
Debugging Memory Problems on
Cray XT Supercomputers with TotalView

Debugger

Chris Gottbrath, Ariel Burton
TotalView Technologies

Robert Moench, Luiz DeRose
Cray Inc.

ABSTRACT: The TotalView Source Code Debugger gives scientists and engineers a way
to debug memory problems on the Cray XT series supercomputer. Memory problems such
as memory leaks, array bounds violations, and dangling pointers are difficult to track
down with conventional tools on even a simple desktop architecture – they can be much
more vexing when encountered on a distributed parallel architecture like that of the XT.

KEYWORDS: Programming Environment Tools, Debuggers, Memory Debuggers,
Cray XT Series

1. Introduction

The purpose of this paper is to highlight the
availability of memory debugging on the Cray XT series
supercomputer. Scientists and engineers taking
advantage of the unique capabilities of the Cray XT can
now identify problems like memory leaks and heap
allocation bounds violations – problems that are
extremely difficult and tedious to track down without the
kinds of capabilities described here.

We begin by discussing and categorizing memory
errors then provide a brief overview of both TotalView
Source Code Debugger and the Cray XT Series. Finally
we discuss how to perform several important memory
debugging operations with TotalView Debugger.

2. Classes Of Memory Errors

Programs typically make use of several different
categories of memory that are managed in different
ways. These include stack memory, heap memory, shared
memory, thread private memory and static or global
memory. Programmers have to pay special attention,
though, to memory that is allocated out of the Heap
Memory. This is because the management of heap
memory is done explicitly in the program rather than
implicitly at compile or run time.

There are quite a number of ways that a program can
fail to make proper use of dynamically allocated Heap
memory. It is useful to develop a simple categorization
of these mistakes for discussion. We will describe these
in terms of the C malloc() API. However we believe that
analogous errors can be made with memory that is
allocated using the C++ new statement and the Fortran
90 allocate statement.

CUG 2007 Proceedings 1 of 7

Malloc Errors

Malloc errors occur when a program passes an
invalid value to one of the operations in the C Heap
Manager API. This could happen if the value of a
pointer (the address of a block) was copied into another
pointer and then at some time later both pointers were
passed to free(). In this case, the second free() is
incorrect because the specified pointer does not
correspond to an allocated block. The behavior of the
program after such an operation is undefined.

Leaks

Leaks occur when a program finishes using a block
of memory, discards all references to the block, but fails
to call free() to release it back to the heap manager for
reuse. The result is that the program is neither able to
make use of the memory nor reallocate it for a new
purpose. The impact of leaks depends very much on the
nature of the application. In some cases the effects are
very minor, in others where the rate of leakage is high
enough or the runtime of the program is long enough,
leaks can significantly change the memory behavior and
the performance characteristics of the program. For long
running applications or where memory is limited, even a
small leakage rate can have a very serious cummulative
adverse effect. This somewhat paradoxically makes
leaks all that much more annoying – since they often
linger in otherwise well understood codes.

Managing dynamic memory in complex applications
to ensure that allocations are released exactly once so
that malloc and leak errors do nor occur can be
challenging.

Dangling Pointers

A pointer can be said to be dangling when it
references memory that has already been deallocated.
Any memory access, either a read or a write, through a
dangling pointer can lead to undefined behavior. As with
leaks the programs with dangling pointer bugs may
sometimes appear to function without any obvious
erorrs, sometimes for significant amounts of time – if the
memory that the dangling pointer points to happens to
not get recycled into a new allocation during the time
that it is accessed.

Memory Bounds Violations

Individual memory allocations that are returned by
malloc() represent discrete blocks of memory with
defined sizes. Any access to memory immediately before
the lowest address in the block or immediately after the
highest address in the block results in undefined
behavior.

Read-before-Write Errors

Reading memory before it has been initialized is a
common error. Most languages assign default values to
uninitialized global memory, and many compilers can
identify when local variables are read before being
initialized. What is more difficult and generally can only
be done at runtime is detecting when memory accessed
through a pointer is read before being initialized.
Dynamic memory is particualy affected, since this is
always accessed through a pointer, and in most cases, the
content of memory obtained from the memory manager
is undefined.

