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Abstract

The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate
System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations.
We analyze the performance of CAM on the Cray XT3 and Cray X1E systems at Oak Ridge National
Laboratory, describing the performance sensitivities of the two systems to the numerous tuning options
available in CAM. We then compare performance on the Cray systems with that on a number of other
systems, including the Earth Simulator, an IBM POWER4 cluster, and an IBM POWER5 cluster.

1 Introduction

Oak Ridge National Laboratory (ORNL) is the site
of large configurations of two Cray high performance
computing products, a 1024 processor Cray X1E and
a 5294 processor Cray XT3. These systems are part
of the National Center for Computational Sciences
(NCCS) [14], and are dedicated to a limited num-
ber of high-impact, grand challenge scale compu-
tational science projects. Among the projects cur-
rently awarded time is the Climate-Science Compu-
tational End Station Development and Grand Chal-
lenge Team (CCES). The CCES is concerned with
advancing climate science through climate model de-
velopment and climate model simulations. Both de-
velopment and simulation activities utilize the Com-
munity Climate System Model (CCSM).

The CCSM is a fully-coupled, global climate
model that provides state-of-the-art computer sim-
ulations of the Earth’s past, present, and future cli-
mate states, and is an important tool in understand-
ing climate change [2, 5]. The CCSM is made up of
four component models (atmosphere, ocean, land,
and sea ice) and a coupler. The Community Atmo-
sphere Model (CAM) is the atmospheric component
of the CCSM and is the primary consumer of com-
puter resources in typical CCSM simulations. As
such, CAM performance evaluation and optimiza-

tion on the NCCS systems is an important aspect of
CCES model development activity.

CAM performance has been documented in a
number of recent papers [1, 13, 16, 21, 22]. This
paper provides a more detailed description of CAM
performance on the X1E and the XT3 than is con-
tained in these other papers, and focuses on using
CAM to illuminate performance characteristics of
these two systems.

The outline of the paper is as follows. Section 2
is a brief description of CAM. Section 3 is a list of
the platforms mentioned in the paper. Section 4 be-
gins with a brief description of the X1E, followed
by a discussion of issues in CAM porting and per-
formance tuning on the X1E. Section 5 contains a
similar discussion for the XT3. Section 6 is a com-
parison of the performance of CAM on the X1E and
XT3 with that on a number of other high perfor-
mance computing platforms.

2 Community Atmosphere
Model

CAM is developed at the National Science Foun-
dation’s National Center for Atmospheric Research
(NCAR) with contributions from researchers funded
by the Department of Energy and by the National
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Aeronautics and Space Administration [3, 4]. CAM
is a mixed-mode parallel application code, using
both the Message Passing Interface (MPI) [8] and
OpenMP protocols [6]. CAM is characterized by
two computational phases: the dynamics, which ad-
vances the evolution equations for the atmospheric
flow, and the physics, which approximates subgrid
phenomena such as precipitation processes, clouds,
long- and short-wave radiation, and turbulent mix-
ing [4]. The approximations in the physics are re-
ferred to as the physical parameterizations. The
physics phase also includes calls to land, sea ice, and
ocean models. In the CAM experiments described
in these papers, the sea ice and ocean models are
simplified data models, not the active models typi-
cally used in CCSM simulations. However, the land
model is the Community Land Model (CLM) [15],
the same as used in CCSM. Control moves between
the dynamics and the physics at least once during
each model simulation timestep.

CAM includes multiple options for the dynam-
ics, referred to as dynamical cores or dycores, one
of which is selected at compile-time. Three dy-
cores are currently supported: a spectral Eulerian
(EUL) [9], a spectral semi-Lagrangian (SLD) [20],
and a finite volume semi-Lagrangian (FV) [10]. The
spectral and finite volume dycores use different com-
putational grids. An explicit interface exists be-
tween the dynamics and the physics, and the physics
data structures and parallelization strategies are in-
dependent from those in the dynamics. A dynamics-
physics coupler moves data between data structures
representing the dynamics state and the physics
state.

As a community model, it is important that
CAM run efficiently on different architectures, and
that it be easily ported to and optimized on new
platforms. In support of this, CAM contains a num-
ber of compile-time and runtime parameters that
can be used to optimize performance for a given plat-
form, problem or processor count [21]. Those that
were important when porting and tuning CAM per-
formance on the X1E and XT3 are described below.

2.1 Platform-specific Code

CAM has a number of code fragments, delimited
by C preprocessor (cpp) directives, that are enabled
only for certain systems. For example, there are a
few routines for which we were unable to develop
a single version that runs well on both vector and
nonvector systems. cpp is used to choose either the
vectorizable or the cache-friendly versions of these

routines. cpp is also used to choose between math li-
brary routines with different calling sequences, FFT
routines primarily.

