
Hybrid Programming Fun: Hybrid Programming Fun: Hybrid Programming Fun: Hybrid Programming Fun:

Making Bzip2 Parallel with MPICH2 &Making Bzip2 Parallel with MPICH2 &Making Bzip2 Parallel with MPICH2 &Making Bzip2 Parallel with MPICH2 &

pthreads on the Cray XD1pthreads on the Cray XD1pthreads on the Cray XD1pthreads on the Cray XD1

Charles Wright
HPC Systems Administrator @

Alabama Supercomputer Authority
http://www.asc.edu

Lossless data compression program and library

Can achieve very high compression ratios (50+:1)

Requires a lot of CPU time
AMD Opteron 2.2 Ghz CPU processes about 4.8
GB/hour uncompressed

Sample Application

Permanent offline backups for disaster recovery

Amount of files that I would like to backup on ASN’s XD1

168G /opt/asn (Applications)
+ 261G /home (Home Directories)

429 Gigabytes

Serial bzip2 would take about 4 days to compress

Hierarchy of Pain

OpenMP

pthreads

MPI + pthreads

MPI

Increasing Discomfort

Shared Memory

Why Hybrid Programming?Why Hybrid Programming?

Hybrid Programming: Combining two or more means of parallel
programming (MPI + pthreads or MPI + OpenMP, etc)

Clusters consisting of SMP Nodes will remain a cost effective
means of high performance computing well into the future

One parallel programming method may not best match the
problem to the hardware

In the parallel bzip2 program threads made sense for
communication and I/O tasks

Why Hybrid Programming
on an XD1?

Distributed memory
Across Network

Shared Memory inside
compute node

Problems with MPI on an SMP

AMD
CPU

RA Chip

AMD
CPURAM RAM

24 Port
RA Switch

var1 var1

Copy

Not an efficient use of RAMNot an efficient use of RAM

“Just reach out and Take it!”“Just reach out and Take it!”
Don’t create a copy!Don’t create a copy!

Problems with MPI on an SMP

AMD
CPU

RA Chip

AMD
CPU

RAM RAM

24 Port
RA Switch

RAIDEV_RDMA_LOCALCOPY=YES 20% Higher BandwidthRAIDEV_RDMA_LOCALCOPY=YES 20% Higher Bandwidth
((IntranodeIntranode communication should be faster than communication should be faster than InternodeInternode!)!)

RAIDEV_RDMA_LOCALCOPY=NORAIDEV_RDMA_LOCALCOPY=NO

By default under 1.3 actually faster to By default under 1.3 actually faster to
communicate with cpus outside the communicate with cpus outside the
node. (Not expected)node. (Not expected)

Goals of the Project

Backup/compress a large amount of data (Terabytes)
in a reasonable amount of time (overnight)

See how fast bzip2 can go

Be as efficient as possible

Match algorithm to XD1 hardware

//Read a file into a buffer (yes the whole file…)
InputFile.read (inbuffer,filelength);

// Init a bzstream object
bz_stream my_bzstream;
my_bzstream.bzalloc=NULL; my_bzstream.bzfree=NULL;

my_bzstream.opaque=NULL;
BZ2_bzCompressInit (&my_bzstream,9,4,0);
my_bzstream.next_in=inbuffer;
my_bzstream.avail_in=filelength;
my_bzstream.next_out=outbuffer;
my_bzstream.avail_out=filelength;

// Compress Buffer
while (BZ2_bzCompress (&my_bzstream,BZ_FINISH) != B Z_STREAM_END) {

cout << my_bzstream.next_out ;
}

// Write out compressed file.
ofstream OutputFile("bible.bz2");
OutputFile.write(outbuffer,filelength - my_bzstream. avail_out);
OutputFile.close();

BZ2_bzCompressEnd(&my_bzstream);

Baby Step 0

Compressing in SerialCompressing in Serial

File is split into equal sized pieces,
each of which are compressed serially

CPU 0

Time

Compressing in ParallelCompressing in Parallel

CPU 0

Time

CPU 1

CPU 2

File is split into equal sized pieces,
each of which are compressed in parallel

1st parallel version
(MPI Only)

Master Process
while (!eof()) {

Read from file
Send 1 MB buffers to each slave to compress
Compress Master’s 1 MB piece
Recv from all pieces (MPI_Gatherv)

Write compressed buffers out

}

Achieved an 8x speedup with 20 cpus

Problems with MPI only
version

Master process blocked on I/O at the worst possible
times

Slaves were not working when buffers were in transi t

Compressing a 1MB buffer varied from 0.1 – 1.0 secon d

Resulted in Slaves compressing less than 50% of the
time

Version 2 Ideas
(We need more than just MPI)

