
Lustre IO on 25,000 clients
CUG 2007

Peter J. Braam, PhD
Cluster File Systems, Inc.

V 1.0, pjb, 2007-04

2 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Contents

Summary graph
Scalability enhancements
Dealing with small IO
Petascale file systems
Hardening the disk FS
User level servers

3 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Red Storm – a summary graph

• ~40GB/sec
• File per process (top)
• Shared file (bottom)

– 160 wide stripe

• Scales to 10,000 clients

• Reads are too slow
– Array misconfigured for reads
– Too much read ahead

• Shared file too slow
– OST’s misconfigured for shared

file
– Not enough disks

4 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Scalability

5 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

A bit of background

Locks allow client caching and coordinated updates

Lustre metadata locks
Directory data (reading directories and modifying them)
FID to name associations (lookup)
Opened files

Lustre file extent locks
Protect extents in files
Single writer, multiple reader usage

When locks are enqueued scan for conflicting locks
Send callbacks when there are conflicting locks
Callbacks cause cache flushes

6 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Connection & file open scalability

25,000 nodes was the last straw
For a few poor algorithms in the servers

Connection
Searched a list

All clients connect so this is a quadratic problem
Lustre now has a hash for connection UUIDs

Locks - e.g. for file open
Searched a linear list of locks to find conflicting locks
The structure of compatible and incompatible locks is complicated

Lock modes - EX, PW, PR, CW, CR, NL
Inode bits - Open Bit, Lookup bit, Data bit

We introduced a skip list mechanism
They allow us to efficiently find conflicting locks

7 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Lock mode compatibility

Requested vs Granted lock mode compatibility.

NL CR CW PR PW EX

NL Yes Yes Yes Yes Yes Yes

CR Yes Yes Yes Yes Yes No

CW Yes Yes Yes No No No

PR Yes Yes No Yes No No

PW Yes Yes No No No No

EX Yes No No No No No

8 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

IO regions - conflicting locks

Introduce an interval tree in the extent lock handling
Previously there was a list of extents that were locked
Now there is a tree
Scalable search for conflicting locks

9 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

IO and locking

• Stripe locking
– Change from

• Lock all stripe extents, do all IO in parallel, unlock all

– To
• For all stripes in parallel: lock, do IO, unlock

– Holding locks from multiple servers
• Can lead to cascading recovery events on many servers
• Is necessary for truncate and O_APPEND writes

• Disallow client locks under contention
– When an extent in a file sees concurrent access

• Ask the client to write through to the server

– This eliminates callback traffic and cache flushes

10 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Disk arrays

The IO is typically done against a DDN 9500 array
We don’t understand well how to do IO with it

Some instability for high region counts

Rsize = 1M, WB enabled

0
50

100
150
200
250
300
350
400
450

1 10 100 1000

Threads

1

2

4

8

16

32

64

128

256

Regions

11 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Reads - even more complicated

Reading from the array - cannot find a sweet spot
Rsize =

1M

0

50

100

150

200

250

300

350

400

1 10 100 1000

Threads

1

2
4

8
16

32
64

128
256

Regions

Rsize =
4M

0
50

100

150
200
250
300

350
400
450

1 10 100 1000

Threads

1

2

4

8

16

32

64

128

256

Regions

12 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Dealing with Small IO

13 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

New disk allocator

Block allocation policies
Write a little (e.g. <64K) before small offset (e.g. 64K)

Place the write in a “small file” area on the disk
Keep such small writes together
Large writes are aligned in 1-4MB chunks
Writes at significant offset are logically and physically aligned

Outcome – smoking performance
It appears that this is the crux for small file performance
The secret of Reiser was to write things close together

Typical use cases
liblustre
small file performance

14 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

New allocator dbench64 throughput

EXT3 EXT4 REISERFS JFS XFS

0

200

400

600

800

1000

1200

1400

1600

1800

dbench64 throughput - DDN storage

THROUGHPUT

file system

th
ro

ug
hp

ut

15 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

kernel untar / remove with new allocator

EXT3 EXT4 REIS
ERFS

REISER4 XFS JFS
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Kernel untar / rm - comparison
local SATA disk

Untar (sec)
rm -rf (sec)

file system

el
ap

se
d

tim
e

16 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

OSS writeback cache

Some jobs send very small IO's to the disk arrays
aggregation is important

Lustre so far does no caching on the OSS
Liblustre clients have no cache (Linux clients do)

Lustre OSS servers will get a cache

17 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Scaling & Killing FSCK

18 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Fast FSCK & Format

FSCK has changed
Previously fsck scanned all inodes
Now only inodes that are possibly in use

The most interesting part of this is a checksum
The checksum indicates if the metadata that follows is consistent
If it is the counter can be used to check up to the maximum inode

Speedups of 4x to 10x
Good, but fsck needs to disappear completely, it doesn’t scale

…. ….

Block group header
- max in use count
- checksum
- inode bitmap
- block bitmap

In use inodes:
- checksum good: check these only
- checksum false: check whole group

Other block groups
Unused inodes

Max in use counter

19 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Extremely large File Systems

• Do you math – 1PB/fs, 500GB
disks

– 1 disk blows quickly
– Estimates vary –

• mfr: every 12 days,
• Pessimists - 10 hours

– Double failure 2 months – 20
years

– We have interesting practical
experiences here …

• Key features
– No limits: #files, #capacity
– Integrity: FS should be usable

after disastrous events
– Harden: detect and repair

corruption where reasonable

• Port ZFS approach
– ZFS seems to have correct design
– Will probably be ported to Linux
– The port will probably take long

• CFS “iron” ext4
– University of Wisconsin first steps
– Checksum much of the data

• Replicate metadata
• Detect and repair corruption

– Handle relational corruption
• Accidental re-ordering of writes

• CFS approach
– A sequence of small fixes
– starting now
– each with benefits

20 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

FS for 1PF system

Required 1TB/sec, FS will be many PBs

CEA has servers: 2GB/sec
Most promising solution: 500 OSS servers of this type

Lustre
Already has installations with ~500 servers
Already has installations with ~2GB/sec servers
Already handling 25,000 clients on one FS in production today

10TB/sec requires some scalability improvements

21 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

User level servers

The Solaris OSS port layers the OSS server on ZFS
The server will be a user space server
It will not use any custom interfaces to the file system

On Linux we are exploring the same
Layer on ext4
Preparations

Give ext4 / Linux the capability of concurrent writes to one file
Improve the direct IO / VM cache relationship

Evaluate the performance
For this we have written a simple server simulation program

pios – Parallel IO Simulator

High likelihood of success
If confirmed the OSS will become a user space server
If ZFS is good, we can benefit from it, or have options

22 - Q2 2007 Copyright © 2007, Cluster File Systems, Inc.

Thank you.

	Lustre IO on 25,000 clients� CUG 2007 ��Peter J. Braam, PhD�Cluster File Systems, Inc.
	Contents
	Red Storm – a summary graph
	Scalability
	A bit of background
	Connection & file open scalability
	Lock mode compatibility
	IO regions - conflicting locks
	IO and locking
	Disk arrays
	Reads - even more complicated
	Dealing with Small IO
	New disk allocator
	New allocator dbench64 throughput
	kernel untar / remove with new allocator
	OSS writeback cache
	Scaling & Killing FSCK
	Fast FSCK & Format
	Extremely large File Systems
	FS for 1PF system
	User level servers
	Thank you.

