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ABSTRACT:  The author shares his programming experience and performance analysis in making a 
parallel file compression program for the Cray XD1.  Discussion includes a practical example of 
combining MPI and pthreads in a single application.  Issues with thread safety and MPI relative to the 
example program and the XD1 are covered.  The author includes an analysis of MPICH2 using TCP/IP 
over RapidArray. 
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1. Introduction 

 
As an XD1 administrator and a student in a parallel 

programming class, the author came up with the idea of 
doing file compression in parallel for a programming 
project.   He quickly learned that implementing a program 
with MPI alone could be very difficult, especially if 
coding for speed and efficiency.  The MPI-2 standard has 
some advances such as one-sided communications that 
might make MPI more complete and easier to program.  
However, using MPI alone does not take full advantage 
of  shared memory available on SMP cluster nodes and 
MPI-2 implementations are just now becoming available.   
A reasonable approach would be to combine pthreads and 
MPI on the XD1.  Using this hybrid model, the author 
was able to parallelize non-computational tasks such as 
I/O and communication easily.  There seemed to be no 
obvious solutions for achieving the level of parallelism 
needed using MPI alone.   

A minor roadblock to this hybrid programming 
model is the fact that the Cray XD1 does not come with a 
thread-safe implementation of MPI.  Installing MPICH2 
on the XD1 overcomes this roadblock at the expense of 
both network performance and extra CPU utilization.  
Without RDMA the CPU limits the RapidArray Network 
to less than 20 percent of the throughput that would 
otherwise be attainable through an optimized MPI 
implementation.  For this project, paying this heavy 
performance penalty turned out to be acceptable given 

increased efficiency and speedup of the hybrid model 
program.   It remains unclear whether or not someone 
could achieve the same speedup and efficiency with 
MPICH alone that has been achieved with the hybrid 
model program.  It is clear that using MPICH alone 
would certainly have been more difficult for this program. 

This paper focuses on how pthreads were used to 
extend MPI in a natural way to improve the speed and 
efficiency of the program.  Experimenting with more 
complete MPI-2 implementations is something to look 
forward to, but for the moment, combining pthreads and 
MPICH2 seems to be the best approach.  A Rapid Array 
port of MPICH2 will hopefully be obtainable at some 
point in the near future so that choosing to use pthreads 
with MPI does not involve a major performance penalty. 

2. Goals of the Project 

Since the author’s programming class was about 
parallel programming and not about file compression, he 
decided to use the bzip2 library instead of implementing 
his own compression algorithm.  The bzip2 library is a 
lossless data compression library that achieves higher 
compression ratios than does the popular gzip program.  
However, bzip2’s usefulness is often limited by the 
massive amounts of CPU time required to perform the 
compression.  Bzip2 was measured on a 2.2 GHz Opteron 
CPU as able to process uncompressed data at a rate of 
only 4.8 GB/hour.    Compressing a terabyte sized file or 
file system at this rate could take over eight days!  The 
immediate goal of the project was to employ multiple 
processors to decrease bzip2 compression time as much 
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as possible.    (Note: Rate of compression varies 
depending on the data being compressed.) 

Using the bzip2 library allowed the author to focus 
on parallel programming rather than file compression 
algorithms and provided compatibility with existing 
programs.   For example, anything compressed by the 
program could be decompressed on any system that had a 
serial version of bunzip2.  In fact, the author did not write 
a matching decompression program at all.  In his 
environment, decompression is not a time sensitive task, 
as he planned to employ the parallel bzip program to 
perform file system backups.    

To support the ability to perform a backup the 
program would need to take its input from STDIN.  From 
the program’s point of view input would be a possibly 
infinite length STDIN stream.  When backing up a large 
file system, creating an intermediate tar archive and then 
compressing that archive with a parallel bzip program 
would not be an option due to the addition storage 
requirement.  The input stream could be generated from 
the output of a tar command.  This way, during an actual 
backup the only output of the program would be a 
compressed tar.bz2 file.   A recovery of the file system 
would be possible by executing a single 
tar –jxf filename.tar.bz2 command.  

After some research, it was found that a shared 
memory parallel version of bzip2 exists and can be found 
at http://compression.ca/pbzip2/.  The author did not find 
an implementation using MPI.    Using MPI was a good 
choice for a few reasons.   Shared memory machines can 
support MPI but shared memory parallelized programs do 
not operate across distributed memory machines.  It 
seems that large SMP machines are generally more 
expensive than MPI Clusters on a dollar per calculation 
basis and do not scale to the point that a MPI cluster can.   
At the Alabama Supercomputer Center this is reflected in 
the fact that the Altix cluster has less than half the number 
of CPUs that the XD1 has and the largest SMP node that 
we have is only 16 CPUs.  An indicator of success for the 
MPI parallel bzip program in the author’s environment 
would be the achievement of at least a 16x speedup.  