2.2 Physics Data Structures

The physics uses the same computational grid as the
dynamics. All three dycores employ a tensor prod-
uct longitude-latitude-vertical (nlon×nlat×nver)
grid covering the sphere. We refer to all grid
points in this three-dimensional grid with a given
horizontal location, differing only in the vertical
coordinate, as a vertical column, or just column.
The current physical parameterizations in CAM are
based on vertical columns, and physics computa-
tions at a given timestep are independent between
columns. The basic data structure in the physics
is the chunk, an arbitrary collection of vertical
columns. Grid points in a chunk are referenced by
(local column index, vertical index). A “chun-
ked” array is declared as (pcols, nver, nchunks) and
the loop structure is

do j=1,nchunks
do k=1,nver
do i=1,ncols(j)
(physical parameterizations)

enddo
enddo

enddo

Here

• ncols(j) is the number of columns allocated
to chunk j;

• nchunks is the number of chunks;

• pcols is the maximum number of columns
allocated to any chunk (specified at compile
time).

Thus, pcols · nchunks ≥ nlon · nlat for a tensor-
product longitude-latitude grid, but there are no
other assumptions about the composition of a chunk.
In particular, the columns bundled in a given chunk
need not be geographically contiguous.

Physics performance tuning options include the
following.

1. The compile-time parameter pcols determines
the maximum number of columns assigned to
a chunk. (Depending on the number of pro-
cessors and number of columns, ncols(j) can
be less than pcols.) Large pcols generates
long inner loops, which improve vectorization.
Small pcols decreases the size of the basic
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computational unit, which improves cache lo-
cality. The specific value of pcols also deter-
mines the memory alignment of elements in the
chunked arrays, which has performance impli-
cations on most systems.

2. The time required to process a column is a
function of geographical location and simula-
tion time, and excellent static load balancing
schemes are known. However, the load balanc-
ing schemes are at odds with the domain de-
compositions utilized by the dycores, thus re-
quiring interprocess communication to imple-
ment. Four load balancing options, represent-
ing different ratios of interprocess communi-
cation overhead and load imbalance, are sup-
ported. We refer to the best load balancing
scheme, which incurs the highest communica-
tion overhead, as “full” load balancing.

3. The communication protocol used to im-
plement the interprocess communication re-
quired by the load balancing scheme is a run-
time option. Possibilities include MPI collec-
tives, MPI two-sided point-to-point implemen-
tations, MPI one-sided point-to-point imple-
mentations, and Co-Array Fortran one-sided
point-to-point implementations.

2.3 Spectral Dynamics

The spectral dycores support only a one-dimensional
decomposition of the computational grid, over lat-
itude initially. Each call of the spectral dynam-
ics moves back and forth between the longitude-
latitude-vertical grid point space and the spectral co-
efficient space. The parallel algorithm implementing
these transforms changes the decomposition from
one-dimensional over latitude to one-dimensional
over longitude and back again. The communication
protocols for these interprocess communications is a
runtime option. The options are the same as for the
physics load balancing, but different choices can be
made for the physics and for the dynamics.

2.4 Finite Volume Dynamics

The finite volume dycore employs a two-dimensional
block decomposition of the computational grid.
There are two computational phases in this dycore.
In one, the longitude and latitude dimensions are
decomposed. In the other, the latitude and vertical
dimensions are decomposed. Interprocess commu-
nication is needed for remapping between the two
decompositions.

The FV dycore tuning options include the fol-
lowing.

1. The specification of the virtual two-
dimensional processor grid that defines the
blocks for the latitude-vertical domain decom-
position and the specification of the virtual
two-dimensional processor grid that defines
the blocks for the longitude-latitude domain
decomposition are runtime options. Note that
a one-dimensional decomposition over latitude
is best for small process counts as it eliminates
the need for a remap.

2. The communication protocol used for the
remap is a runtime option. Options include
both MPI two-sided and one-sided point-to-
point implementations, using either temporary
contiguous send and receive buffers or sending
from and receiving into MPI derived types.

2.5 Parallel Programming Paradigm

CAM supports MPI, OpenMP, and hybrid
MPI/OpenMP parallelism. OpenMP is not available
on the XT3 currently, but is an option on the X1E
(and many other target architectures). The same
number of MPI processes is required in the dynam-
ics and the physics, but it is possible to use more
OpenMP threads in one part of the code than in
another. For example, the physics has considerably
more “exposed” parallelism than the dynamics. The
primary advantage of OpenMP is in just this situa-
tion, allowing more processors to be applied to the
physics when parallelism is exhausted in the dynam-
ics. OpenMP parallelism also allows the number of
MPI processes to be decreased for a fixed number of
processors, which can decrease MPI communication
overhead.

3 Experimental Platforms

For comparison purposes, performance data were
collected on a number of different high performance
computing systems, as described below. Brief de-
scriptions of the Cray X1E and XT3 are included in
this list, but expanded descriptions of these architec-
tures are provided in Sections 4 and 5, respectively.

• Cray X1 at ORNL: 512 Multi-Streaming pro-
cessors (MSP), each capable of 12.8 GFlop/s
for 64-bit operations. MSPs are fully con-
nected within 16-MSP subsets, and are con-
nected via a 2-D torus between subsets.
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• Cray X1E at ORNL: 1024 MSPs, each capable
of 18 GFlop/s for 64-bit operations. MSPs are
fully connected within 32-MSP subsets, and
are connected via a 2-D torus between sub-
sets. This system is an upgrade of the original
Cray X1 at ORNL.