3. TotalView Overview

TotalView as a Parallel Debugger

TotalView provides a powerful environment for
debugging parallel programs. It allows users to easily
control and inspect applications that are composed of not
just a single process but sets of thousands of processes
running across the many compute nodes of a
supercomputer. At any time during a debugging session
the user can choose to focus their attention on any
specific process – inspecting individual variables,
looking at the call statck, setting breakpoints,
watchpoints, and controlling that process, calling
functions and evaluating expressions within the context
of that process. The user might choose instead to look at
the parallel application as a whole – looking at the call
tree graph which represents the function call stacks of all
the processes in a compact and graphical form, looking
at variables across all the processes (scalar variables are
represented as arrays indexed across the set of processes,
1-d arrays as 2-d arrays, etc..), setting breakpoints,
barrier points, and watchpoints across the whole
application, running, synchronizing, and controlling the
application as a whole, or looking at characteristics that
are specific to parallel applications, such as the state of
the MPI message queues. Alternately the user can choose
to define, examine and control various sets of related
processes through TotalView's dynamic process and
thread set mechanism.

One advanced capability that can significantly aid
users who are working at extreme scales is that
TotalView does not need to be attached to the entire
parallel job – it supports the idea of attaching to an
arbitrary subset of the processes that make up the parallel
application. Any processes that are 'detached' from the
debugger will run freely and participate in the parallel
program. This subset of attached processes can change
over time as the user explores their parallel application.

TotalView supports debugging applications
written in C, C++, Fortran 77 or Fortran 90 and is

CUG 2007 Proceedings 2 of 7

compatible with a number of different compilers. It
supports applications that make use of MPI and
interoperates with the yod launcher mechanism on the
Cray XT Series.

Details on these capabilities are provided in a
variety of resources, such as the TotalView Debugger
Users Guide and Reference Guide, Tip of the Week
archive, and the TotalView Technologies Developer's
Forum. These resources are linked to from
http://www.totalviewtech.com/ .

TotalView Parallel Debugger Architecture

TotalView Debugger provides for parallel debugging
by itself becoming a parallel application – a single front
end process provides the user with a point of interaction
with a GUI or a CLI while a set of lightweight
debugging agents are created in the cluster to interact
directly with the many processes that constitute the
parallel program being debugged.

On a cluster running Linux on the compute nodes
TotalView creates a set of debugging agents (called
tvdsvr processes) on the compute nodes alongside the
user's target program and the processes can use the
operating system's debugging mechanisms to debug the
individual processes that make up the parallel program.
As discussed below the XT architecture features compute
nodes which are dedicated to running the users
application with an absolute minimum of overhead.
These most often run a lightweight operating system
called Catamount. To support the parallel debugging of
applications on the Cray XT series TotalView users a
variation on the basic architecture (Figure 1).

Cray XT systems contain an additional set of nodes
called 'service nodes'. The service nodes run linux kernel
based operating systems. When used to debug a parallel
application on the Cray XT, TotalView creates a set of
tvdsvr processes on the service nodes. Each one of these
server processes uses a specialized interface to remotely
control some number of the user's processes running on
the compute nodes. For example, in a typical
configuration a user with 8192 processes to debug might
be interacting with a TotalView session composed of one
front end process and 128 tvdsvr processes -- each of
which is controlling and debugging 64 of the processes
that make up the users application, running on 64
different compute nodes. All of this happens in the
background, most of the time there is no reason for the
user to be aware of the number of tvdsvrs created or the
identity of the service nodes on which the tvdsvrs are
running.

TotalView as a Memory Debugger

TotalView Debugger implements an integrated
memory debugging tool that provides vital information
about the state of memory. It reports some errors directly
as they occur, provides graphical and interactive maps of
the heap memory within individual processes and makes
information like the set of leaked blocks easy to obtain.
TotalView's memory debugging is designed to be used
with parallel and multiprocess target applications – it
provides both detailed information about individual
processes as well as high level memory usage statistics
across all the processes that make up a large parallel
application. TotalView's memory debugging is
lightweight and has a very low runtime performance
cost.