Dynamic load balancing - Accounts for variable
compression time
Need to turn around a Slave’s request for
work immediately

Asynchronous I/O – We can spin the disk and fill
memory buffers before we need to use them

Overlap Communication and Compression -
Slaves should be able to compress one
packet while sending/receiving

Threaded MPI Slave ProcessThreaded MPI Slave Process

Overlap Communication and Compression
1 Thread to keep next buffer to compress full
1 Thread to send compressed buffer back
1 Thread to compress buffer

nextinbuff

inbuff outbuff

nextoutbuff

Recv uncompressed

Send compressed

Compress

Threaded MPI Master ProcessThreaded MPI Master Process

Asynchronous I/O
1 Thread to keep inbuffers full
1 Thread to write outbuffers to file

Dynamic load balancing
1 Thread per MPI Slave to manage
communication
(Receive compressed packets out of order)
(Allow some nodes to turn around more
packets than others)
(should only block on spinning disks…)

serv
inbufs

serv
outbufsserv

slv

recv send

File
on

Disk

comp

inbuffers outbuffers

STDIN
Pipe

All MPI Processes with ThreadsAll MPI Processes with Threads

Debugging the Hybrid Version

uahrcw@c275-6:~/project> cat qsub.sh.e10011
xd1launcher: executing /home/uahrcw/project/pbzip
xd1launcher: executing /home/uahrcw/project/pbzip
xd1launcher: executing /home/uahrcw/project/pbzip
xd1launcher: executing /home/uahrcw/project/pbzip
MPI Slave #1 sending work request.
MPI Slave #3 sending work request.
MPI Slave #2 sending work request.
MPI Slave #1 : recvd work to compress of length = 1048576
MPI Slave #1 0.560455 0.8201 0.259645
MPI Slave # 1 sending compressed buffer back to master of length
208019
MPI Slave #1 sending work request.
MPI Slave #2 : recvd work to compress of length = 1048576
pbzip: /tmp/igorodet/rpm/BUILD/mpich-1.2.6/mpid/rai/dreg.c:307:
dreg_decr_refcount: Assertion `d->refcount > 0' failed.
mpiexec: Error: read_full: EOF, only 0 of 4 bytes.

Checking if MPI is Thread Safe

MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIPLE,&provided);

if (provided == MPI_THREAD_MULTIPLE)

cout << "This version of MPI is thread safe" << endl << flush;

MPI_INIT_THREAD options

{ MPI_THREAD_SINGLEMPI_THREAD_SINGLE }
Only one thread will execute

{ MPI_THREAD_FUNNELED }
The process may be multi-threaded, but only the
main thread will make MPI calls (all MPI calls are
funneled to the main thread)

{ MPI_THREAD_SERIALIZEDMPI_THREAD_SERIALIZED }
The process may be multi-threaded, and multiple
threads may make MPI calls, but only one at a
time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are serialized)

{ MPI_THREAD_MULTIPLEMPI_THREAD_MULTIPLE }
Multiple threads may call MPI, with no restrictions

Putting MPICH2 on the XD1

XD1’s MPICH isn’t thread safe

Generally MPICH1 isn’t thread safe

To compile MPICH2 to be thread safe*
./configure --prefix=/opt/asn/apps/mpich2 \

--enable-threads \
--with-thread-package=posix

*not RapidArray optimized

Running my job with MPICH2Running my job with MPICH2
Script1 – qsub-mpich2.sh

#!/bin/bash
#PBS -l nodes=1:ppn=1:cpp=2+28:ppn=1,mem=1gb,cput=00:30:00 -joe
mpiprocs=29
cd /home/uahrcw/project
Start Daemon used for MPICH2 communications.
mpdboot -f $PBS_NODEFILE -n $mpiprocs
Run the program
mpiexec -np 1 mpich2.sh : -np $((mpiprocs-1)) ./pbzip
Stop Daemon used for MPICH2 communications.
mpdallexit

Running my job with MPICH2Running my job with MPICH2
mpich2.sh (only required for master)

#!/bin/bash
cd /home/uahrcw/project
tar -cf - /genomes/H_sapiens | ./pbzip –o hs.tar.bz2

Submitting job to the queue system
qsub qsub-mpich2.sh

Watching it run
qstat –an

Keeping disk busy

9 cpu run

Service_slaves
wake up when
Inbuffer is
available

Out of order recv

Out of order recv

MPI Slave process Bandwidth
Requirements

Measured that compression of 1MB buffer ranged from 0.1-1 second

Maximum Bandwidth a compute node would require

(1MB*2xfers*8Mb/MB)/.1sec = 160 Mbits/sec

RapidArray Native Master should be capable of supporting
62 Slaves (10000Mbits/160Mbits)

RA Native Master might be capable of supporting 300+
Slaves if we estimate compress time average is .5 seconds

http://www.osc.edu/~dennis/rdma/rdma.html

MPICH2 Network Performance

Using IPoRA results in 100% CPU utilization ,
limiting bandwidth to 1800 Mbits/sec

An MPICH2 master process should support about 11
Slaves minimum (1800/160)

Should support about 75 typical slaves

Ran into problems using 8 slaves - why?