• Cray XT3 at ORNL: 5294 single processor
nodes (2.4 GHz AMD Opteron) and a 3-D
torus interconnect. Each processor is capable
of 4.8 GFlop/s for 64-bit operations.

• Earth Simulator: 640 8-way symmetric multi-
processor (SMP) nodes and a 640x640 single-
stage crossbar interconnect. Each processor
has 8 64-bit floating point vector units run-
ning at 500 MHz, and is capable of 8 GFlop/s
for 64-bit operations.

• IBM p575 cluster at the National Energy Re-
search Supercomputer Center (NERSC): 122
8-way p575 SMP nodes (1.9 GHz POWER5
processors) and an HPS interconnect with 1
two-link adapter per node. Each processor is
capable of 7.6 GFlop/s for 64-bit operations.

• IBM p690 cluster at ORNL: 27 32-way p690
SMP nodes (1.3 GHz POWER4 processors)
and an HPS interconnect. Each node has two
HPS adapters, each with two ports. Each pro-
cessor is capable of 5.2 GFlop/s for 64-bit op-
erations.

• IBM SP at NERSC: 184 Nighthawk II 16-way
SMP nodes (375 MHz POWER3-II processors)
and an SP Switch2. Each node has two inter-
connect interfaces. Each processor is capable
of 1.5 GFlop/s for 64-bit operations.

• Itanium2 cluster at Lawrence Livermore Na-
tional Laboratory: 1024 4-way Tiger4 nodes
(1.4 GHz Intel Itanium 2) and a Quadrics Qs-
NetII Elan4 interconnect. Each processor is
capable of 5.6 GFlop/s for 64-bit operations.

• SGI Altix 3700 at ORNL: 256 1.5 GHz Ita-
nium2 processors and a NUMAlink switch.
The machine has an aggregate of 2 TByte of
shared memory. Each processor is capable of
6.0 GFlop/s for 64-bit operations.

4 Cray X1E

4.1 X1E Overview

The X1E is Cray’s scalable vector architecture. The
X1E is characterized by high-speed custom vector

processors, high memory bandwidth, and a high-
bandwidth, low-latency interconnect. The logical
view of an X1E is as a cluster of 4-way SMP SMP
nodes made up of four vector processors where each
vector processor has eight vector units.

The architecture is more complicated than this
simple view would imply. The vector processor, or
Multi-Streaming Processor (MSP), is itself made up
of four Single Streaming Processors (SSP). Each SSP
has two 32-stage 64-bit wide vector units running at
1.13 GHz and one 2-way superscalar unit running
at 565 MHz. The four SSPs share a 2MB cache.
While the user has the option to treat each SSP as
a processor, the compiler often does an excellent job
assigning work to all vector units, allowing the user
to consider each MSP a single vector processor with
a peak performance of 18 GFlop/s (64 bit) instead of
four SSPs each with a performance of 4.5 GFlop/s.

Two MSPs are implemented in a single multichip
module (MCM). However these two MSPs are not in
the same SMP node. Instead four MCMs together
make up 2 SMP nodes. These 8 MSPs, called a com-
pute module, share bandwidth into the interconnect.
The interconnect is fully connected within subsets of
4 compute modules, or 32 MSPs. The interconnect
is either a hypercube or a two-dimensional torus be-
tween these 32-MSP subsets.

Each MSP can read 33.5 GByte/s from main
memory or the interconnect and can write between
12.8 and 20.5 GByte/s. The interconnect supports
51.2 GByte/s each direction from/to a compute
module.

The X1E at ORNL has 256 SMP nodes (1024
MSPs) and 8 GBytes of memory per node. The in-
terconnect is configured as a two-dimensional torus
between the 32-MSP fully connected subsets.

4.2 Porting and Tuning

CAM was ported to the Cray X1, the predecessor
to the X1E, previously [7]. The X1 port of CAM
worked on the X1E without change. The X1E differs
from the X1 in that it has 41% higher peak computa-
tion rate per MSP, lower memory latency, increased
contention for memory bandwidth and increased
contention for interconnect bandwidth. These dif-
ferences between the X1 and X1E are reflected in
the CAM performance characteristics. For example,
Figure 4.1 is a plot of the runtime of the physics,
normalized by the fastest runtime, as a function of
pcols. On both systems the optimal pcols is ap-
proximately 514, and performance degrades when
pcols is a power-of-two. However, the performance
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sensitivity to pcols is smaller on the X1E. This is
probably due to the increased memory contention
on the X1E offsetting some of the advantage of large
pcols on vectorization.
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Figure 4.1: X1E pcols Performance Sensitivity

The differences in the performance characteris-
tics were not large enough to change the optimal
performance tuning settings.

• Long inner loops (large pcols) are better, to
a point.

• Eliminating physics load imbalances is more
important than decreasing interprocess com-
munication overhead.

• MPI collectives are faster than point-to-point
implementations (when using “full” load bal-
ancing), even compared to using Co-Array For-
tran in the point-to-point implementation.

• Do not use MPI derived types when using
point-to-point implementations.

• Pure MPI is faster than hybrid MPI/OpenMP
for almost all processor counts (for CAM).

