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ABSTRACT: Estimating the spatial spread of an infectious disease through a mobile
human population is an important aspect in guiding public health policy in the event of
a large scale outbreak. In this paper we consider ensembles of large stochastic meta-
population patch models for the spread of an infectious disease in the United Kingdom
parameterised by realistic population size and movement data. In particular, we consider
the use of a Cray XT3 for these types of model at varying levelsof model detail. For each
case we conclude that high performance computing can be a significant tool in assessing
the impact of a newly emerging disease and any available mitigation strategies.
KEYWORDS: Infectious diseases and public health; message passing; scalability;
meta-population; compartmental.

1 Introduction

Infectious diseases can have a significant impact on the
health of large numbers of people. The possible emer-
gence of a pandemic strain of human influenza, for ex-
ample, is currently of great concern. Pandemic influenza
has been estimated to be responsible for the deaths of
between20 and100 million people in the last century
alone (in 1918–19, 1956–57 and 1968–69) [1, 2]. The
introduction of the SARS virus in East Asia emphasised
the possibility of rapid worldwide spread of an infectious
agent [3]. In addition, there are fears of the deliberate
re-introduction of previously eradicated diseases such as
smallpox [4].

Modelling the spread of an infectious disease is an
important step in guiding public health policy with re-
gards to the mitigation of their effects. Commonly used
models describe the transmission of a disease by con-
sidering the contacts of individuals. With the assump-
tion of homogenous mixing any one person is as equally
likely as any other to make contact with—and be subse-
quently infected by—an infected person. These models,
through their simplicity, can quickly give an indication of
the likely toll of such a disease when certain parameters
are known.

However, particularly when considering large popu-
lations such as occur when modelling the global spread
of a disease, or even spread within a country, the assump-

tion of homogenous mixing can quickly break down.
Models which incorporate spatial structure thus become
important at such scales. Recently developed models
have been agent-based, such as in [5], where detailed in-
formation is stored about all of the individuals in the pop-
ulation including their disease state and interactions, or
consider meta-populations [6]. In this paper we consider
a meta-population patch model for the spread of infec-
tious disease. At a local scale the homogenous mixing
assumption is retained, but consideration is paid to the
long-range interactions that are presented. This model
formulation has the advantage of being more easily pa-
rameterised and more computationally tractable than cor-
responding agent-based models. The model structure
chosen is described in Section 2.

All of these model types rapidly develop complica-
tions beyond those of simple models, and attention must
be paid to developing methods to solve them. In Sec-
tion 3 we describe a parallel algorithm suitable for use
on distributed memory machines. This method is imple-
mented and run on a Cray XT3. In addition, we target
an Opteron cluster and compare the performance against
that of the Cray machine.

To give a more reliable indication of the likely be-
haviour of transmission it is necessary to include stochas-
tic effects. There is likely random activity in the contacts
made by individuals, infection between individuals, as
well as in the disease progression in a single host. With
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these stochastic models it is necessary to take an ensem-
ble of realisations large enough to limit the effect of ex-
treme, but rare, events. In addition, it is necessary to in
some way quantify the “average” behaviour of the dy-
namic system. Typically, the median of the results at
large spatial scale is used to provide indicative behaviour,
but a detailed description of the output analysis is beyond
the scope of this paper.

2 The model

In this paper we consider a meta-population patch model
of the spatial dynamics of an infectious disease in the
United Kingdom [7]. The patches we consider are taken
to be administrative regions of the constituent coun-
tries with population sizes as given by the 2001 Cen-
sus [8, 9, 10]. Connections between the patches are
determined by theTravel to Work statistics of the Cen-
sus, which reflects the movement of people living in one
patch and working in another. At each level the geo-
graphic coverage of the constituent countries (England,
Wales, Scotland and Northern Ireland) is complete. Here
we use the administrative levels of electoral wards, a to-
tal of 10608 patches, and districts (426 patches).

Each day of the model is split into two parts,day-
time andnighttime. During daytime steps individuals are
taken to be active, with regard to the disease dynamics,
in the patch in which they work; during nighttime steps
individuals are active in their home patch. Each patch,
therefore, has aworking population during the daytime
stage, and aresident population during the nighttime
stage. Those individuals who live and work in the same
patch will contribute to both populations of that patch.

Through this population movement there is the pos-
sibility of the spatial spread of an infectious disease: a
person may be infected through contact with an infec-
tious person in their work patch and take this infection
with them to their home patch.

