
Optimized Virtual Channel Assignment in the Cray XT

Dennis Abts Deborah Weisser Jim Nowicki Robert Alverson
dabts@cray.com dweisser@cray.com nowicki@cray.com bob@cray.com

Cray Inc.

Abstract

The Cray XT is an MPP system that scales up to 32K
nodes using a bidirectional 3-dimensional torus intercon-
nection network. Four virtual channels are used to provide
point-to-point flow control and deadlock avoidance. Us-
ing virtual channels avoids unnecessary head-of-line (HoL)
blocking for different network traffic flows, however, the
extent to which virtual channels improves network utiliza-
tion depends on the distribution of packets among the vir-
tual channels. This paper investigates the virtual channel
balance—relative traffic carried on each virtual channel–
and its importance on network utilization. We discuss the
routing algorithm and use of virtual channel datelines to
avoid deadlocks around the torus links, and heuristics to
balance the packet load across the virtual channels. We
present network performance results from an 11×12×16
3D torus network.

1 Introduction

The Cray XT network is a k-ary 3-cube that scales up to
32K nodes. Each processing nodes consists of an AMD64
processor [1] connected to a custom System-on-Chip (SoC)
called SeaStar. The SeaStar chip includes the network in-
terface controller (NIC) functionality with dedicated Pow-
erPC [7] and Tx/Rx DMA engine for efficient MPI message
processing [2]. A high-performance interconnect must pro-
vide low latency at large scale, and maximize network uti-
lization. One common technique for improving the utiliza-
tion of the network is to multiplex multiple virtual channels
(VCs) onto each physical channel [3]. This allows inde-
pendent message flows to avoid interfering with each other
(e.g. a blocked packet on one VC cannot stall a packet on
a different VC). However, the primary use of virtual chan-
nels in the Cray XT network is to prevent deadlock around
torus links [4]. By introducing a dateline on each dimen-
sion we can ensure that traffic crossing the dateline node
is on the appropriate virtual channel to guarantee deadlock

freedom. However, this does introduce non-uniform buffer
utilization, which can be acute near the dateline node. Fur-
thermore, the ability to balance the relative traffic on each
virtual channel can have a significant effect on the overall
network performance. By balancing the packet load across
the different virtual channels we reduce the probability of
head-of-line (HoL) blocking, and make more efficient use
of the SeaStar buffer space – which is statically partitioned
among the different virtual channels.

Since packets which cross the dateline are required to
switch virtual channels at the dateline, balancing the use of
VCs near the dateline requires careful consideration. In this
paper, we discuss the use of VCs in the context of Cray
XT network and techniques used to balance traffic across
VCs. We measure the performance impact of VC bal-
ance on a production Cray XT3 system with an 11×12×16
3-D torus using two communication-intensive workloads,
MPIFFT and PTRANS, from the HPC Challenge [6] bench-
marks.

2 Overview of Routing in the Cray XT

The network must provide error-free routing of packets,
and it should be done as efficiently as possible. In this sec-
tion, we discuss in detail the Cray XT routing algorithm.
We first describe the SeaStar router microarchitecture and
then describe the routing algorithm and constraints which
affect it.

2.1 SeaStar router microarchitecture

Network packets are comprised of one or more 68-bit
flits (flow control units). The first flit of the packet (Figure
1) is the header flit and contains all the necessary routing
fields (destination[14:0], age[10:0], vc[2:0]) as well as a tail
(t) bit to mark the end of a packet. Since most XT networks
are on the order of several thousand nodes, the lookup table
at each input port is not sized to cover the maximum 32K
node network.
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Figure 1. SeaStar packet format.
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Figure 2. Block diagram of the SeaStar system chip.
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(a) SeaStar block diagram.

(b) SeaStar die photo.

The SeaStar router has six full-duplex network ports and
one processor port that interfaces with the Tx/Rx DMA en-
gine (Figure 2). The network channels operate at 3.2 Gb/s

×12 lanes over electrical wires, providing a peak of 4.8
GB/s per direction of network bandwidth. The link con-
trol block (LCB) implements a sliding window go-back-N
link-layer protocol that provides reliable chip-to-chip com-
munication over the network links. The router switch is
both input-queued and output-queued. Each port has four
96-entry input buffers, one for each virtual channel. The
input buffer is sized to cover the round-trip latency across
the network link at 3.2 Gb/s signal rates. There are 24 stag-
ing buffers in front of each output port, one for each input
source (five network ports, and one processor port), each
with four VCs. The staging buffers are only 16 entries deep
and are sized to cover the crossbar arbitration round-trip la-
tency1.