• Use MSPs, not SSPs, i.e., assign one process
or thread per MSP and let the compiler assign
work to functional units within the MSP.

We henceforth use “processor” and “MSP” inter-
changeably when discussing the X1 and X1E.

While the X1 port worked well, CAM is still
evolving, and most of the new code is not developed
on the X1E. Figure 4.2 contains graphs of the per-
formance of CAM as a function of version number.
The versions named on the X-axis were developed
on the X1E, and often include changes that elim-
inate performance degradations that crept in since

the previous X1E-oriented modification. For each
named version, we also measured performance for
the immediately preceding version. The name of
each version is of the form “3.X Y”. The “3.” is
dropped from the name in the graph where it im-
proves readability.
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Figure 4.2: Performance History on the X1E

The two graphs are identical except that the
lower graph uses a logarithmic scaling of the Y-axis.
Three benchmark problems were used in these ex-
periments.

1. EUL dycore running on 128x256x26 (latitude
by longitude by vertical) computational grid.
This dycore and grid, referred to as T85 L26,
are used in production CCSM simulations cur-
rently.

2. FV dycore running on 96x144x26 computa-
tional grid. This grid is referred to as 1.9x2.5
L26. The FV dycore is the preferred dycore for
atmospheric chemistry due to its conservation
properties. 1.9x2.5 L26 is the proposed grid
for production CCSM simulations using FV.
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3. FV dycore running on 361x576x26 computa-
tion grid. This grid is referred to as 0.5x0.625
L26. This problem size is 15 times larger than
1.9x2.5 L26 and is considered a very high, but
feasible, resolution for climate simulations.

For T85 L26 we used 128 processors, the maxi-
mum possible without using OpenMP parallelism.
For 1.9x2.5 L26, we used 48 processors in a
16x3 two-dimensional virtual processor grid. For
0.5x0.625 L26, we used 128 processors in a 32x4 two-
dimensional virtual processor grid. In all cases we
set pcols to 514 and ran with internal performance
timers enabled. These choices degrade performance
somewhat, as shown in Section 6, but the graphs still
document the qualitative nature of the performance
history on the X1E. It is clear from these results
that maintaining performance as CAM evolves is as
important as pursuing further performance improve-
ments.

5 Cray XT3

5.1 XT3 Overview

The XT3 is Cray’s third-generation massively paral-
lel processing system. It follows a similar design to
the successful Cray T3D and Cray T3E [19] systems.
As in these previous systems, the XT3 builds upon
a single processor node. The XT3 connects these
nodes with a customized interconnect managed by a
Cray-designed application-specific integrated circuit
called SeaStar.

Each XT3 node has one Opteron processor with
its own dedicated memory and communication re-
sources. The XT3 has two types of nodes: compute
and service. The compute nodes are optimized for
application performance and run a lightweight oper-
ating system kernel called Catamount. The service
nodes run SuSE Linux and are configured for I/O,
login, network, or system functions.

The XT3 at ORNL uses Opteron model 150 pro-
cessors clocked at 2.4 GHz. This model includes an
Opteron core, integrated memory controller, three
16bit-wide 800 MHz HyperTransport (HT) links,
and L1 and L2 caches. The Opteron core has three
integer units and one floating point unit capable of
two floating-point operations per cycle, achieving a
peak floating point computation rate of 4.8 GFlop/s
(64 bit). Each compute node has 2 GBytes of mem-
ory. Latency to main memory is 50-60 nsec, and
peak bandwith to main memory is 6.4 GByte/s.

Each XT3 node is connected to the Cray SeaStar
chip via a 6.4 GByte/s HT link. The SeaStar chip

provides six network links to connect to neighbors in
a three-dimensional torus/mesh topology. Each of
the six links has a peak bandwidth of 7.6 GByte/s
with sustained bandwidth of around 4 GByte/s.

The XT3 at ORNL has 5212 compute nodes and
82 service nodes. The nodes are connected in a
three-dimensional mesh of size 14 x 16 x 24, with
torus links in the first and third dimension. For the
experiments described in this paper we used Fortran
and C compilers from The Portland Group.

For more details on configuration and perfor-
mance of the XT3 at ORNL, see Alam, et al [1].

5.2 Porting and Tuning

CAM had not previously been ported to an XT3,
though there was prior experience running CAM on
Opteron processors. A number of minor changes
were required for the port.

1. Four routines were compiled with -O1 compiler
optimization, instead of the -fast optimiza-
tion that was used with the rest of the code.
This corrected runtime errors that occurred
otherwise. Fortunately a lower level of com-
piler optimization for these routines does not
degrade CAM performance.

2. The Catamount OS does not support a number
of standard Linux OS system services. cpp di-
rectives were used to eliminate “optional” calls
to unsupported system routines when running
on the XT3.

3. Calls to the system routine gettimeofday,
which were not optional, were replaced by calls
to MPI Wtime. This has since been adopted as
the standard on all platforms when running
with MPI.

4. Performance of writing to standard out and
standard error was so poor that it qualified as
a porting issue. The solution was to add a call
to the system command setvbuf to enable full
buffering and to allocate (65KB) buffers.