TotalView Memory Debugging Architecture

TotalView accomplishes memory debugging on the
Cray XT through the modified use of a technique called
interposition. TotalView provides a library, called the
Heap Interposition Agent (HIA) that is inserted between
the user's application code and the malloc() subsystem.
This library defines functions for each of the memory
allocation API functions and it is these functions that are
initially called by the program whenever it allocates,
reallocates, or frees a block of memory. Interposition
differs from simply replacing the malloc library with a
debug malloc in that the interposition library does not
actually fulfill any of the operations itself – it arranges
for the program's malloc API function calls to be
forwarded to the underlying heap manager that would
have been called in the absence of the HIA. The effect of
interposing with the HIA is that the program behaves the
same way it would without the HIA except that the HIA
is able to intercept all of the memory calls and perform
bookkeeping and sanity checks before and after the
underlying function is called.

CUG 2007 Proceedings 3 of 7

Figure 1: TotalView debugging architecture on the
Cray XT3

Compute Node

Service Node

Login Node/Front End

Application code

Library code

Catamount kernel

Kernel

tvdsvr

TotalView

TotalView Parallel Architecture on Cray XT

http://www.totalviewtech.com/

The bookkeeping that the HIA library does is to
build up and maintain a record of all of the active
allocations on the heap as the program runs. For each
allocation in the heap it records not just the position and
size of the block but also a full function call stack
representing what the program was doing when the block
was allocated. The sanity checks that the HIA performs
are the kinds of things that allow the HIA to detect
malloc() errors such as freeing the same block of
memory twice or trying to reallocate a pointer that points
to a stack address. Depending on how it has been
configured, the HIA can also detect wheher some bounds
errors have occurred. The information that the HIA
collects is used by the TotalView Source Code Debugger
to provide the user with an accurate picture of the state
of the heap that can be inspected just like any other part
of the program's state during the debugging session.

The interposition technique used by TotalView was
chosen in part because it provides for lightweight
memory debuggging. Low overheads are important if
the performance of a program it not to suffer because of
the presence of the HIA. In most cases, the runtime
performance of a program being debugged with the HIA
engaged will be similar to that where the HIA is absent.
This is absolutely critical for high performance
computing type applications – where a heavyweight
approach that significantly slowed the target program
down might well make the runtime of programs exceed
the patience of developers, administrators and job
schedulers.

4. Cray XT Series

Cray XT Series Overview

Cray XT series supercomputer systems are powerful,
massively parallel processing (MPP) systems. Cray has
combined commodity and open source components with
custom designed components to create a system that can
operate efficiently at immense scale.

Cray XT series systems are based on the Red Storm
technology that was developed jointly by Cray Inc. and
the U.S. Department of Energy's Sandia National
Laboratories.

Cray XT series systems are designed to run
applications that require large-scale processing, high
network bandwidth, and complex communications.
Typical applications are those that create detailed
simulations in both time and space, with complex
geometries that involve many different material
components. These long running, resource-intensive

applications require a system that is programmable,
scalable, reliable, and manageable.

Cray XT Series Node configuration

The basic scalable component is the node. There are
two types of nodes. Compute nodes run user
applications. Service nodes provide support functions,
such as managing the user's environment, handling I/O,
and booting the system. Each compute node and service
node is a logical grouping of a processor, memory, and a
data routing resource.

Users log into service nodes and invoke commands
and user applications from them. User applications are
then propagated to compute nodes where they run using
the Message Passing Interface (MPI) and SHMEM
parallel programming, distributed memory models.

5. Memory Debugging

This section walks the user through a few simple
memory debugging operations with TotalView on the
Cray XT series supercomputer.