2.2 Routing algorithm

The routing rules for the Cray XT are subject to several
constraints. Foremost, the network must provide error-free
transmission of each packet from the source node identi-
fier (NID) to the destination. To accomplish this, the dis-
tributed table-driven routing algorithm is implemented with
a dedicated routing table at each input port that is used to
lookup the destination port and virtual channel of the in-
coming packet. The lookup table at each input port is not
sized to cover the maximum 32K node network since most
systems will be much smaller, only a few thousand nodes.
Instead, we use a hierarchical routing scheme where the
node name space is divided into global and local regions.
The upper three bits of the destination field (given by the
destination[14:12] in the packet header) of the incoming
packet are compared to the global partition of the current
SeaStar router. If the global partition does not match, then
the packet is routed to the output port specified in the global
lookup table (GLUT). The GLUT is indexed by destina-
tion[14:12] to choose one of eight global partitions.

Once the packet arrives at the correct global region, it
will precisely route within a local partition of 4096 nodes
given by the destination[11:0] field in the packet header.
The tables must be constructed to avoid deadlocks. Glass
and Ni [5] describe turn cycles that can occur in k-ary n-
cube networks. However, torus networks are also suscepti-

1We use virtual cut-through [8] flow control into the staging buffers,
which must be at least 9 entries deep to cover the maximum packet size.
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ble to deadlock that results from overlapping virtual chan-
nel dependencies2 around the torus links as described by
Dally and Seitz [4]. Additionally, the SeaStar router does
not allow 180 degree turns within the network. The routing
algorithm must both provide deadlock-freedom and achieve
good performance on benign traffic. In a fault-free network,
a straightforward dimension-ordered routing (DOR) algo-
rithm will provide balanced traffic across the network links.
Although, in practice, faulty links will occur and the routing
algorithm must route around the bad link in a way that pre-
serves deadlock freedom and attempts to balance the load
across the physical links. Furthermore, we want to optimize
the buffer space within the SeaStar router by balancing the
number of packets within each virtual channel.

2.2.1 Avoiding deadlock in the presence of faults and
constraints

The routing algorithm rests upon a set of rules to pre-
vent deadlock. In the turn model, a positive first (X+,
Y+, Z+ then X-, Y-, Z-) rule prevents deadlock and allows
some routing options to avoid faulty links or nodes. The
global/local routing table adds an additional constraint for
valid turns. Packets must be able to travel to their local area
of the destination without the deadlock rule preventing free
movement within the local area. In the Cray XT network we
split the localities with YZ planes. To allow both X+ and X-
movement without restricting later directions, the deadlock
avoidance rule is modified to (X+, X-, Y+, Z+ then Y+, Y-,
Z+ then Z+, Z-). Thus, free movement is preserved. Note
that missing or broken X links may induce a non-minimal
route when a packet is routed via the global table (since
only Y+ and Z+ are “safe”). With this rule, packets using
the global table will prefer to move in the X direction, to get
to their correct global region as quickly as possible. In the
absence of any broken links, routes between compute nodes
can be generated by moving in X dimension, then Y, then
Z. Also, when Y=ymax, it is permissible to dodge Y- then
go X+/X-. If the dimension is configured as a mesh – there
are no Y+ links, for example, anywhere at Y=Ymax – then
a deadlock cycle is not possible.

When broken links are present, the avoidance strategy
depends on the direction prescribed by dimension order
routing for a given destination. In addition, toroidal net-
works add dateline restrictions. Once a dateline is crossed
in a given dimension, routing in a higher dimension (e.g. X
is “higher” than Y) is not permitted.

2.2.2 Routing rules for X links

When X+ or X- is desired, but that link is broken, Y+ is
taken if available. This handles crossing from compute

2This only applies to k-ary n-cubes, where k >4

nodes to service nodes, where some X links are not present.
If Y+ is not available, Z+ is taken. This Z+ link must not
cross a dateline. To avoid this, we should choose the date-
line Z as one where there are no nodes with a broken X link
and a broken Y+ link.

Even when the desired X link is available, we may
choose to take an alternate path. When the node at the other
side of the X link has a broken Y+ and Z+ link (note the
Y+ may simply not be present at the edge of the mesh), an
early detour toward Z+ is considered. If, in addition, the X
link crosses a partition boundary into the destination parti-
tion or the current partition matches the destination partition
and the current Y matches the destination Y coordinate, we
route Z+ instead. Otherwise, the packet might be boxed in
at the next node, with no safe way out.

2.2.3 Routing rules for Y links

When the desired route follows a Y link that is broken, the
preference is to travel in Z+ to find a good Y link. If Z+
is also broken, it is feasible to travel in the opposite Y di-
rection. However, the routing in the node in that direction
must now look ahead to avoid a 180 degree turn if it were to
direct a packet to the node with the broken links. We don’t
find a need for this extra option at the moment.