5. Execution of the code failed when read-
ing/writing files in the NFS-attached file sys-
tem. All experiments were run with all input
and output files in the Lustre [11] parallel file
system.

6. The MPI “eager” protocol caused system
buffer space to be exhausted from the recep-
tion of unexpected messages when gathering
data to a single process prior to writing output.
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There are many possible solutions to this is-
sue [17]. At the current time we have replaced
the call to MPI Allgatherv where the problem
occurs with an MPI point-to-point implemen-
tation that limits the number of simultaneous
sends to the root process. This solution works
no matter how many processes are involved
and does not impact performance of MPI com-
munication in the rest of the code.

The next step after porting was to determine the
optimal settings for the performance options. Fig-
ure 5.1 is a plot of normalized physics runtime as
a function of pcols. Data are included for a num-
ber of other nonvector systems. Each system has
somewhat different sensitivities and different opti-
mal pcols values: 8 for the Altix; 24 for the p690;
34 for the XT3; 80 for the p575. However, they
all are reasonably insensitive to the exact value as
long as pcols is within a system-specific range, and
neither very small (less than 8) nor very large values
are efficient. (The p575 performance curve begins to
increase more rapidly for pcols greater than 128.)
While not shown here, the optimal pcols value on
the XT3 is also sensitive to the level of compiler opti-
mization. When using -fastsse the optimal pcols
value is 40. We began using this pcols value in sub-
sequent benchmarking runs, and continued to do so
even after discovering the (slight) advantage of us-
ing a pcols value of 32. Note that compiling with
-fastsse caused numerical problems and did not
improve CAM performance appreciably over using
-fast.
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Figure 5.1: XT3 pcols Performance Sensitivity

A selection of optimal performance settings for
the XT3 are as follows.

• pcols values between 34 and 40 are optimal,
but values between 8 and 66 achieve acceptable
performance.

• Eliminating physics load imbalances is more
important than decreasing interprocess com-
munication overhead. However, the preference
is not as strong as on the X1E, and less than
full load balancing is competitive in many in-
stances.

• MPI collectives are faster than point-to-point
implementations (when using full load balanc-
ing).

• Do not use MPI derived types when using
point-to-point implementations. The disad-
vantage of using MPI derived types, while
measurable, is not significant in most exeri-
ments.

• I/O performance should be optimized wher-
ever and however possible.
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Figure 5.2: Performance History on the XT3

Figure 5.2 is analogous to Figure 4.2, graphing
the performance of CAM on the XT3 as a function
of version number. As can be seen, little system-
specific code optimization has taken place on the
XT3 beyond that which occurred in version 3.2 19.
(The modifications required to port to the XT3 were
introduced in version 3.1. These same modifications
were backported to version 3.0p1 for the EUL dy-
core.) All experiments were run with pcols set to
40 and with internal performance timers enabled.
These choices did not impact performance nega-
tively. Optimal settings were used for the other per-
formance options and all I/O was limited to files in
the Lustre file system. Version 3.2 19 contains the
modification in which buffering for standard output
and standard error was added. The cost for this I/O
is relatively fixed for the benchmarks, so affects the
smaller benchmarks more strongly. Much of the I/O
cost occurs within the physics, which is called more
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frequently when using the spectral dycores, making
the T85 benchmark results most sensitive to this op-
timization.

6 Performance Results

In this section we describe and analyze processor
scaling for two of the benchmark problems: T85 L26
and 0.5x0.625 L26. Each data point represents the
best performance observed on a given platform for a
given processor count after optimizing over the CAM
performance tuning options.

6.1 T85 L26

For benchmarking T85 L26 we took version 3.0 and
backported relevant performance optimizations from
more recent versions of the CAM, e.g., enabling
buffering of output to standard error and standard
out on the XT3. Figure 6.1 is a graph of CAM per-
formance for the T85 L26 benchmark on the Cray
X1, X1E, and XT3, the IBM p575 cluster, and the
IBM p690 cluster. As indicated earlier, the EUL
dycore limits the number of MPI processes to be no
more than the number of latitudes, 128 processes for
this benchmark. There is also a computational inef-
ficiency introduced in the dynamics when fewer than
two latitudes are assigned to an MPI process. Thus
inefficient scaling when using more than 64 MPI pro-
cesses is not just due to increased interprocess com-
munication overhead. OpenMP parallelism is used
on the IBM systems to avoid this inefficiency and to
exploit more than 128 processors.

For the X1 and X1E experiments the internal
performance timers were disabled and pcols was
set to 1026 for 8, 16 and 32 processors, to 514 for
64 and 96 processors, and to 258 for 128 proces-
sors. The earlier experiments indicated that pcols
settings of 258, 514, and 1026 achieved comparable
performance. These particular choices take into ac-
count the granularity for a given processor count,
optimizing the memory usage. On the XT3 and the
p575 cluster pcols was set to 40 and 80, respectively,
for all processor counts. On the p690 cluster opti-
mal pcols values varied between 16, 24, and 32 as
the processor count varied, but performance differ-
ences between the three choices were small. Full load
balancing was used on all systems except the p690
cluster. On the p690 cluster the optimal load bal-
ancing setting varied with processor count, reflecting
the relatively high cost of interprocess communica-
tion on that system.
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Figure 6.1: T85 L26 Performance

