

CUG 2006 Proceedings 1 of 6

Hybrid Programming Fun:
Making Bzip2 Parallel with MPICH2 &

pthreads on the Cray XD1

Charles Wright, Alabama Supercomputer Center

ABSTRACT: The author shares his programming experience and performance analysis in making a
parallel file compression program for the Cray XD1. Discussion includes a practical example of
combining MPI and pthreads in a single application. Issues with thread safety and MPI relative to the
example program and the XD1 are covered. The author includes an analysis of MPICH2 using TCP/IP
over RapidArray.

KEYWORDS: XD1, MPI-2, MPICH2, pthreads, shared-memory, distributed memory, hybrid
programming, RDMA, bzip

1. Introduction

As an XD1 administrator and a student in a parallel

programming class, the author came up with the idea of
doing file compression in parallel for a programming
project. He quickly learned that implementing a program
with MPI alone could be very difficult, especially if
coding for speed and efficiency. The MPI-2 standard has
some advances such as one-sided communications that
might make MPI more complete and easier to program.
However, using MPI alone does not take full advantage
of shared memory available on SMP cluster nodes and
MPI-2 implementations are just now becoming available.
A reasonable approach would be to combine pthreads and
MPI on the XD1. Using this hybrid model, the author
was able to parallelize non-computational tasks such as
I/O and communication easily. There seemed to be no
obvious solutions for achieving the level of parallelism
needed using MPI alone.

A minor roadblock to this hybrid programming
model is the fact that the Cray XD1 does not come with a
thread-safe implementation of MPI. Installing MPICH2
on the XD1 overcomes this roadblock at the expense of
both network performance and extra CPU utilization.
Without RDMA the CPU limits the RapidArray Network
to less than 20 percent of the throughput that would
otherwise be attainable through an optimized MPI
implementation. For this project, paying this heavy
performance penalty turned out to be acceptable given

increased efficiency and speedup of the hybrid model
program. It remains unclear whether or not someone
could achieve the same speedup and efficiency with
MPICH alone that has been achieved with the hybrid
model program. It is clear that using MPICH alone
would certainly have been more difficult for this program.

This paper focuses on how pthreads were used to
extend MPI in a natural way to improve the speed and
efficiency of the program. Experimenting with more
complete MPI-2 implementations is something to look
forward to, but for the moment, combining pthreads and
MPICH2 seems to be the best approach. A Rapid Array
port of MPICH2 will hopefully be obtainable at some
point in the near future so that choosing to use pthreads
with MPI does not involve a major performance penalty.

2. Goals of the Project

Since the author’s programming class was about
parallel programming and not about file compression, he
decided to use the bzip2 library instead of implementing
his own compression algorithm. The bzip2 library is a
lossless data compression library that achieves higher
compression ratios than does the popular gzip program.
However, bzip2’s usefulness is often limited by the
massive amounts of CPU time required to perform the
compression. Bzip2 was measured on a 2.2 GHz Opteron
CPU as able to process uncompressed data at a rate of
only 4.8 GB/hour. Compressing a terabyte sized file or
file system at this rate could take over eight days! The
immediate goal of the project was to employ multiple
processors to decrease bzip2 compression time as much

CUG 2006 Proceedings 2 of 6

as possible. (Note: Rate of compression varies
depending on the data being compressed.)

Using the bzip2 library allowed the author to focus
on parallel programming rather than file compression
algorithms and provided compatibility with existing
programs. For example, anything compressed by the
program could be decompressed on any system that had a
serial version of bunzip2. In fact, the author did not write
a matching decompression program at all. In his
environment, decompression is not a time sensitive task,
as he planned to employ the parallel bzip program to
perform file system backups.

To support the ability to perform a backup the
program would need to take its input from STDIN. From
the program’s point of view input would be a possibly
infinite length STDIN stream. When backing up a large
file system, creating an intermediate tar archive and then
compressing that archive with a parallel bzip program
would not be an option due to the addition storage
requirement. The input stream could be generated from
the output of a tar command. This way, during an actual
backup the only output of the program would be a
compressed tar.bz2 file. A recovery of the file system
would be possible by executing a single
tar –jxf filename.tar.bz2 command.

After some research, it was found that a shared
memory parallel version of bzip2 exists and can be found
at http://compression.ca/pbzip2/. The author did not find
an implementation using MPI. Using MPI was a good
choice for a few reasons. Shared memory machines can
support MPI but shared memory parallelized programs do
not operate across distributed memory machines. It
seems that large SMP machines are generally more
expensive than MPI Clusters on a dollar per calculation
basis and do not scale to the point that a MPI cluster can.
At the Alabama Supercomputer Center this is reflected in
the fact that the Altix cluster has less than half the number
of CPUs that the XD1 has and the largest SMP node that
we have is only 16 CPUs. An indicator of success for the
MPI parallel bzip program in the author’s environment
would be the achievement of at least a 16x speedup.

