
Real Time Health Monitoring of the Cray XT3/XT4 Using the
Simple Event Correlator (SEC)

Jeffrey Becklehimer, Cathy Willis, Cray Inc; Josh
Lothian, Don Maxwell, and David Vasil , Oak Ridge
National Laboratory (ORNL)

ABSTRACT: The log files produced by the Cray XT contain all of the known events
which have occurred on the system. Examples of logged events include a memory fault,
a node panic, a link failure or the successful launch and execution of a user's
application. When the system is experiencing problems the standard procedure is to
perform a system dump and then examine the dump in hope of finding the cause. We
have constructed a framework using the Simple Event Correlator (SEC) to monitor the
log files in real time and to report events which are known to cause problems. The result
is that many problems are now known before the users ever report a problem. This
framework can be easily customized by the site to search for events of local interest.

KEYWORDS: XT, CRMS, SEC

1. Introduction

In 2005, the National Center for Computational
Sciences (NCCS) at the Oak Ridge National Laboratory
(ORNL) installed their first Cray XT3 computer. Since
that initial installation the system has been on a very
aggressive upgrade path of performance improvements.
The computer has grown from a system of an initial 25
Teraflops (TF) to 54 TF and is currently 119 TF. These
upgrades mean we have had to go through many periods
of troubleshooting and stabilization. This paper presents
one of the tools that has been implemented to help the
system administrators in their speed and efficiency of
diagnosing and repairing system problems.

In addition to the number of upgrades in the past two
years, the size of the resulting computer introduces new
issues related to system health monitoring. The Cray XT
computer located at ORNL is called Jaguar. Jaguar
consists of 124 cabinets; 56 cabinets are XT3 and 68 are
XT4. There are 11,708 nodes in the system. 11,508 are
compute nodes and the remainder are service I/O (SIO)
nodes. Each compute node has a 2.6 GHz dual-core AMD
Opteron processor and 4 GB of memory.

The system is physically configured as 4 rows with
31 columns of racks. It has a full 3D torus that is
logically a 31x16x24 cube.

In general, the XT is quite verbose in its logging.
Early in the development it was learned that manual
analysis of the log files was tedious and time consuming.
As the system grew larger, the log files became
voluminous and faced with an intractable and growing
problem.

 Realizing that an automated solution was needed the
staff and system administrators began discussing possible
solutions. There was agreement to write as little as code
as possible and to leverage open source where applicable.

2. Cray RAS and Management System

The Cray RAS and Management System (CRMS) is
the administrative interface into the hardware and is
responsible for powering up, booting, monitoring and
dumping the system. It consists of three interconnected
subsystems: the CRMS hardware, the CRMS software
and the CRMS event logging.

CUG 2007 Proceedings 1 of 4

2.1 Hardware
There are 4 components to the CRMS hardware. The

CRMS network, the System Management Workstation
(SMW), the cabinet control processor (L1) and the
module control processor (L0). Together these
components monitor the health and status of the
compute/service nodes, the attached RAID storage
subsystems, the node temperatures, voltages, fan speeds
and node heartbeats.

Each module in the system has a control processor
called a L0. This processor is responsible for monitoring
the components of the module, such as checking Opteron
and Seastar registers. The L0 also monitors the voltage
regulator modules (VRMs), temperatures and the
operating system heartbeat.

Similarly, each cabinet has a L1 controller. It
monitors the power supplies, regulates fan speeds and
does other cabinet-related monitoring. It also routes
CRMS traffic between the SMW and L0s.

The System Management Workstation (SMW) is a
desktop workstation that is used to manage, boot and
monitor all of the XT components. It has network
interfaces into the users network, CRMS network and the
XT boot node.

The CRMS network is a flat 100-BaseT private
Ethernet network that carries messages between the
SMW, L1 and L0 controllers.
.
2.2 Software

The CRMS software consists of resiliency
communication agents (RCA); the administrator's CRMS
interfaces; and event probes, loggers and handlers.

The RCAs run on every node in the system. They
provide the interface between the operating system and
CRMS components external to the node. RCAs also
monitor software services and the operating system
instance on each node. PBS (Portable Batch Scheduler)
and LLRD (Lustre Lock Recovery Daemon) are
examples of software services that run under RCA
control.