The X1E is 16% faster than the X1 for 8 through
96 processors. For 128 processors the X1E advantage
jumps to 28%. The X1E is 2.3 to 2.8 times faster
than the p575 cluster, 2.5 to 2.8 times faster than
the XT3, and 5.5 times faster than the p690 cluster
when using up to 128 processors. Using more proces-
sors on the X1E, via OpenMP, would decrease vector
length in the physics below 256 for this benchmark,
resulting in degraded single processor performance.
In consequence, we would not expect performance to
improve significantly beyond that achieved for 128
processes. In contrast, the IBM systems continue to
scale to much higher processor counts, though they
do not surpass the peak X1E performance with the
available processor counts.

Performance on the XT3 is very similar to that
on the p575 cluster for 32 and 64 processors. The
p575 cluster performance is 12% faster for 128 pro-
cessors. For 128 processors the p575 cluster is using
64 MPI processes with 2 OpenMP threads per pro-
cess while the XT3 is using 128 MPI processes. Op-
timal p575 cluster results for 32 and 64 processors
do not use OpenMP parallelism.

Figure 6.2 is a graph of seconds per simulation
day for just the dynamics. From this it is clear that
dynamics on the p575 cluster makes little use of more
than 128 processors, and that dynamics on the p575
cluster is always faster than the dynamics on the
XT3: by 35% for 32 processors, 46% for 64 proces-
sors, and 64% for 128 processors. Dynamics on the
X1E is 2.8 times faster than that on the p575 cluster
for 32 processors, 2.2 times faster for 64 processors,
and 1.8 times faster for 128 processors. Examina-
tion of profile data indicates that the p575 cluster
advantage over the XT3 occurs primarily in the com-
putational phases for 32 and 64 processors. For 128
processors, exploitation of OpenMP parallelism also
avoids the computational inefficiency caused by us-
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ing more than 64 MPI processes and decreases the
communication overhead relative to that seen on the
XT3. The performance difference in computational
phases would appear to be attributable to memory
access patterns and instruction mix that allow the
POWER5 processor to achieve processor efficiences
comparable to those achieved on the Opteron. (Re-
member that the 1.9 GHz POWER5 has a 60%
higher peak floating point operation rate than the
2.4 GHz Opteron.) The increasing competitiveness
of the p575 cluster with respect to the X1E as a
function of processor count is likewise due to the in-
creasing importance of interprocess communication
and the computational inefficiency caused by using
more than 64 MPI processes.

Figure 6.3 is a graph of seconds per simulation
day for just the physics. The improvement in physics
scalability from using OpenMP is clear. In con-
trast to the dynamics results, physics performance
on the XT3 is better than that on the p575 clus-
ter for the same number of processors: by 13% for
32 and 64 processors and by 6% for 128 processors.
Physics performance on the X1E is between 2.6 and
2.8 times faster than on the p575 cluster up to 128
processors. Examining the performance profile indi-
cates that the XT3 performance is similar or supe-
rior to that of the p575 cluster for most computa-
tional phases. This indicates a significantly differ-
ent memory access pattern or instruction mix from
the dynamics, one that favors the Opteron proces-
sor over the POWER5. For example, the physics is
known to include a relatively large number of calls
to the sqrt function and other intrinsics, which is
not true of the dynamics.1 The decreasing XT3 per-
formance advantage over the p575 cluster is due to
the increasing percentage of time spent in the land
model and in a global sum as the processor count in-
creases, both of which are faster on the p575 cluster
than on the XT3.

Figure 6.4 is a graph of seconds per simulation
day for both dynamics and physics for the Cray
X1E, Cray XT3, and IBM p575 cluster. While these
data also appear in Figures 6.2 and 6.3, this graph
shows clearly that the physics is between two and
four times as expensive as the dynamics when not
using more than 128 processors.
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Figure 6.2: T85 L26 Dynamics
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Figure 6.3: T85 L26 Physics
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Figure 6.4: T85 L26 Diagnostics

1Note that both the MASS [12] and MASSV libraries were linked to for experiments on the p575 cluster, but no explicit
attempt was made to use the vector MASS routines. Also, -qstrict was used to restrict compiler optimization on the IBM
systems, which probably prevented the compiler from exploiting vector versions of the MASS replacement routines for the math
intrinsic functions. CAM does not pass the numerical validation tests on the IBM systems without specifying -qstrict when
using -O3 and higher levels of compiler optimization.
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6.2 0.5x0.625 L26

For the 0.5x0.625 L26 benchmark we took version
3.1 and, again, backported a few performance op-
timizations from more recent versions of the CAM.
Figure 6.5 is a graph of CAM performance for this
benchmark on the Cray X1, X1E, and XT3, the
Earth Simulator, the IBM p575 cluster, the IBM
p690 cluster, the IBM SP, and the Itanium2 clus-
ter. The FV dycore requires that at least 3 lati-
tudes and 3 vertical levels be assigned to each MPI
process. For the 0.5x0.625 benchmark, the maxi-
mum two-dimensional virtual processor grid is then
120x8, implying a maximum of 960 MPI processes.
The Earth Simulator and the IBM systems also use
OpenMP parallelism, and can use more than 960
processors.
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Figure 6.5: 0.5x0.625 L26 Performance

