Sciences at Oak Ridge National 

Laboratory and can be reached at 

whittenrm1@ornl.gov.



 10

Figures 

 

ProjectDataType:     ProjectID: StringType  !  ( Account: ResourceAccountType   x   Subprojects: 2 
ProjectIDType  

) 

ResourceAccountType: 

 ResourceAccountID:  StringType  ! ( SetOfTransactions: 2
TransactionIDType

   x  OverdraftPrivileges: BooleanType x   

       Balances: BalancesType   x   IsFrozen: BooleanType ) 

BalancesType: 

 SiteName: SiteNameType  x  HostName: HostNameType  x  Resource: ResourceNameType  !   

          Value: ResourceValueType 

TransactionLogType:  

 ID:  TransactionIDType !   ( Type:TransactionType x  Source:FundingAccountIDType  x   

       Sink: FundingAccountIDType  x  Amount:  ChargeType ) 

TransactionIDType:  StringType 

TransactionType:  ENUM( JOB ACTION, TRANSFER ADMINISTRATIVE ACTION,  FUNDING EXPIRATION ) 

FundingAccountIDType:  StringType 

ChargeType:   ComputingResources: NamedComputingResourceType  x  Value: ResourceValueType 

UserDataType:  

 UserName: UserNameType ! ( SiteName: SiteNameType  x  SetOfRatsRoles: 2 
RatsRoleType 

 x   

  FullName: StringType  x  Phone: StringType   x   AlternatePhone: StringType  x   E-mail: StringType ) 

RatsRoleType:   ENUM(  SYS ADMIN, SYSTEM TASK, USER, RATS ADMIN, RATS DEVELOPER, RATS USER, RATS 

TASK ) 

CostOfResourceType:  

 Site: SiteNameType   x  Host: StringType  x  ResourceType: TypeOfResourceType  x   

     Resource: NamedComputingResourceType !  Value: ResourceValueType 

SiteNameType:  StringType 

TypeOfResourceType:  ENUM( CPU, DISK, MAIN MEMORY ) 

NamedComputingResourceType :   

 ( CPU: ResourceNameType +  Disk: ResourceNameType +  MainMemory: ResourceNameType ) 

ResourceNameType:  StringType 

ResourceValueType:  FixedPointType 

JobAttributesDatasetType: 

 JobName: StringType  x  StepID: StringType  x  ErrorPath: StringType  x  GroupName: StringType  x  

 JobClass: StringType  x  OutputPath: StringType  x  ShellPath: StringType  x   AccountNumber: StringType  x   

 StepComment: StringType  x  StepCompletionCode: IntType  x  StepCompletionDate: TimeType  x    

 StepHostList: StringType  x  StepInputFile: StringType  x  StepMachineCount: IntType  x     

 StepParallelMode: IntType  x  StepPriority: IntType  x  StepStartDate: TimeType  x  

 StepWallClockLimitHard: TimeType  x   StepWallClockLimitSoft: TimeType  x  UserName: StringType  x  

 CreateTime: TimeType  x   Depend: StringType  x  JobSubmitTime: TimeType  x   JobSubmitHost: StringType  x 

 InteractiveJob: IntType  x   ExecutionTime: TimeType  x  EnvironVarList: StringType  x   

 StopDispatchTime: TimeType 

StringType: VARCHAR(86) 

TimeType: TIME 

FixedPointType: DOUBLE 

IntType:  INT 

BooleanType: BOOL Figure 3.2:   RATS data model (abridged).  
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Figure 4.1.1:   Grammar for the Markup-Oriented DEfinition Language with Types, a.k.a. Model-T 

<!ENTITY % BOOLEAN " ( True | False ) " > 

<!ENTITY % TYPENAME-ATTR " type-name  CDATA  #REQUIRED ">  

<!ENTITY % CODEGEN-ATTR   " suppress-codegen   %BOOLEAN;  'False'   ">  

<!ENTITY % FIELDNAME-ATTR  " field-name  CDATA  #REQUIRED ">  

<!ENTITY  % CODE-FILE-ATTR   " code-file-name  CDATA  #IMPLIED " >  

<!ENTITY  % LOG-FILE-ATTR    " log-file-name  CDATA   #IMPLIED " >  

<!ENTITY  % COL-NAME-CONTROL-ATTR  " use-field-names-as-column-names  %BOOLEAN;  #IMPLIED ">  

<!ENTITY  % AUTOINC-CONTROL-ATTR  " autoincrement-numeric-keys    %BOOLEAN;   #IMPLIED " >  