3. Implementing a MPI-Only Version 

The first step, in designing a parallel bzip2 program, 
was to write a serial bzip2 program making use of the 
bzip2 library.   This provided important insight into how 
the library could be used in parallel.   When compressing 
a file that is larger than a system’s memory, a serial 
program has to work with only a buffer’s worth of the file 
at a time.  The serial program has to read enough of the 
file to fill a buffer, compress it, and then write it out 
before filling the buffer again with more of the file.  To 
compress a file in parallel, the master process simply 
sends pieces of the file to different processors.  As long as 
the compressed answers were written out in the correct 

order, a MPI parallelized version of bzip2 would be 
possible.    

The first parallel version was written using only MPI.  
It was rather simple, in that the master process worked as 
presented in the following pseudo code. 

 
while (!eof()) { 

Read from file 
 Send 1 MB buffers to each slave to compress 
   Compress Master’s 1 MB piece 
    Recv from all pieces (MPI_Gatherv) 
   Write compressed buffers out 

   }  

4.  Problems with the MPI-Only Version 

With the MPI-Only version the best performance 
achieved was an 8x speedup using twenty processors.   
This was not terrible considering this was the first attempt 
and it was mainly done as a proof of concept.   The author 
was able to quickly look at the code and start finding 
ways to make it better.  He assumed that it would take 
roughly about the same time to compress a buffer of the 
same size.   In reality, this turned out to be a poor 
assumption, as the times measured for compressing a 
1MB buffer ranged from 0.1 to 1.0 seconds.  This fact 
alone could account for the inefficiency in the first 
version, as the master would always wait on the slowest 
slave before sending out the next set of buffers to 
compress.  Slaves were idle during the time their buffers 
were in transit on the network and during the time it took 
the master to process their requests.  The master process 
would not read in the next buffers to send until it was 
actually ready to send them.   Therefore, the master 
process would block on file I/O at the worst possible 
time; when all slaves were idle.   When planning some 
improvements to the first version there were no obvious 
solutions that involved using MPI alone. 

5.  Implementing a MPI + pthreads Version 

Threading the master and slave MPI processes could 
help overcome the problems in the first MPI-only version.  
A mechanism to perform dynamic load balancing was 
added to account for the variable compression time of 
equally sized buffers.  The goal of this mechanism was to 
give a slave the next buffer to compress immediately after 
it returned the one that was previously compressed.   The 
master process was designed with the worst case scenario 
in mind.  One slave might process ten buffers in the time 
it took another slave to process one buffer.   An array of 
buffers was added to allow the master process to receive 
compressed buffers out of order from the slaves.  One 
thread per MPI slave managed MPI communications with 
the slave processes.   This setup allowed the use of 
blocking MPI_send and MPI_recv calls to stall only a 
thread while it waited on its slave process to receive, 
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compress, and return a buffer.  No complicated polling 
mechanisms would be needed to deal with non-blocking 
MPI routines. 

Two threads were added to the master MPI process in 
order to achieve asynchronous file I/O.   One thread’s job 
would be to keep a set of input buffers full.   The other 
I/O thread monitored the output buffer array and wrote 
out all the compressed buffers in the order that it could.  
This output thread would be woken up only when a 
communication thread received the buffer that it needed 
to write out.  By using POSIX semaphores the master 
process coordinated the input thread with the slave 
communication threads in a producer/consumer fashion.   

Support was added to allow a MPI slave to overlap 
communication and compression.  A MPI slave would 
also need to be threaded to allow it to check out more 
than one buffer to compress simultaneously.  The MPI 
slave used three threads, one to request, and receive 
buffers to compress, one to do the actual compression, 
and one to return the previously compressed buffer.  This 
design allowed each MPI Slave to keep its CPU busy 
while buffers were in transit on the network.  

6.  Compiling and using a thread-safe 
MPICH2 

Trying to combine the system MPICH with pthreads 
resulted in runtime errors such as the following: 

 
pbzip:/tmp/igorodet/rpm/BUILD/mpich1.2.6/mpid/rai/dre
g.c:307: dreg_decr_refcount: Assertion `d->refcount > 0' 
failed.  mpiexec: Error: read_full: EOF, only 0 of 4 bytes. 
 