Unlike the T85 L26 benchmark experiments, in-
ternal performance timers were not disabled for the
X1 and X1E experiments. Between version 3.0 27
and 3.1 the timing logic was modified and enabling
the internal performance timers in version 3.1 does
not have a significant performance impact on the
Cray vector systems. For X1 and X1E experiments
pcols was set to 870 for 32 to 256 processors, to
570 for 371 to 504 processors, to 330 for 644 to 784
processors, and to 258 for larger processor counts.
On the IBM SP, the Itanium2 cluster, the XT3, the
IBM p575 cluster, and the Earth Simulator pcols
was set to 16, 16, 40, 80, and 512, respectively, for
all processor counts. On the p690 cluster the opti-
mal pcols value was 16 up to 128 processors, 24 for
224 and 256 processors, and 32 for higher processor
counts.

Full load balancing was used on the X1, X1E,
XT3, Earth Simulator, p575 cluster and p690 clus-
ter. No load balancing was used on the IBM SP or
on the Itanium2 cluster. One-dimensional domain

decompositions were usually best until the num-
ber of MPI processes exceeded 64. Three types of
two-dimensional decompositions were examined, de-
fined by the following virtual processor grids: (1)
(P/4)×4, (2) (P/7)×7, and (3) (P/8)×8, where P
is the total number of MPI processes. Performance
was typically best for the first two-dimensional de-
composition until (P/4) > 64. Note that a two-
dimensional decomposition was never optimal on the
p690 cluster. Instead OpenMP parallelism was used
to exploit additional processors.

The X1E is only 9% faster than the X1 for 32
processors, but the advantage grows to 19% for 128
processors, and reaches 22% for 371 processors. The
Earth Simulator shows a similar scaling curve to the
X1E, but the X1E is 1.5 times faster up to 256 pro-
cessors, and retains a 1.3 times performance advan-
tage out to 672 processors. The X1E is approxi-
mately 2.5 times faster than the p575 cluster for 32
processors, declining to 2 times faster for 256 pro-
cessors, finally dropping to 1.3 times faster for 840
processors. The performance comparison with the
XT3 is similar: 3 times faster for 32 processors, de-
clining to 1.5 times faster for 960 processors. Perfor-
mance on the XT3 is again most similar to that on
the p575 cluster, though the XT3 performance lags
behind that of the p575 cluster by between 12% and
22%. The p575 cluster uses OpenMP parallelism for
many processor counts, and always uses OpenMP
when using more than 336 processors.
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Figure 6.6: 0.5x0.625 L26 Dynamics

Figure 6.6 is a graph of seconds per simulation
day for just the dynamics for five of the experimen-
tal platforms. Dynamics performance on the X1E is
essentially flat when using more than 448 processors.
The XT3 continues to see performance improvement
out to 960 processors, though the improvement is
marginal beyond 840 processors. It is difficult to
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identify a trend in the p575 cluster results. Dynam-
ics on the X1E is 3.2 times faster than on the XT3
for 32 processors, 1.9 times faster for 448 processors,
and only 30% faster for 840 processors. Dynamics on
the X1E is 2.3 times faster than on the p575 cluster
for 32 processors, 1.7 times faster for 448 processors,
and only 3% faster for 840 processors. Dynamics on
the p575 cluster is faster than on the XT3 by 41%
for 32 processors, by 13% for 448 processors, and by
26% for 840 processors. Note that the erratic be-
havior in the performance curves is a function of the
two-dimensional virtual processor grid that is com-
patible with a given processor count. For example,
on the XT3 we used a 64x7 virtual processor grid for
448 processors, a 120x4 grid for 480 processors, and a
72x7 grid for 504 processors. Decomposing latitude
with 120 processes incurs a much higher communi-
cation overhead in the dynamics than decomposing
using 64 or 72 processes.

From the profile data, the dynamics performance
on the X1E suffers from both communication over-
head and a load imbalance for large processor counts.
The FV dycore applies a Fast Fourier Transform
(FFT)-based filter to latitudes near the poles. As
only a subset of the processes are assigned polar lat-
itudes, the other processes are idle. The X1E also
does not achieve good performance when calculating
the FFTs. The most effective direction of vector-
ization is across the vectors being transformed, and
there are not many of these. The costs associated
with the remaps, i.e., the interprocess communica-
tion required when changing between the latitude-
longitude domain decomposition and the latitude-
vertical decomposition, appear to be constant or
slowly increasing for large process counts, though
this is difficult to quantify due to the presence of
the load imbalances. For 448 processors the remaps
and the polar filters account for more than half of
the time spent in the dynamics, and this percentage
increases for larger processor counts. Note that the
primary performance advantage of the X1E over the
X1 in the dynamics is that this load imbalance issue
affects performance on the X1 even more than on
the X1E.