The RCAs are also responsible for generating
heartbeats. If the CRMS does not detect heartbeats
coming from an RCA, the CRMS will conclude that the
node has failed and mark it down.

The CRMS command xtcli is a command line utility
that is used to power up, boot, dump and power down the
system.

2.3 CRMS Event Logging

The CRMS event logger runs on the SMW and logs
all status and event data generated by CRMS processes
running on the L1/L0s and by the RCA daemons running
on compute and service nodes. This data is logged to a
file in the /opt/craylog directory. These files are rotated
based on a maximum file size parameter.

During the boot process three watcher programs are
initiated. These programs subscribe to the event log
coming from the L1/L0s and log that data to different
files in a more verbose manner.

The program xtconsumer monitors CRMS events and
logs its output to /
opt/craylog/bootlog/consumer.YYMMDDHHMM where
YYDDMMHHMM is the year,month,day,hour,minute
boot timestamp. The events of interest that appear in this
file are node and Seastar failures.

The xtconsole utility is capable of displaying the
console text of all the nodes. The text gets logged to /
opt/craylog/bootlog/console.YYMMDDHHMM. Kernel
panics, portals errors and memory errors can be found in
this log file.

The xtnetwatch program logs errors associated with
the high speed network (HSN). This log will contain both
recoverable and fatal link errors and their locations. This
log is located at /
opt/craylog/bootlog/netwatch.YYMMDDHHMM

3. Simple Event Correlator (SEC)

3.1 Introduction

SEC is an open source and platform independent
event correlation tool that was designed to fill the gap
between commercial event correlation systems and home-
grown solutions that usually comprise a few simple shell
scripts. SEC and its documentation can be found at
http://www.estpak.ee/~risto/sec/.

SEC accepts input from regular files, named pipes,
and standard input. Thus, SEC can be employed as an
event correlator for any application that is able to write its
output events to a file stream. The SEC configuration is
stored in text files as rules, each rule specifying an event
matching condition, an action list, and optionally a
Boolean expression whose truth value decides whether
the rule can be applied at a given moment. Regular
expressions, Perl subroutines, etc. are used for defining
event matching conditions. SEC can produce output
events by executing user-specified shell scripts or
programs (e.g., snmptrap or mail), by writing messages to
pipes or files and by various other means.

CUG 2007 Proceedings 2 of 4

3.2 Event Correlation Rule Types

The following event correlation rule types are
currently implemented in SEC:

Single - match input event and execute an action list.

SingleWithScript - match input event and execute an
action list, if an external script or program returns a
certain exit value.

SingleWithSuppress - match input event and execute an
action list, but ignore the following matching events for
the next t seconds.

Pair - match input event, execute an action list, and
ignore the following matching events until some other
input event arrives. On the arrival of the second event
execute another action list.

PairWithWindow - match input event and wait for t
seconds for other input event to arrive. If that event is not
observed within the given time window, execute an
action list. If the event arrives on time, execute another
action list.

SingleWithThreshold - count matching input events
during t seconds and if a given threshold is exceeded,
execute an action list and ignore the following matching
events during the remaining time window. The window
of t seconds is sliding.

SingleWith2Thresholds - count matching input events
during t1 seconds and if a given threshold is exceeded,
execute an action list. Then start the counting of matching
events again and if their number per t2 seconds drops
below the second threshold, execute another action list.
Both event correlation windows are sliding.

Suppress - suppress matching input event (used to keep
the event from being matched by later rules).

Calendar - execute an action list at specific times.

Rules allow not only shell commands to be executed
as actions, but they can also:

• create and delete contexts that decide whether a
particular rule can be applied at a given moment,

• associate events with a context and report
collected events at a later time (similar feature is
supported by logsurfer),

• generate new events that will be input for other
rules,

• reset correlation operations that have been
started by other rules,

• spawn external event, fault, or knowledge
analysis modules.

This makes it possible to combine several rules and
form more complex event correlation schemes.

3.3 Example rule

Below is a simple example of a SEC rule.