3. Implementing a MPI-Only Version

The first step, in designing a parallel bzip2 program,
was to write a serial bzip2 program making use of the
bzip2 library. This provided important insight into how
the library could be used in parallel. When compressing
a file that is larger than a system’s memory, a serial
program has to work with only a buffer’s worth of the file
at a time. The serial program has to read enough of the
file to fill a buffer, compress it, and then write it out
before filling the buffer again with more of the file. To
compress a file in parallel, the master process simply
sends pieces of the file to different processors. As long as
the compressed answers were written out in the correct

order, a MPI parallelized version of bzip2 would be
possible.

The first parallel version was written using only MPI.
It was rather simple, in that the master process worked as
presented in the following pseudo code.

while (!eof()) {

Read from file
 Send 1 MB buffers to each slave to compress
 Compress Master’s 1 MB piece
 Recv from all pieces (MPI_Gatherv)
 Write compressed buffers out

 }

4. Problems with the MPI-Only Version

With the MPI-Only version the best performance
achieved was an 8x speedup using twenty processors.
This was not terrible considering this was the first attempt
and it was mainly done as a proof of concept. The author
was able to quickly look at the code and start finding
ways to make it better. He assumed that it would take
roughly about the same time to compress a buffer of the
same size. In reality, this turned out to be a poor
assumption, as the times measured for compressing a
1MB buffer ranged from 0.1 to 1.0 seconds. This fact
alone could account for the inefficiency in the first
version, as the master would always wait on the slowest
slave before sending out the next set of buffers to
compress. Slaves were idle during the time their buffers
were in transit on the network and during the time it took
the master to process their requests. The master process
would not read in the next buffers to send until it was
actually ready to send them. Therefore, the master
process would block on file I/O at the worst possible
time; when all slaves were idle. When planning some
improvements to the first version there were no obvious
solutions that involved using MPI alone.

5. Implementing a MPI + pthreads Version

Threading the master and slave MPI processes could
help overcome the problems in the first MPI-only version.
A mechanism to perform dynamic load balancing was
added to account for the variable compression time of
equally sized buffers. The goal of this mechanism was to
give a slave the next buffer to compress immediately after
it returned the one that was previously compressed. The
master process was designed with the worst case scenario
in mind. One slave might process ten buffers in the time
it took another slave to process one buffer. An array of
buffers was added to allow the master process to receive
compressed buffers out of order from the slaves. One
thread per MPI slave managed MPI communications with
the slave processes. This setup allowed the use of
blocking MPI_send and MPI_recv calls to stall only a
thread while it waited on its slave process to receive,

CUG 2006 Proceedings 3 of 6

compress, and return a buffer. No complicated polling
mechanisms would be needed to deal with non-blocking
MPI routines.

Two threads were added to the master MPI process in
order to achieve asynchronous file I/O. One thread’s job
would be to keep a set of input buffers full. The other
I/O thread monitored the output buffer array and wrote
out all the compressed buffers in the order that it could.
This output thread would be woken up only when a
communication thread received the buffer that it needed
to write out. By using POSIX semaphores the master
process coordinated the input thread with the slave
communication threads in a producer/consumer fashion.

Support was added to allow a MPI slave to overlap
communication and compression. A MPI slave would
also need to be threaded to allow it to check out more
than one buffer to compress simultaneously. The MPI
slave used three threads, one to request, and receive
buffers to compress, one to do the actual compression,
and one to return the previously compressed buffer. This
design allowed each MPI Slave to keep its CPU busy
while buffers were in transit on the network.

6. Compiling and using a thread-safe
MPICH2

Trying to combine the system MPICH with pthreads
resulted in runtime errors such as the following:

pbzip:/tmp/igorodet/rpm/BUILD/mpich1.2.6/mpid/rai/dre
g.c:307: dreg_decr_refcount: Assertion `d->refcount > 0'
failed. mpiexec: Error: read_full: EOF, only 0 of 4 bytes.

The solution to these run time errors would be
installing MPICH2 configured with the flags --enable-
threads and –with-thread-package=posix as well as using
the MPI_Init_thread to initialize the MPI environment as
opposed to MPI_Init. MPI_Init_thread specifies one of
four methods of thread/communication operation. The
one that the program needed was the worst case scenario
for MPI, the MPI_THREAD_MULTIPLE method. This
method tells MPI that multiple threads call MPI routines
with no restrictions. The following code snippet was
used to test if a particular MPI implementation could
provide the MPI_THREAD_ MULTIPLE method.

// NOTICE THIS IS NOT MPI_Init!
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIP
LE,&provided);
if (provided == MPI_THREAD_MULTIPLE)

cout << "This version of MPI is thread safe" << endl;

Abandoning the RapidArray optimized MPICH on the
system is not something one should do without some
thought and planning. But if a program is not bandwidth
limited and can be improved with the use of threads it is
something that should be considered.