The dynamics of the disease progression are taken to
be a compartmentalSEIR-type structure [11]. That is,
an individual could be described initially assusceptible
to the disease. On infection they would becomeexposed
(also known as being in the latent period of the disease
progression), in which state they remain for a period of
time known as the latent period of the disease1. Upon
conclusion of the latent period, transition is undertaken
to an infectious state, whereupon there is the possibility
of infection of those in their own susceptible state. After
the infectious period of the disease, the individual will

transition to aremoved state, where they are deemed to
no longer be infectious or liable to reinfection.

During the infectious period of the disease an indi-
vidual would make contact with others and the number of
resulting secondary cases would, on average in an other-
wise completely susceptible population, be basic repro-
duction number,R0, of the disease [12].

In this paper we use a slight variant of this com-
partmental structure which utilises more compartments.
Firstly, we create an extendedSEIR-type model, intro-
ducing aprodromal, P, stage, which occurs after the la-
tent period but before the infectious period. During this
prodromal period the individual may be infectious, but
possibly less so than those individuals in the classical in-
fectious stage, and will express no symptoms or less se-
vere symptoms than later in the disease progression. In
addition, we split the infectious compartment in two, to
create a symptomatic infectious compartment,I, and an
asymptomatic infectious compartment,A, where one in-
dividual would be either symptomatic or asymptomatic
during their infectious stage. Finally, the removed state
is split into arecovered, R, state and adead, D, state.
Disease progression in this framework is characterised
as shown in Figure 1 and the full population model is
created by tracking the proportions of the population in
each disease compartment and examining transition rates
for the populations. Each compartment is therefore de-
scribed by a single number and indicative equations for
the transitions can be found in, for example, [7].

Secondly, we consider apseudo-individual model by
extending the concept of a compartment to chart the his-
tory of disease progression for each individual in theE,
P, I or A states. Upon transition to any one of these com-
partments the length of time the individual is to spend in
that state is taken as a sample from a distribution [13]. In-
dividuals are then grouped by their compartment and the
departure time of that compartment. The number of steps
for a given compartment is determined by the disease ki-
netic parameters. For smallpox the latent, prodromal and
infectious periods are taken to be12, 2.5 and8.6 days,
respectively, with anR0 value of5 [4], whereas for pan-
demic influenza we take periods2, 1 and1.5 days with
R0 = 1.8 [14].

Each of these extensions to the basicSEIR-type
model can be further complicated by additional compart-
ments to reflect an increasing complexity of disease ki-
netics. For example, compartments could be added to
detail possible intervention strategies such as vaccination
and hospitalisation [7]. Such scenarios, and an analysis
of the simple and pseudo-individual models, and their

1The latent period of a disease, and other such parameters, can be approximately determined by epidemiological studies.
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Figure 1: The compartment based progression of disease for each individual in the basic SEIR-type model and the
pseudo-individual model. The boxed compartments contribute to the force of infection acting on the susceptible pop-
ulation. Compartmental transition is indicated by the solid arrows and in the case of the pseudo-individual model
transition to the compoundE, P, I andA compartments is governed by a probability distribution.

comparison, form part of ongoing work and, for the sake
of clarity, are not further discussed here.

The full meta-population patch model contains many
groups of these populationSEIR-type structures. Each
patch is described by a number of subpatches, with a
subpatch of a patch describing the resident population
of that patch commuting to distinct working patches (in-
cluding the population living and working in the same
patch). In this way, a patch of ann-patch system con-
nected by commuter movements to every other patch will
be described byn subpatches, whereas a patch connected
to only one other will be described by2 patches. The
overall size of the meta-population patch model is there-
foreO(n2

∑
Ci) where{Ci}

N

i=1
are the sizes of theN

compartments in theSEIR-type structure.
In practice, it is not the case that every patch is con-

nected to every other patch—at large geographic dis-
tances commuting between patches decreases—and so
the number of subpatches per patch varies. As can be
seen in Section 3.2 there can be significant variation in
the connectedness of individual patches. The total num-
ber of subpatches at the level of electoral wards (10608
patches) is1, 550, 819, rather than112, 529, 664 (1.4%).
For the district level there are82899 subpatches (45.7%).

3 A parallel algorithm

At large problem sizes, the implementation of the model
becomes impractical to be run on desktop machines. For
a disease such as smallpox with long latent, prodromal,
and infectious periods, the pseudo-individual model will
require a large number of steps in those compartments.
With a timestep of a quarter day the pseudo-individual
model we use has the equivalent of around300 compart-
ments for each of the1, 550, 819 subpatches at the elec-

toral ward level. As the timestep decreases, or the num-
ber of compartmental disease states increases, the total
number of pseudo-individual compartments increases.