<!ENTITY   % DISCRIM-ATTR    " discrim-field-name  CDATA   #IMPLIED ">  

<!ENTITY   % DEFAULT-VARIANT-ATTR  " default-variant-field  CDATA   #IMPLIED ">  

<!ENTITY % ENUMLIST-ATTR  " enum-list  CDATA  #REQUIRED ">  

<!ENTITY % ENUMSEP-ATTR   " enum-list-separator  CDATA  ' '  ">  

<!ENTITY % ENUM-DEFAULT-VALUE-ATTR  " default-value   CDATA  #IMPLIED  ">  

<!ENTITY % TARGET-DB-TYPE-ATTR  " as-type  CDATA  #REQUIRED "> 

<!ENTITY % CONFORMING-TYPE-ATTR " value-check-expr  CDATA  'object'  "> 

<!ENTITY % TARGET-DB-DEFAULT-VALUE-ATTR " default-value  CDATA  #IMPLIED  ">  

<!ENTITY % TYPE-INITIAL-ONLY   " set |  map " > 

<!ENTITY % TYPE-INITIAL-OR-FOLLOWER   " tuple | union " > 

<!ENTITY % TYPE-FINAL    " instance-of | reference | dest-type | enum" > 

<!ENTITY % TYPE-FOLLOWER    " %TYPE-INITIAL-OR-FOLLOWER; | %TYPE-FINAL; " > 

<!ENTITY % TYPE-FORMER   " %TYPE-INITIAL-ONLY; | %TYPE-FOLLOWER; " > 

<!—Root element for grammar --> 

<!ELEMENT  dataset-specification   (  define-type  )*  >    

<!ATTLIST    dataset-specification    %CODE-FILE-ATTR;  %LOG-FILE-ATTR;  

  %COL-NAME-CONTROL-ATTR;   %AUTOINC-CONTROL-ATTR;  > 

<!-- subgrammar for supporting type definitions --> 

<!-- type-defining elements -->  

<!ELEMENT  define-type  ( %TYPE-FORMER; ) >    

<!ATTLIST    define-type  %TYPENAME-ATTR; %CODEGEN-ATTR;  >  

<!-- non-final type-forming elements --> 

<!ELEMENT  set             ( %TYPE-FOLLOWER; ) > 

<!ELEMENT  map           ( map-field, map-field+ )  > 

<!ELEMENT  map-field    ( %TYPE-FOLLOWER; )  >  

<!ATTLIST    map-field      %FIELDNAME-ATTR;    > 

<!ELEMENT  tuple           ( tuple-field+ ) > 

<!ELEMENT  tuple-field  ( %TYPE-FOLLOWER; )  >   

<!ATTLIST    tuple-field    %FIELDNAME-ATTR;  > 

<!ELEMENT  union          ( union-field+ )  >   

<!ATTLIST    union           %DEFAULT-VARIANT-ATTR;  %DISCRIM-ATTR;  > 

<!ELEMENT  union-field  ( %TYPE-FOLLOWER; )  >        

<!ATTLIST    union-field   %FIELDNAME-ATTR;  >  

<!-- final type-forming elements --> 

<!ELEMENT   reference   EMPTY >   

<!ATTLIST  reference      %TYPENAME-ATTR;  >  

<!ELEMENT  instance-of  EMPTY >  

<!ATTLIST  instance-of    %TYPENAME-ATTR;  >  

<!ELEMENT   enum         EMPTY  >      

    <!ATTLIST   enum        %ENUMLIST-ATTR;   %ENUMSEP-ATTR;   %ENUM-DEFAULT-VALUE-ATTR;  > 

<!ELEMENT   dest-type   EMPTY > 

    <!ATTLIST   dest-type   

      %TARGET-DB-TYPE-ATTR;   %CONFORMING-TYPE-ATTR;  %TARGET-DB-DEFAULT-VALUE-ATTR; > 
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  <define-type type-name="ProjectDataType"> 

 <map> 

  <map-field field-name="ProjectID">   <instance-of type-name="ProjectIDType"/>  </map-field> 

  <map-field field-name="ProjectData">  

   <tuple> 

    <tuple-field field-name="Account">  <instance-of type-name="ResourceAccountType"/> </tuple-field> 

    <tuple-field field-name="Subprojects">  <reference type-name="SetOfProjectIDsType"/>  </tuple-field> 

   </tuple> 

  </map-field>             

 </map> 

 </define-type> 

 

<define-type type-name="SetOfProjectIDsType"> 

 <set>  <instance-of type-name="ProjectIDType"/>  </set> 

 </define-type> 

 Figure 4.1.2:   Partial definition for ProjectDataType, rendered in Model-T 

ValMap['GROUPNAME'          ] = ((lambda x: StringValidator(x) ), (lambda x: x.isAlphaNumeric() ) ) 

ValMap['INTERACTIVE'         ] = ((lambda x: int(x) ), (lambda x: 0 <= x <= 1 ) ) 

ValMap['COMPLETIONTIME'] = ((lambda x: StringValidator(x) ), (lambda x: x.isDateTime() ) ) 

ValMap['JOBID'                        ] = ((lambda x: StringValidator(x) ), (lambda x: x.isJobID() ) ) 

 

Figure 4.2 Example Validation Rule Mapping 