When the desired Y link is available, it is necessary to
check that the node at that next hop does not have a Z+ link
that the packet might prefer (based on XYZ routing) to fol-
low next. That is, if the default direction for this destination
in the next node is Z+ and the Z+ link is broken there, the
routing choice at this node would be changed from the de-
fault Y link to Z+.

2.2.4 Routing rules for Z links

When the desired route follows a Z+ link that is broken,
the preference is to travel in Y+ to find a good Z+ link. In
this scenario, the Y link look ahead is relied up to avoid the
node at Y+ from sending the packet right back along Y-.
When the Y+ link is not present (at the edge of the mesh),
the second choice is Y-.

When the desired route is to travel in the Z- direction,
the logic must follow the Z- path to ensure there are no bro-
ken links at all on the path to the final destination. If one
is found, the route is forced to Z+, effectively forcing the
packet to go the long way around the Z torus.

3 Virtual Channel Assignment Policy

While the routing rules described in Section 2 ensure that
no turn cycles exist, the primary use for virtual channels
in the Cray XT network is to prevent deadlock. We avoid
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deadlock by choosing a dateline node along each dimen-
sion. A dateline is simply an imaginary line that divides a
ring into two halves and provides a construct for ensuring
that traffic crossing the dateline is on the appropriate vir-
tual channel. The dateline will switch any packet from VC0
to VC1. If a packet is already on VC1, it is considered a
software error and it will be dropped by the router. For this
reason, all packets going into the dateline must be on VC0.
All packets coming out of the dateline will be on VC1. Note
that if a dimension is not a torus, then there is no dateline,
since its function is to prevent cyclic dependencies around
the torus.

Note that any packet which will cross the dateline must
start on VC0. If a packet will not cross the dateline in a
given dimension, however, we have the option of using VC0
or VC1. This allows us to balance the traffic between the
two VCs in order to increase overall system throughput.

When considering VC balancing, each dimension within
the route is treated independently. The source node within
a dimension is the node where the packet is injected into
that dimension. It could be due to a turn in from another
dimension, or it could be because the packet is injected by
the processor at that node.

3.1 Initial VC assignment policy

The initial algorithm was very straightforward. If a
packet was not going to cross the dateline, it would XOR
the bottom bit of the source NID and the destination NID
to select which VC to use. Although this does result in an
overall expected even distribution between VCs, because all
traffic which crosses the dateline begins on VC0 and crosses
to VC1 on the dateline, this strategy tends to skew the distri-
bution toward one VC or the other, leading to a suboptimal
overall balance. The subsequent sections describe succes-
sive refinements to this initial VC assignment policy. Figure
3(a) shows an example radix-16 torus in the Z dimension
and the VC balance, shown in Figure 3(b), for each Z+ link.
The largest imbalance occurs at or near the dateline node.

3.2 Dateline neighbors (version 1)

To mitigate this imbalance, we consider the neighbor
nodes of the dateline. Since we know all traffic coming out
of the dateline node will be on VC1, instead of taking newly
injected packets going in the same direction, and thus not
crossing the dateline, and splitting them 50/50, we force all
these packets to VC0. This will result in the overall traffic
being more balanced.

3.3 Global routing table (version 2)

For large systems, the NID space is divided into different
regions based on the upper 3 bits of the NID. So NIDs in the

0-4095 range are in region 0, 4096-8191 are in region 1, etc.
The global routing table has 16 total entries, and is indexed
by the NID’s upper 3 bits and bottom bit. This means each
region has two entries in the global routing table. The ini-
tial routing algorithm naively placed the same info in both
entries. In some cases, it can be determined that the date-
line will not be crossed even when routing globally. This
change used the two different global entries to split the VC
traffic by setting each entry to select a different VC. This
change also affects systems in which there is no torus in the
X dimension, as all global traffic was initially using VC0,
and is now split between the two VCs.

3.4 Changed dateline crossing (version 3)

The implementation of the routing algorithm which de-
termines if a dateline was crossed did so by considering the
dateline to be crossed if the packet reached the input port of
dateline node. However, the dateline is not really “crossed”
until the packet reaches the output port of the dateline node.
This change takes advantage of this fact. This means that
packets that are destined for the dateline node itself, or are
turning into a new dimension at the dateline had previously
been considered as crossing the dateline. With this change,
however, they are now considered to not cross the dateline,
and are thus unconstrained, making them candidates for VC
balancing.

When evaluating globally routed packets, any packet that
is destined for the region containing the dateline is assumed
to cross the dateline. Since global routing cannot distin-
guish where in the destination region the packet will land,
it must conservatively assume that it will cross the date-
line. This change takes advantage of the same concept as
described in the previous section, but in a different fashion.