In contrast, the time spent in the polar filters
and in the remaps is still decreasing from 448 pro-
cessors to 840 processors on the XT3 and on the
p575 cluster. Apparently the FFTs are fast enough
compared to the computational rate for the rest of
the dynamics that the load imbalance does not rep-
resent as much of a scalability bottleneck on these
systems. However, more work is needed to quantify
the exact nature of the scaling problem on the X1E

and to explain the relative lack of a problem on the
XT3 and p575 cluster.

Comparing the dynamics performance on the
p575 cluster with performance on the XT3 when us-
ing 32 processors, both communication and compu-
tation appear to be faster on the p575 cluster, with
the possible exception of the polar filters, but it is
difficult to separate the communication cost from
that of the computation. For larger processor counts
a direct comparison of the profile data is problem-
atic as the p575 cluster uses OpenMP and different
domain decompositions than the XT3 for the same
processor count. For example, for 840 processors the
XT3 uses a 120x7 grid while the p575 cluster uses a
30x7 grid with 4 OpenMP threads per process. For
a 3 day simulation, over half of the performance dif-
ference for 840 processors occurs in the remaps, so
the advantage may be primarily lower communica-
tion overhead due to the use of OpenMP. However,
for a 1 day simulation, both the remaps and the dy-
namics as a whole are faster on the XT3 than on the
p575 cluster. This was not true for 32 processors,
but as the processor count grows dynamics perfor-
mance for 1 simulation day on the XT3 becomes
steadily better relative to that of the p575 cluster
while performance for 3 simulation days does not.
At the very least, dynamics performance on the XT3
is more variable than on the p575 cluster. One con-
jecture is that diagnostic writes to standard output
or standard error from within the dynamics is the
source of the variability, but this has not been veri-
fied as of yet.

Figure 6.7 is a graph of seconds per simulation
day for just the physics for the same five experimen-
tal platforms. Scalability is better for the physics
than the dynamics for all platforms, though it is
not perfect for large processor counts. With one
exception, physics performance on the X1E is be-
tween 10% and 15% faster than on the X1. Com-
pared to the p575 cluster, the X1E is between 2.6
and 3.2 times faster when using 256 processors or
less, and approximately 2.4 times faster when us-
ing more than 256 processors. Performance on the
XT3 is nearly identical to that on the p575 cluster
up to 256 processors, remains within 6% up to 384
processors, but is slower by 15% for 448 processors
and by 41% for 840 processors. The degradation
in performance on the XT3 relative to that on the
p575 cluster is due to the increasing percentage of
time spent in a global sum and an associated write
statement. This time grows with processor count,
and takes approximately 5 times longer on the XT3
than the p575 cluster for all processor counts. For
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840 processors this sum and write are 33% of the
physics runtime on the XT3, but only 4% on the
p575 cluster. Performance is nearly identical on the
XT3 and p575 for most of the computational phases.

Figure 6.8 is a graph of seconds per simulation
day for both dynamics and physics for the Cray X1E,
Cray XT3, and IBM p575 cluster. For 0.5x0.625
L26, the dynamics is two to four times more expen-
sive than the physics, just the reverse of the case for
T85 L26. In the EUL dycore the physics is executed
at the same frequency as the dynamics. In FV, the
physics and dynamics use independent timesteps,
and the physics is executed at a lower frequency than
the dynamics.
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Figure 6.7: 0.5x0.625 L26 Physics
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Figure 6.8: 0.5x0.625 L26 Diagnostics

7 Summary and Future Work

This paper described porting and optimizing CAM
on the Cray X1E and Cray XT3 and performance for
two CAM benchmarks. While there are a number of
unresolved issues, we can state a few conclusions.

1. The Cray X1E is the fastest platform for CAM
for these two benchmarks.

2. Performance on the Cray XT3 is similar to
that on the IBM p575 cluster, but OpenMP
parallelism gives the p575 cluster the advan-
tage for large processor counts.

3. Performance on the Cray X1E is very sensi-
tive to load imbalances, and monitoring per-
formance is important as the code evolves.

4. Performance on the Cray XT3 is very sensitive
to I/O.

There are a number of issues that will arise as
CAM evolves, and it is important that we continue
to improve the scalability of the code to take advan-
tage of the next generation of petascale computing
platforms. However, even for the current version of
the code and for the current platforms there are a
number of tasks.

1. On the Cray X1E we need to examine the polar
filters and the remaps more closely, to quan-
tify the exact nature of the performance prob-
lem and to investigate whether the calls to the
FFTs and the remaps can be blocked to in-
crease vectorization and decrease communica-
tion overhead.

2. On the XT3 we need to determine the source
of the performance variability. If due to I/O,
we need to determine if and when a write is
necessary, and whether it can be buffered lo-
cally.

One of the modifications to CAM expected
within the next year is the availability of a new FV
dycore that uses a “cubed sphere” grid [18] instead
of a longitude-latitude grid. Using such a grid will
eliminate the need for the polar filters and the need
to decompose the vertical dimension when using a
two-dimensional domain decomposition. This will
improve both performance and scalability on all of
the systems, but is likely to have a larger impact
on the Cray X1E and XT3 performance. Another
planned change is adding the capability to run with
a different number of (active) MPI processes in the
physics and in the dynamics, providing some of the
scalability of OpenMP without requiring OpenMP.
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