Scalability under MPICH2

Profiling the Code

TAU http://www.cs.uoregon.edu/research/tau/home.php

Idea
Src Code -> auto instrumentor -> New Src Code ->
Compile/Execute

When pthreads are involved
Src Code -> instrument by hand -> New Src Code ->
Compile/Execute

Update 5/9/2006 – Sameer Shende says auto instrumentor
should now be fixed to handle pthreads. (Thanks)

Run with 8 slaves

Orange Trees
MPI_Probe

Red Trees
Total Time
Thread Lives

Green Trees
Time Spent
Compressing

Time spent in MPI_Probe is limited by other stuff…
=> Eliminate as much other stuff as possible…

Related

Increases with #CPUs

Preference Given to Last ThreadLast Thread Does More Work

Top at first glance

One master process shows that all threads combined are using 160% cpu
Which threads are taking the most time?

top - 15:33:36 up 39 days, 14:06, 1 user, load average: 0.45, 0.17, 0.36

Tasks: 164 total, 2 running, 162 sleeping, 0 stopped, 0 zombie

Cpu(s): 11.6% us, 50.2% sy, 0.0% ni, 7.3% id, 4.0% wa, 9.0% hi, 17.9% si

Mem: 2051132k total, 2035960k used, 15172k free, 7580k buffers

Swap: 4192924k total, 945204k used, 3247720k free, 1383812k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

2815 uahrcw 25 0 551m 281m 1252 S 160 14.0 0:19.86 ./pbzip -o /scr

2813 uahrcw 16 0 9240 1404 1068 S 0 0.1 0:00.01 /bin/bash ./mpi

2812 uahrcw 16 0 35368 7284 2756 S 0 0.4 0:00.00 python2.3 /opt/

2811 uahrcw 15 0 38904 8616 2848 S 0 0.4 0:00.24 python2.3 /opt/

2798 uahrcw 16 0 35416 7280 2720 S 0 0.4 0:00.00 python2.3 /opt/

2792 uahrcw 19 0 9240 1400 1068 S 0 0.1 0:00.00 /bin/bash /var/

2766 uahrcw 16 0 4728 384 292 S 0 0.0 0:00.00 pbs_demux

2731 uahrcw 19 0 9240 1572 1200 S 0 0.1 0:00.00 -bash

Xd1’s Top Xd1’s Top
Doesn’t Show ThreadsDoesn’t Show Threads

Compile your own procps package to show threads

Start top, filter by user, show threads, sort by pid

Pid numbers show order threads were created, thus
you can identify individual threads

Actual BottleneckActual Bottleneck

Service_inbuffer Thread:
Default cin buffer was too small resulting in 99% cpu usage.

char mybuffer [bufferlength];
cin.rdbuf()->pubsetbuf(mybuffer,bufferlength);

Speedup and EfficiencySpeedup and Efficiency

Version Speedup Ncpus Notes

MPI only 8x 20 40% efficient

MPI+pthreads 8.9x 20 45% efficient

MPI+pthreads 8.1x 9 90% efficient

MPI+pthreads+ 19.78x 20 98.9% efficient

Accidental Accidental
Superlinear SpeedupSuperlinear Speedup

Bzip2 does a lot of sorting

Using Bzip2 library in parallel results in less
sorting?

Compression Ratio is slightly effected

For 4.4 Gig test file
serial bzip compression ratio vs. pbzip

2.6179:1 vs 2.6135:1

Conclusions

Combining MPI and pthreads can have some
real advantages

In the bzip2 program the advantages
overshadowed the performance penalty of
using MPICH2 compiled without RapidArray
support

Cray’s Position on RA + MPICH2Cray’s Position on RA + MPICH2

I would like Cray to provide a thread safe
RapidArray optimized version of MPICH2

“No current plans to implement”

I encourage other XD1 sites to ask Cray for
a MPICH2 + RapidArray native

implementation

Questions/Comments?

charles@asc.edu