The greater availability of cluster or high perfor-
mance computing in a public health policy setting leads
naturally to a consideration of an implementation of this
model with distributed memory. With this approach, the
distribution of patches, and the passing of messages re-
lated to their interaction, becomes key to the efficiency
with which the model can be run. Even when the prob-
lem size is not very large—so that the model implemen-
tation may be run on a desktop machine, or a single
node of a cluster—the requirement to address multiple
stochastic realisations to obtain representative behaviour
means that it may be desirable to split each individual
realisation over many processes. Instead of using many
processes to run an ensemble of realisations (one model
run per process, for example) simultaneously, splitting
the model over many processes allows for an accumula-
tion of results over time. The increasing availability of
results over time may be of great help in a public health
setting at a time of a response to a developing situation,
such as will be the case with a new introduction of an
infectious agent, in preference to a wait for a final, more
accurate answer. The final cost of the overall answer in
this manner will be greater than that obtained by split-
ting the ensemble. The relative costs will be related,
again, to the efficiency of the message passing and the
load balance obtained. In this paper we therefore con-
sider the splitting of smaller problems to both elucidate
the message passing ideas incorporated into the model
implementation and to conclude that a many-process ap-
proach may be obtainable without too much cost to the
benefit of those in the public health policy arena.
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3.1 Disease transmission and message
passing

We begin splitting the meta-population patch model de-
scribed above by allocating individual patches to pro-
cesses. For fine spatial scales, the number of patches in
the model will generally be much greater than the num-
ber of processors available in the computer. Further, as
we shall see in Section 3.2, our load balancing require-
ments are such that we will wish to assign many patches
to each process, even when the number of patches is of
the same order as the number of processors available.

It is important to note that, aside from the external
effect of disease importation to a patch, all steps in the
calculation for the disease progression in a patch are de-
termined completely by information held on the process
owning the patch. This external effect is characterised by
a force of infection and is determined by the population
sizes of theP, A, andI compartments of all of the sub-
patches within a patch (the contributing subpatches to a
given patch will differ during the daytime and nighttime
steps of the model).

A naı̈ve message passing implementation will have
each process tracking the movement of subpatches from
patch to patch across the daytime–nighttime change and
reconstruct patches each time. However, it is clear that,
for many-compartment models, the description of the
subpatches is of much larger size than that of the force
of infection that is required to describe the interaction
between the various patches.

More efficient is to pass only information regarding
the force of infection. Here, all subpatches are retained
by the process holding the home patch to which they
belong. During nighttime steps the dynamics progress
using the aggregation of the force of infection of sub-
patches within their own home patch. As all of these
subpatches are held locally, no remote communication is
required.

During daytime steps, however, information is re-
quired from remote processes regarding the contribution
from patches to the force of infection to which each sub-
patch is exposed. The overall force of infection is re-
trieved by the passing of two messages. In the first round
of message passing, each process sends details of the
contribution to the force of infection for all subpatches to
the corresponding host processes of the daytime patches.
The forces of infection of all subpatches in the same
working patch are then aggregated and this information
then distributed to the process holding the subpatches af-
fected by this force. A schematic for these messages is
shown in Figure 2. Following this aggregation, the dy-
namics on the various patches can be computed.

Nighttime

Daytime

Subpatches

Remote infection accumulator

Figure 2: Dynamics of the meta-population patch model
in a single patch of a four-patch system showing the
differing interaction of subpatches during daytime and
nighttime steps. Only one remote aggregation of sub-
patches is shown with outgoing messages indicated by
dotted lines and incoming messages by dashed.

This aggregation of the force of infection acts as a
synchronisation barrier in the computation. The alterna-
tive implementation of passing subpatch information so
that a process works on alternatively day and night patch
populations contains two such synchronisations and with
a significantly greater volume of passed information.

Patch 1 Patch 2

Local accumulation

Received infection force

Figure 3: Message passing with many patches per pro-
cess. In this four-patch example two processes own two
patches each and messages are passed between them.
Shown is the local action by one process only with the lo-
cal aggregation of the forces of infection for subpatches
3 and 4 from each patch.

3.2 Patch distribution and load balancing

The final step in the construction of the model implemen-
tation is to assign home patches to processes. The cur-
rent implementation of the meta-population patch model
described above uses only static distribution of patches
amongst processes. That is, each patch is assigned to
a process prior to the commencement of the simulation
where it remains throughout. The layout of these patches
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is key to the efficiency with which the simulation runs as
it directly relates to the load balancing of the system.