It works by checking to see of the dateline is on the edge
of a region. A dateline on the edge of a region has the prop-
erty that a packet which goes to the output port leaving the
region will only cross the dateline by leaving the region.
Suppose we’ve got a packet that is entering the region on
the left side, and traveling to the right. The dateline is on
the right edge of the region. If the packet is destined for that
region, the only way it can cross the dateline is by leaving
the region, and once a packet enters the region it is des-
tined for, it is not allowed to leave the region. Therefore,
even though it is entering the region with the dateline, it is
guaranteed not to cross the dateline, and thus, can be load
balanced.

It should be noted that traffic traveling from right to left
will have to assume the dateline is crossed because the date-
line is on the wrong edge. So this method can only apply
to traffic going in one direction. The exception to this is
when the entire region is a single YZ plane so that the en-
tire region is only 1 node wide in the X dimension. In this
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Figure 3. Example of VC balance
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(b) VC balance for each node along the Z+ dimension.

scenario, the dateline for the region is considered to be on
both edges. This means any traffic destined for this region
from either direction will not cross the dateline. Of course
traffic passing through will cross the dateline and must still
be treated as such.

3.5 Dateline selection

With the change in the previous section, there is now
some additional criteria to consider when selecting date-
lines. Specifically, we want to ensure that the dateline lies
on an edge of a region. If a region is a single YZ plane, then
that region would be considered the most likely candidate
for the dateline as it takes advantage of being on both edges
as described earlier.

3.6 Future improvements

There is still potential for future improvements in VC
balance, including:

• The dateline selection may be able to take region sizes
into account to further optimize the location of the
dateline.

• The assignment of NIDs, which affects the region
sizes/boundaries could be optimized based on dateline
selection, etc. This would require that the system be
more flexible in allowing NID assignment than it is
currently.

• The effects of subsections of rings related to placement
of smaller jobs and VC balance within those subsec-
tions should be studied further.
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We have found that some jobs perform better depending on
how they are placed. Generally, jobs that are kept away
from the datelines do better as they can take advantage of
more VC load balancing by not being skewed due to the
dateline. This should be able to draw upon the work done
previously for Cray T3D [10] and T3E [9] systems which
proposed a simulated annealing algorithm [10] to provide
optimal load balance within each dimension of a torus.

4. Results

To evaluate the effectiveness of each VC assignment pol-
icy we simulated several sizes of networks. We present
results for an 11×12×16 torus. We define a metric,
VC balance, which varies between 0 and 1. We compute
VC balance for both synthetic workloads that assume uni-
form traffic, and we use real measurements from the SeaStar
packet counters on each port. First, we define Pvc0 and Pvc1

as the number of packets on VC0 and VC1, respectively.
Then, the VC balance for each link is simply:

VC balance =
|Pvc0 − Pvc1|
Pvc0 + Pvc1

Thus if all packets are using only one virtual channel, the
value of VC balance will be 1, and if the packets are evenly
distributed across both channels, VC balance will be 0.

We simulated a uniform traffic pattern on an 11×12×16
torus and computed VC balance on all links. The his-
tograms shown in Figure 4 summarize the simulation re-
sults. In these histograms, we tabulate the number of
links with 0 < VC balance ≤ 0.25 and put them in the
first bin. Likewise, those links with 0.25 < VC balance
≤ 0.50 are in the second bin, and so forth. We do this
for all three dimensions as show in Figures 4(a) thru Fig-
ure 4(c). The VC balance progressively improves with each
modification to the original VC assignment policy. Ver-
sion 3 improves the VC balance in the X dimension from
44%→27%, Y dimension from 42%→28%, and Z dimen-
sion from 42%→30%. Recall, a VC balance of 0.5 implies
that one buffer has twice the packet load as the other. So, a
VC balance that approaches zero is a figure of merit.

Achieving uniform VC balance in a 3-D torus becomes
increasing important as the radix grows, since network con-
tention will also increase. Using the HPC Challenge [6]
benchmarks, we have demonstrated increased throughput
of 18.1% for MPIFFT (with 2048 PEs) and 17.4% for
PTRANS (with 2016 PEs) relative to the initial VC assign-
ment policy.

5 Conclusions

By multiplexing multiple virtual channels onto a single
physical channel, we are able to achieve better throughput

by avoiding head-of-line (HoL) blocking. Moreover, the
use of multiple virtual channels is critical to avoid dead-
lock [4] around the torus links. We show how using a vir-

Figure 4. Histograms showing the VC balance for each
dimension for different versions of the routing algorithm
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tual dateline and multiple virtual channels are used to pre-
vent toroidal deadlocks. However, this technique produces
non-uniform VC buffer usage which is especially acute
at and around the dateline node. We describe a progres-
sion of VC assignment policies that have improved the VC
balance and ultimately the overall network performance.
We demonstrate this with both simulation results and by
running communication-intensive workloads from the HPC
Challenge [6] benchmarks, MPIFFT and PTRANS, which
both show increased throughput of 18.1% and 17.4%, re-
spectively.
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