Compiling the Program

Prepare your application for parallel memory
debugging by compiling and linking it as follows. The
program should be compiled with optimization turned off
and with debugging symbols included.

gcc -g -o target_app.o \
-c target_app.c

This will generate a valid object file with debug

symbols. In addition the compute node executable needs
to be explicitly linked with the HIA library. The
additional linker arguments “ –Lpath –ltvheap_xt3
-gmalloc” will put the HIA into the parallel application
being debugged.

gcc -L/<tvdir>/lib/ -ltvheap_xt3 \
-lgmalloc -o target_app target_app.o

The test app will run with the HIA enabled. Without
the debugger present the HIA will simply record heap
activity and pass through calls to the underlying malloc
function.

Starting TotalView

CUG 2007 Proceedings 4 of 7

On the XT series, parallel jobs are typically started
using the yod launcher application. If the normal
command used to launch the program was

 yod -sz=256 target_app

then you start it for debugging with

totalview yod -a -sz=256 target_app

After issuing this command TotalView is at first
debugging the yod executable itself. This is correct. The
-a instructs TotalView to pass all remaining arguments to
the target, in this case, yod. What you want to do is first
instruct the debugger to run the yod executable by using
the “go” command on the GUI or in the CLI. yod will
run and when it has the parallel application started and
ready to be debugged it will notifiy the debugger using
an established interface. Typically TotalView at this
point will prompt the user and attach to all of the
processes that make up the application. This behavior
can be customized to allow for subset attach.

If at any point in the debugging session you wish to
restart the job you can do so. Because the debugger
started the yod process first it will kill all the processes
then reissue the same yod command – restarting the
entire job.

See the TotalView Debugger Users Guide for details
on how to control and inspect the state of the parallel
application.

Activating Memory Debugging

Once the program is started the user will notice that
pointers pointing into the heap memory are annotated
with information about the heap status of the blocks they
point to (Figure 2).

Further memory information can be found on the
memory debugging window. Open the memory
debugging window by clicking on the tools menu and
selecting “Memory Debugging” from about half-way
down the list.

The memory debugging window presents a list of
processes on the left and a tabbed area on the right. A
variety of optional memory debugging features can be
turned on and off on the configuration tab. For example
heap guard blocks which are used to catch heap bounds
violations can be enabled and disabled as can memory
painting which is used to help track down dangling
pointer and uninitialized memory errors. Other tabs
allow the user to view memory usage statistics, heap
status, memory leaks and to do detailed memory
comparisons.

The remainder of this section highlights three
specific tasks that the user may want to do when memory
debugging a parallel application on the Cray XT Series
supercomputer with TotalView. Please see Debugging
Memory Problems Using the TotalView Debugger
manual for a more systematic introduction.

Comparing Memory Statistics

Many parallel applications have known or expected
behaviors in terms of memory usage. They may be
structured such that all of the nodes should allocate the
same amount of memory, or they may be structured such
that memory usage should depend in some way on the
MPI_COMM_WORLD rank of the process. If such a
pattern is expected or if the user wishes to simply
examine the set of processes to look for patterns the first
place to look is on the Memory Statistics tab of the
Memory Debugging window of TotalView. This will
provide overall memory usage statistics in a number of
graphical forms (line, bar and pie charts, see Figure 3)
for one, all or an arbitrary subset of the processes that
make up the debugging session. The user should drive
the program to a specific breakpoint, barrier, or simply
halt all the processes at an arbitrary point in execution.
Then in the memory debugging window the user should
select the set of processes they wish to see statistical
information about, then select the type of view that they
want to see then click 'generate view'. The generated
view represent the state of the program at that point in
time. The user may then use the debugger process
controls to drive the program to a new point in execution
and then update the view to look for changes.

CUG 2007 Proceedings 5 of 7

Figure 2: Annotation of pointers to heap allocations

Figure 3: Comparing memory statistics among a set
of processes.

If any processes look out of line the user will likely
want to look more closely at the detailed status of the
heap memory.