The only significant communication between pro-
cesses during the simulation arises during the popula-
tion movement. Assignment of patches to processes can
focus on optimising this communication or optimising
the load balance of the computation stages. The relative
cost of the communication is decreased as the number of
compartments in the subpatches is increased. To this end
we consider the strategy of arranging patches so that the
number of subpatches allocated to each process is close
to that allocated to all the others. This is motivated by
the understanding that the amount of computation each
process is required to undertake is roughly proportional
to the number of subpatches. The distribution of patches
in this way is a bin packing problem and in general it
will not be possible that each process is assigned exactly
the same number of subpatches: for10608 patches and
1, 550, 819 subpatches the range of subpatches-per-patch
is3 to 445, and assignment to 16 processes sees the range
of subpatches-per-process to be193, 736 to 193, 872. As
the process count varies, so does the load imbalancing
as measured by the difference between the maximum
and the minimum of the subpatch allocation size. Fur-
ther, there is additional variation in this distribution as
the structure of the connection matrix changes.

When there are multiple patches per process, mes-
sage passing can be made more efficient by local accu-
mulation of forces of infection where a process holds in-
formation regarding the same subpatch on a remote pro-
cess. That is, the forces of infection for two subpatches
(in distinct home patches) targeting the same working
patch may be aggregated by the owning process before
communication. In addition, only one copy of the return
global aggregation is required. This local aggregation is
demonstrated in Figure 3.

To examine the efficiency of this splitting of the
model and message passing we create scalability curves
for the model at the level of electoral wards using both
the simpleSEIR-type compartments and the pseudo-
individual compartments. These curves are shown in
Figure 4 for runs on Palu—a Cray XT3 with 1664
dual-core Opteron processors and SeaStar interconnect,
owned by the Swiss National Supercomputing Centre—
and Iluvatar—a 88 core Opteron cluster with Gigabit
Ethernet interconnect, owned by the Health Protection
Agency.

For the simple SEIR-type model scaling is quite poor
for increasing CPU utilisation. However, as the com-
putational demands increase with the use of the pseudo-
individual model, the scaling becomes good for high pro-

cessor counts. Further, for the smallpox model, with the
highest computational load, the scaling is best. In all
cases, the scaling for Palu is in line with Iluvatar. How-
ever, Palu retains good scaling for process counts higher
than are possible on the smaller machine.

Results (not shown) for the very small problem hav-
ing 426 district patches show very poor scaling for all
process counts. As stated before, this is mostly a result of
the limitations arising from the small number of patches:
using 128 processes to share 426 patches, for example,
leads to a very high load imbalance, even with optimal
packing.

Similar scalability curves can be seen when using an
Origin 3800.

4 Discussion and further work

In this paper we have examined a compartmentalSEIR-
type meta-population patch model for the spread of in-
fectious disease. We have shown that with large pseudo-
individual models the scalability of the algorithms de-
scribed is good, and this holds on a range of machines.
As these models increase in complexity in the future,
by the incorporation of further compartments or more
patches (either by increasing spatial resolution or the en-
compassing of greater areas, such as for the US, Europe
or the whole world), our results suggest that increased
scalability will be attained.

For small problems, the advantage of good scala-
bility may not be immediately apparent. Indeed, the
ensemble nature of the problem from a public health
viewpoint suggests that the most efficient usage of many
processes would be to spread the individual realisations
across those processes. For very small problems, such as
the district level models, this would be the optimal ap-
proach. However, with the efficiency of this algorithm,
we have seen that even for the moderately sized prob-
lems presented here the costs of splitting the realisations
so that there is more rapid attainment of early, indica-
tive, results is outweighed, from an emergency response
viewpoint, by the availability of these results. This is
more keenly felt when the runtime of a realisation be-
comes significant.

However, the model can be extended in ways which
complicate the message passing that is required. At
present, the only interaction between the patches is in the
movement of population. Model details which increase
the dynamic interaction between patches, such as consid-
eration of policies which act on groups of patches, can be
introduced and these could serve to reduce the efficiency
of splitting meta-population patch models in this way.
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Figure 4: Scalability curves for the meta-population patchmodel at the level of10608 electoral wards (1, 550, 819
subpatches) for (a) the pseudo-individual and (b) the simple cases.

Finally, the spread of infectious disease is a spatially
explicit dynamic process. In this paper we have only con-
sidered static load balancing. As models become more
complicated there are likely to arise significant differ-
ences in the computation load of patches over time (as
disease activity passes through the patches). In this sit-
uation dynamic load balancing must be considered and
this forms part of ongoing work.

In conclusion, the spread of infectious disease in a
human population continues to present problems in biol-
ogy, public health policy and in the field of high perfor-
mance computing. The development of efficient meth-
ods for solving these systems will remain important, and
facilities such as the Cray XT3 and the upcoming XT4
offer valuable means beyond those of smaller clusters.
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