#
Detect nodes that panic
#
type= SingleWithSuppress
window= 120
ptype= RegExp
pattern= \[([0­9A­z._­]+) (\d\d:\d\d:\d\d)\]\
[([0­9A­z._­]+)\]0­ PANIC_SP
desc= $1 $2 Node $3 Paniced
action= add PANICED_$3 $1 $2 Node $3 Paniced; \
 report PANICED_$3 /bin/mail ­s "Hood
Node $3 Paniced"
root@jaguar.ccs.ornl.gov

As is common in many scripted languages, the use of
the “#” in SEC indicates a comment. This SEC rule
attempts to detect and report nodes that panic.

The first two lines after the comments in this
example indicate that this panic rule will trigger on a
single event and suppress duplicates for a window of 120
seconds. Panics often result in repetitive lines filling log
files within the first few minutes of the panics before the
node dies.

The event is defined by a regular expression. That
regular expression is defined in pattern. When the
pattern is matched, an email will be sent with the physical
address of the node that paniced.

4. XTSec

Using standard SEC rules and events an XT-specific
event list and XT-specific event scripts were created to
handle those events. The initiation and shutdown of SEC
has also been automated. Collectively this group of rules
and scripts are called XTSec.

4.1 XT Event List

Using standard SEC, rules can be constructed to
report just known errors or to remove routine traffic from
the logs.. Filtering out normal events allows

CUG 2007 Proceedings 3 of 4

administrators to more quickly and efficiently find new
and unexpected problems. However, the task of defining
what is “normal traffic” can be daunting. It was decided
to focus efforts on reporting events known to cause
system problems.

In order to deploy SEC to monitor the XT a list of
errors to report was created. The list was generated by the
staff in cooperation with the system administrators based
on their experience triaging past failures. It was decided
that this list would first contain system events which
require the system to be rebooted or that could cause user
jobs to fail. This list is by no means exhaustive nor static.
New rules get added as new failure modes are discovered.
The initial list included:

Link Inactive
RX message header CRC error
RX message CRC error
Recv Sequence Error
Send Buffer Overrun
MCA Error
QK Panic
Node Corefail
Node Thermtrip
VDDIO Fail
Verty Fail
Voltage Faults
Seastar HB Faults
Node HB faults
SSNAL Looping too Long
SCSI Errors

Analysis of a single event can often be misleading or
not provide all the information required to diagnosis a
problem. In these situations event threading or grouping
can be especially useful. A good example of this would
be a node panic. It would be useful to not only know that
a node paniced but to also gather all the information
about what job was running during the panic and to see
the entire traceback. No event threading has been
attempted in this first attempt but many opportunities
exist to implement threading.

4.2 Event Scripts

Some of the XTSec rules make use of the
SingleWithScript rule type. These rules require helper
scripts to do further processing. Examples of these scripts
are:

Decode MCA – this script is invoked upon an MCA error.
It decodes the error to determine if the error is correctable
or not. If uncorrectable it will send out a notification

Get Node HDT – this script is called when a node fails. It
will read information from a module L0 to determine the
health of the hardware on the node.

Get Node SS – this script processes Seastar faults. It will
gather information from the Seastar buffer that is used
later for diagnosis.

4.3 Utility Scripts

To aid in further automation of XTSec, several utility
scripts have been created.

A startup script has been created and is optionally
used in the autoboot sequence. Similarly, a shutdown
script has been inserted into the xtshutdown
configuration. The shutdown script can also be run
independently.

Likewise, a restart script is available to stop and
retstart SEC. This is used to insert new rules into a
running configuration.

7. Conclusion

SEC has proven itself to be an ideal framework for
implementing a real time monitoring system for the Cray
XT class of computers. Rules can be rapidly implemented
by staff and administrators with a basic understanding of
regular expressions. The use of SEC with XTSec rules
and scripts has proven to be very effective at improving
real time health monitoring. It has been so effective that
in most cases the administrators are now aware of
problems before users begin to notice issues.

Acknowledgments

The authors would like to thank the staff and
colleagues who have contributed material to this paper.
Also, we would like to thank Risto Vaarandi the author of
SEC for providing such a useful tool.

About the Authors

Jeff Becklehimer is a Principal Engineer with Cray
Inc. He can be reached by E-Mail at jlbeck@cray.com.
Cathy Willis is a on-site Systems Analyst with Cray Inc.
Don Maxwell, Josh Lothian and David Vasil are all staff
members of the National Center for Computation
Sciences (NCCS) at Oak Ridge National Laboratory
(ORNL).

CUG 2007 Proceedings 4 of 4