Looking at Heap Status

TotalView provides a range of heap status reports. The
most popular of which is the heap graphical display. At
any point where a process has been stopped the user can
get a graphical view of the heap. This is obtained by
bringing up the Memory Debugging window, selecting
the heap status tab, selecting one or more processes,
choosing the graphical view and clicking 'generate view'.
The resulting display (Figure 4) paints a picture of the
heap memory in the selected process. Each current heap
memory allocation is represented by a green line
extending across the range of addresses that are part of
the allocation. This gives the user a great way to see the
composition of their heap memory at a glance. The view
is interactive – selecting a block highlights related
allocations and presents the user with detailed
information about both the selected block and the full set
of related blocks. The display can be filtered to dim
allocations based on their properties (such as their size or
what shared object they were allocated in). The display
also supports setting a baseline which lets the user see
which allocations and deallocations occur before and
after that baseline.

Figure 4: Graphical heap display with leaks marked
in red.

Detecting Leaks

Leak detection can be done at any point in program
execution. As discussed above leaks occur when the
program ceases using a block of memory without calling
free. It is hard to define 'ceasing to use' but the debugger
is able to do a leak detection by looking to see if the
program retains a reference to specific memory
locations. Perform heap memory leak detection by
driving the program to a known state (a breakpoint
perhaps) or simply halting the processes of a running
parallel application using the 'halt' command in the GUI
or the CLI. Then select the leak detection tab in the
memory debugging window, select one or more of the
processes in the parallel job and then generate the leak
report.

Figure 5 : Leak report

CUG 2007 Proceedings 6 of 7

The resulting report (Figure 5) will list all of the
heap allocations in the program for which there are no
longer any valid references anywhere in the program's
registers, or accessible memory. A block of memory that
the program isn't storing a reference to anywhere is
highly unlikely to subsequently be subject to a free() call
and is extremely likely to be a leak.

Leaks can also be observed in the heap graphical
display discussed above (Figure 4). Toggle the checkbox
labeled 'Detect Leaks' to have leaked blocks displayed in
red on the graphical display.

6. Conclusions

 In this paper we have briefly reviewed some of
TotalView's Heap Memory Debugging capabilities. We
have shown how these capabilities can help programmers
find memory leaks in their codes. We have also shown
how TotalView can be used to determine when data are
used before being initialized, or after having been
released back to the heap manager. The Heap Debugger
can also be used to help locate bounds errors, where, for
eample, the program writes beyond the ends of a
dynamically allocated array.

TotalView's powerful reporting tools allow the states
of a program at different points of its execution to be
compared and analyzed. This allows programmers to
improve their understanding of their programs' behaviors

TotalView runs on a wide range of platforms, from
single user workstations at one end of the spectrum to
supercomputers at the other. In many cases no special
steps are required to prepare a program for memory
debugging. The architecture of the Cray XT3, however,
is such that the usual approach must be modified. We
described how all that needs to be done to enable
memory debugging is to link the program with Heap
Interposition Agent, and of course, start the program
under TotalView.

Bibliography

Cray XT3TM System Overview
www.totalviewtech.com.
http://www.totalviewtech.com/Documentation/mpi_s

tartup.html

About the Authors

Chris Gottbrath is Product Manager for the
TotalView Debugger at TotalView Technologies LLC.
He can be reached at 24 Prime Parkway, Natick, MA
01760 USA, E-mail: chris.gottbrath@totalviewtech.com

Ariel Burton is a Senior Software Engineer at
TotalView Technologies LLC. He has worked
extensively on the TotalView's Memory Debugging

functionality. He can be reached at 24 Prime Parkway,
Natick, MA 01760 USA, E-mail:
ariel.burton@totalviewtech.com

Luiz DeRose is a Sr. Technical Engineer and the
Programming Environment Tools Manager at Cray Inc.
He can be reached at 1340 Mendota Heights Rd,
Mendota Heights, MN 55120 USA, E-mail:
ldr@cray,.com

Bob Moench is a Software Engineer at Cray Inc. He
has worked on debuggers for the last several years. He
can be reached at 1340 Mendota Heights Rd, Mendota
Heights, MN 55120 USA, E-mail: rwm@cray.com

CUG 2007 Proceedings 7 of 7

mailto:rwm@cray.com
mailto:ldr@cray,.com
mailto:rwm@cray.com
http://www.totalviewtech.com/