7. Requesting the right resources from the
queue system

A goal of the project was to achieve a reasonable
speedup efficiently. The program needed to request the
right resources from the queue system in order to best
achieve this goal. Since the master MPI process of the
program was threaded, it was possible that it needed to
use more than one processor. As one might expect,
scalability is limited by the master process, so it is
important to ensure that the master process be allocated
more than one processor if needed. An appropriate
request to the queue system would involve running the
first MPI process exclusively on one XD1 node, giving its
threads access to all the processors on that node. MPI
Slave processes were threaded as well, but only one
thread would do the CPU intensive compression. This
thread could only use a maximum of one CPU. At run
time, a slave’s other threads might use a few extra cycles
on an idle processor to do communication tasks, but the
extra CPU utilization should be insignificant. The
request to the queue system; therefore, only requested one
processor per MPI slave.

8. Scalability Analysis

The majority of the scalability analysis focuses on the
bandwidth requirements of the master process. Each
slave worked with a 1MB sized buffer. The time a slave
took to compress a 1MB buffer was measured. This time
ranged from one tenth of a second to a full second. Of
importance to this project, was the number of slave
processes that the master process should be able to
support in the worst case scenario that all buffers only
took one tenth of a second to compress. The minimum
number of slave processes could be calculated by
dividing the bandwidth the master process is capable of
pushing by the maximum bandwidth required per slave
process. The author calculated the maximum bandwidth
for a slave process to be 160 Mbits/Sec
((1MB*2xfers*8Mb/MB)/.1sec). This calculation
assumes that no compression occurs, which is also a
worst case scenario. An XD1 node without the
expansion fabric is capable of about 10,000 Mbits/Sec
worth of full-duplex bandwidth using the system MPICH.
Using MPICH2 compiled generically on the XD1, a node
is only capable of about 1800 Mbits/Sec. The
performance difference is explained by the fact that
MPICH2 compiled generically does not use RDMA;
therefore, bandwidth becomes limited by the processor
and memory. Using the system MPICH a master process
would be capable of supporting at least 10000/160 or 62
worst case slaves. Using MPICH2 generically, the
minimum number of worst case slaves supported would
be 1800/160 or eleven slaves.

CUG 2006 Proceedings 4 of 6

Supporting only eleven slaves did not meet the initial
goal of a 16x speedup, but it did provide a valuable sanity
check. If the program could not achieve at least an 11x
speedup, then the problem was somewhere other than the
network. To estimate actual performance, one could
assume the average time to compress a 1 MB buffer to be
½ of a second and an average compression ratio of 2:1.
The bandwidth requirement for a typical slave then
becomes 24 Mbits/sec ((1.5MB*8Mb/MB)/.5sec). A
realistic expectation for a master process would be for it
to support 1800/24 or 75 slaves with MPICH2. Should a
MPICH2 port to the XD1 become available, one could
realistically expect up to 300 typical slave processes to be
supported by a single master MPI process based on
bandwidth requirements.

9. Profiling the Code

After implementing important features such as
dynamic load balancing, asynchronous I/O and
communication/compression overlapping, testing
revealed that the program still was not able to achieve
better than an 8x speedup. Efficiency had been greatly
improved as the program achieved an 8x speedup with
only 9 processors, but there still seemed to be a hidden
barrier to achieving a speedup of greater than 8x. The
next step was to determine where the unexpected
bottlenecks were.

The TAU (Tuning and Analysis Utilities) package
proved to be helpful. The general idea behind TAU
would be to take my source code, run it through the TAU
source code instrumentor, compile, execute and analyse
the resulting profile data. For this program, nothing
useful could be learned by simply using the automatic
instrumentor. TAU became confused on various
overlapping function calls called from inside program
threads. The code would have to be instrumented by
hand, which turned out to be not too difficult. TAU was
then able to graph timing characteristics of all threads
across all MPI processes.

Figure 9.1 – A 3D Tau Graph with timing information
for all threads across all MPI processes.

The three axes of the graph in figure 9.1 are time,
threads, and functions. The green and yellow lines
highlight a particular point on the graph, in this case, the
time spent in a thread of the last MPI slave process in the
MPI_Probe function. All the orange “trees” are slave
processes. The green, tent shaped figure shows the time
spent in MPI_Probe for each of the master threads that
service communications. The yellow peak in this tent
shows an anomaly uncovered by Tau. The last thread of
the master MPI process gets preference over the others
for some reason. This is most likely an undocumented
OS scheduling “feature”.

These graphs indicate that the dynamic load
balancing mechanism was doing a good job keeping the
slaves MPI processes busy. The green “trees” in the
graph represent the amount of time the compression was
actually taking place. The red “trees” represent the total
time the MPI slave process actually lived.