The solution to these run time errors would be 
installing MPICH2 configured with the flags --enable-
threads and –with-thread-package=posix as well as using 
the MPI_Init_thread to initialize the MPI environment as 
opposed to MPI_Init.   MPI_Init_thread specifies one of 
four methods of thread/communication operation.  The 
one that the program needed was the worst case scenario 
for MPI, the MPI_THREAD_MULTIPLE method.  This 
method tells MPI that multiple threads call MPI routines 
with no restrictions.  The following code snippet was 
used to test if a particular MPI implementation could 
provide the MPI_THREAD_ MULTIPLE method. 
 
// NOTICE THIS IS NOT MPI_Init! 
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIP
LE,&provided);  
if (provided == MPI_THREAD_MULTIPLE )  

cout << "This version of MPI is thread safe" << endl; 
 

Abandoning the RapidArray optimized MPICH on the 
system is not something one should do without some 
thought and planning.  But if a program is not bandwidth 
limited and can be improved with the use of threads it is 
something that should be considered.   

7.  Requesting the right resources from the 
queue system 

A goal of the project was to achieve a reasonable 
speedup efficiently.  The program needed to request the 
right resources from the queue system in order to best 
achieve this goal.   Since the master MPI process of the 
program was threaded, it was possible that it needed to 
use more than one processor.  As one might expect, 
scalability is limited by the master process, so it is 
important to ensure that the master process be allocated 
more than one processor if needed.  An appropriate 
request to the queue system would involve running the 
first MPI process exclusively on one XD1 node, giving its 
threads access to all the processors on that node.  MPI 
Slave processes were threaded as well, but only one 
thread would do the CPU intensive compression.  This 
thread could only use a maximum of one CPU.   At run 
time, a slave’s other threads might use a few extra cycles 
on an idle processor to do communication tasks, but the 
extra CPU utilization should be insignificant.   The 
request to the queue system; therefore, only requested one 
processor per MPI slave. 

8.  Scalability Analysis 

The majority of the scalability analysis focuses on the 
bandwidth requirements of the master process.  Each 
slave worked with a 1MB sized buffer.  The time a slave 
took to compress a 1MB buffer was measured.  This time 
ranged from one tenth of a second to a full second.   Of 
importance to this project, was the number of slave 
processes that the master process should be able to 
support in the worst case scenario that all buffers only 
took one tenth of a second to compress.    The minimum 
number of slave processes could be calculated by 
dividing the bandwidth the master process is capable of 
pushing by the maximum bandwidth required per slave 
process.   The author calculated the maximum bandwidth 
for a slave process to be 160 Mbits/Sec 
((1MB*2xfers*8Mb/MB)/.1sec).   This calculation 
assumes that no compression occurs, which is also a 
worst case scenario.   An XD1 node without the 
expansion fabric is capable of about 10,000 Mbits/Sec 
worth of full-duplex bandwidth using the system MPICH.   
Using MPICH2 compiled generically on the XD1, a node 
is only capable of about 1800 Mbits/Sec.   The 
performance difference is explained by the fact that 
MPICH2 compiled generically does not use RDMA; 
therefore, bandwidth becomes limited by the processor 
and memory.  Using the system MPICH a master process 
would be capable of supporting at least 10000/160 or 62 
worst case slaves.  Using MPICH2 generically, the 
minimum number of worst case slaves supported would 
be 1800/160 or eleven slaves.  
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Supporting only eleven slaves did not meet the initial 
goal of a 16x speedup, but it did provide a valuable sanity 
check.  If the program could not achieve at least an 11x 
speedup, then the problem was somewhere other than the 
network.  To estimate actual performance, one could 
assume the average time to compress a 1 MB buffer to be 
½ of a second and an average compression ratio of 2:1. 
The bandwidth requirement for a typical slave then 
becomes 24 Mbits/sec ((1.5MB*8Mb/MB)/.5sec).  A 
realistic expectation for a master process would be for it 
to support 1800/24 or 75 slaves with MPICH2.   Should a 
MPICH2 port to the XD1 become available, one could 
realistically expect up to 300 typical slave processes to be 
supported by a single master MPI process based on 
bandwidth requirements.   

9. Profiling the Code 

After implementing important features such as 
dynamic load balancing, asynchronous I/O and 
communication/compression overlapping, testing 
revealed that the program still was not able to achieve 
better than an 8x speedup.   Efficiency had been greatly 
improved as the program achieved an 8x speedup with 
only 9 processors, but there still seemed to be a hidden 
barrier to achieving a speedup of greater than 8x.   The 
next step was to determine where the unexpected 
bottlenecks were.    

