
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Design and Implementation of a Portals 
Collective Communication Library

Jim Schutt Ron Brightwell
Sandia National Laboratories

Center for Computation, Computers, Information, and 
Mathematics

Cray User Group Meeting
May 10, 2007



Outline

• Motivation
• Implementation
• Initial performance results
• Future work



Motivation

• High-performance, scalable collectives for Red Storm
• Need collectives for more than just MPI

– SHMEM
– ARMCI
– Open MPI

• Extending the Portals API for native collectives
– Collective communication at the network level
– Building blocks versus complete functionality

• Research several areas
– Topology/route-aware collectives
– Non-blocking collectives
– One-sided collective operations

• Provide a mechanism for collective communication research



Approach

• Start with Puma collective library from ASCI Red
– Based on InterComm library from van de Geijn

• Port from Portals 2.0 to Portals 3.3



Goals

• Implement asynchronous collective calls
• Allow for arbitrary groups of possibly 

independent processes
• Minimize use of tuning parameters that affect 

robustness
• Match or exceed performance and scalability of 

existing collective implementations



Algorithms

• All algorithms based on a minimum spanning tree
• Broadcast recursively halves network

– Reduce uses inverse operation
• Scatter recursively halves network and data

– Gather uses inverse operation
• Barrier interleaves 0-length reduce and broadcast 

operations
• Allows for implementing Allreduce and Allgather

with the same message pattern
– Scaling will likely be sub-optimal for larger 

messages



Protocols

• Each rank
– Keeps a receive heap per group dedicated to eager 

sends
– Conservatively tracks peers’ eager send heap use
– Uses eager send for any message for which peer has 

sufficient send heap space
– Can use both eager and rendezvous in the same 

collective
• Some sequences operations have send-only or receive-only 

ranks
– May race ahead and deplete resources
– We detect such sequences and limit periodically by 

forcing a rendezvous operation
– Largely a micro-benchmark issue



Implementation

• Single Portal event queue for all operations for all 
groups

• Eager send heap is double-buffered
• Role of each message completely encoded in 

match bits
• Each operation creates a state object to track 

progress
• Asynchronous operations

– Return handle identifying state object that is used 
to poll for completion

– Currently have to poll in order to make progress



Lifetime of a Collective Operation

• Create a state object
– Compute list of messages
– Assign eager/rendezvous protocol to each message

• Process messages
– Send

• If eager, do send
• If rendezvous, poll event queue until RTR arrives

– Receive
• If eager, poll event queue for message
• if rendezvous, send RTR to peer, then poll event queue
• Perform reduce operation if necessary

• If asynchronous, return whenever event queue is empty
• Cache events not related to current operation



Current Status

• Implemented Barrier, Bcast, Gather, Scatter, 
Allgather

• Implemented subset of Reduce and Allreduce
– Restricted to long integers and MIN and MAX 

operations
• Integrated into Open MPI

– Limited to contiguous datatypes
– Sometimes assumes significant-at-root-only 

arguments are significant everywhere
– Doesn’t support MPI_IN_PLACE yet

• Tested on 128-node Red Storm development cage



Performance Results

• Red Storm development cage
– 2.0 GHz AMD Opteron
– SeaStar 1.2

• Intel MPI Benchmark (IMB) Suite
• MPI implementations

– Cray MPICH2
– MPICH 1.2.6
– Open MPI

• Portals PM – matching in MPI
• Portals CM – matching in Portals
• Basic and tuned collectives













Future Work

• Lots ☺
• Start optimizing

– Eliminate startup costs
– Avoid memory copies
– Evaluate eager/rendezvous strategy
– Make better use of Portals semantics
– Alternative algorithms for large messages
– Topology/routing optimizations

• Analysis using real applications


	Design and Implementation of a Portals Collective Communication Library
	Outline
	Motivation
	Approach
	Goals
	Algorithms
	Protocols
	Implementation
	Lifetime of a Collective Operation
	Current Status
	Performance Results
	Future Work