CUG 2006 Proceedings 5 of 6

Figure 9.2 Important lesson learned from Tau

Figure 9.2 summarizes the information learned from

using Tau. The time spent in communication by the
master MPI process was being limited by something.
This in turn, limited the amount of time slave processes
spent compressing. With this information, the plan
became to evaluate and eliminate all the unnecessary code
from the master process.

10. Top to the rescue

Careful study of the master process resulted in the

elimination of unnecessary source code. However, the
improvements did not result in a speedup larger than 8x.
The top command was used to watch the master process
interactively. On the XD1 the system top command was
not capable of displaying CPU utilization by individual
thread. The system top only reported the combination of
all the master MPI process’s threads as using 160% CPU
time. Determining which threads were responsible for
utilizing the largest amount of CPU time would need to
be known in order to understand what was happening. It
was not difficult to download and install the procps
package to get a version of top capable of displaying CPU
usage by an individual thread. By telling this version of
top to filter by user, show individual threads, and sort by
Unix process id; it was determined which thread had the
highest CPU utilization. It turns out the service_inbuffers
thread was using 100% of the 160% reported by top.
This was a big surprise in that the service_inbuffers
thread was responsible for only reading from STDIN and
filling up a set of buffers.

After some research on using C++’s cin function, the
unexpected CPU utilization was traced to the cin function
using a small buffer by default. The author attached a
larger buffer to cin with the following two lines of code:

char mybuffer [bufferlength];
cin.rdbuf()->pubsetbuf(mybuffer,bufferlength);

A few test runs confirmed that the 8x speed up barrier had
finally been broken!

11. Final Performance Results

The best test run for speedup and efficiency achieved
a speedup of 19.78x using 20 processors. This seems
incorrect as only 18 of the 20 processors were used to
actually do compression. However, this is a correct
measurement of an accidental superlinear speedup. The
superlinear speedup results from the bzip library having
to perform less data sorting than in the serial version.
The compression ratios were very slightly different from
the serial bzip2 program due to varying compression
statistics being available to the bzip library. The
compression ratios of a 4.4 Gig test file were measured to
be 2.6179:1 for the serial version verses 2.6135:1 for the
parallel version. Compatibility was not affected, as
there was no problems observed decompressing any of
the data the program compressed using the serial bunzip2
program.

Test runs using up to 30 processors were performed,
but efficiency dropped to the 20 to 30 CPU range.
Given the previous network analysis and goals of the
project this was a good stopping point. Further testing
may be performed after a MPICH2 RapidArray port
becomes available.

12. Conclusions

The combination of pthreads and MPICH2 can result
in many benefits ranging from easier programming to
more effective use of system resources. Practical
programming issues such as matching MPI_send and
MPI_recv calls from multiple MPI slaves can be
effectively addressed with the addition of threads.
Profiling MPI and pthread code is possible with the TAU
tool, when resorting to hand instrumentation. In the case
of the parallel bzip program, the resulting improvements
in both speedup and efficiency overshadow the lack of
hardware support for MPICH2 currently available on the
XD1.

13. Acknowledgments

The author would like to thank the Alabama Super-
computer Authority for the grant of CPU time, as well as
Computer Sciences Corporation for the opportunities they
provided.

Gratitude is extended to the authors of the bzip2 libr-
ary as well as the authors of TAU. TAU is a joint project
between the University of Oregon Performance Research

CUG 2006 Proceedings 6 of 6

Lab, The LANL Advanced Computing Laboratory, and
The Research Centre Julich at ZAM, Germany.

14. References

University of Oregon Performance Research Lab, The
LANL Advanced Computing Laboratory, and The
Research Centre Julich at ZAM, Germany(2005). TAU -
Tuning and Analysis Utilities. Retrieved February 13,
2006, from
http://www.cs.uoregon.edu/research/tau/home.php

jseward@bzip.org(2005). bzip2. Retrieved February 17,
2006 from http://www.bzip.org

MCS Division, Argonne National Laboratory, University
of Chicago (2005).MPICH2. Retrieved February 19, 2006
from
http://www-unix.mcs.anl.gov/mpi/mpich/index.htm

About the Author

Charles Wright is an employee of Computer Sciences
Corporation, where he supports the Alabama
Supercomputer Center as the lead System Administrator
for a 60 processor SGI Altix 350 Cluster and a 144
processor Cray XD1. He holds a Bachelors Degree in
Computer Engineering from Auburn University and is
currently pursuing a Masters in Computer Engineering
from the University of Alabama in Huntsville. He also
holds a Cisco CCNP certification and has worked as a
Network Administrator for the Alabama Research and
Education Network.

His contact information is as follows:

Charles Wright
686 Discovery Dr
Huntsville Al 35806
256-971-7429
charles@asc.edu