The TAU (Tuning and Analysis Utilities) package 
proved to be helpful.  The general idea behind TAU 
would be to take my source code, run it through the TAU 
source code instrumentor, compile, execute and analyse 
the resulting profile data.  For this program, nothing 
useful could be learned by simply using the automatic 
instrumentor.   TAU became confused on various 
overlapping function calls called from inside program 
threads.  The code would have to be instrumented by 
hand, which turned out to be not too difficult.  TAU was 
then able to graph timing characteristics of all threads 
across all MPI processes.    

Figure 9.1 – A 3D Tau Graph with timing information 
for all threads across all MPI processes. 
 

 
 

The three axes of the graph in figure 9.1 are time, 
threads, and functions.  The green and yellow lines 
highlight a particular point on the graph, in this case, the 
time spent in a thread of the last MPI slave process in the 
MPI_Probe function.  All the orange “trees” are slave 
processes.   The green, tent shaped figure shows the time 
spent in MPI_Probe for each of the master threads that 
service communications.  The yellow peak in this tent 
shows an anomaly uncovered by Tau.  The last thread of 
the master MPI process gets preference over the others 
for some reason.  This is most likely an undocumented 
OS scheduling “feature”. 

These graphs indicate that the dynamic load 
balancing mechanism was doing a good job keeping the 
slaves MPI processes busy.  The green “trees” in the 
graph represent the amount of time the compression was 
actually taking place.  The red “trees” represent the total 
time the MPI slave process actually lived. 
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Figure 9.2 Important lesson learned from Tau 
 

 
 
Figure 9.2 summarizes the information learned from 

using Tau.   The time spent in communication by the 
master MPI process was being limited by something.  
This in turn, limited the amount of time slave processes 
spent compressing.  With this information, the plan 
became to evaluate and eliminate all the unnecessary code 
from the master process. 

 

10. Top to the rescue 

   
Careful study of the master process resulted in the 

elimination of unnecessary source code.  However, the 
improvements did not result in a speedup larger than 8x.   
The top command was used to watch the master process 
interactively.   On the XD1 the system top command was 
not capable of displaying CPU utilization by individual 
thread.  The system top only reported the combination of 
all the master MPI process’s threads as using 160% CPU 
time.   Determining which threads were responsible for 
utilizing the largest amount of CPU time would need to 
be known in order to understand what was happening.  It 
was not difficult to download and install the procps 
package to get a version of top capable of displaying CPU 
usage by an individual thread.  By telling this version of 
top to filter by user, show individual threads, and sort by 
Unix process id; it was determined which thread had the 
highest CPU utilization.  It turns out the service_inbuffers 
thread was using 100% of the 160% reported by top.   
This was a big surprise in that the service_inbuffers 
thread was responsible for only reading from STDIN and 
filling up a set of buffers. 

After some research on using C++’s cin function, the 
unexpected CPU utilization was traced to the cin function 
using a small buffer by default.  The author attached a 
larger buffer to cin with the following two lines of code: 

 
char mybuffer [bufferlength]; 
cin.rdbuf()->pubsetbuf(mybuffer,bufferlength); 
 

A few test runs confirmed that the 8x speed up barrier had 
finally been broken! 

11. Final Performance Results 

The best test run for speedup and efficiency achieved 
a speedup of 19.78x using 20 processors.    This seems 
incorrect as only 18 of the 20 processors were used to 
actually do compression.  However, this is a correct 
measurement of an accidental superlinear speedup.  The 
superlinear speedup results from the bzip library having 
to perform less data sorting than in the serial version.   
The compression ratios were very slightly different from 
the serial bzip2 program due to varying compression 
statistics being available to the bzip library.  The 
compression ratios of a 4.4 Gig test file were measured to 
be 2.6179:1 for the serial version verses 2.6135:1 for the 
parallel version.    Compatibility was not affected, as 
there was no problems observed decompressing any of 
the data the program compressed using the serial bunzip2 
program. 

Test runs using up to 30 processors were performed, 
but efficiency dropped to the 20 to 30 CPU range.     
Given the previous network analysis and goals of the 
project this was a good stopping point.  Further testing 
may be performed after a MPICH2 RapidArray port 
becomes available. 

12. Conclusions 

The combination of pthreads and MPICH2 can result 
in many benefits ranging from easier programming to 
more effective use of system resources.  Practical 
programming issues such as matching MPI_send and 
MPI_recv calls from multiple MPI slaves can be 
effectively addressed with the addition of threads.  
Profiling MPI and pthread code is possible with the TAU 
tool, when resorting to hand instrumentation.  In the case 
of the parallel bzip program, the resulting improvements 
in both speedup and efficiency overshadow the lack of 
hardware support for MPICH2 currently available on the 
XD1.   
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