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Abstract—Chapel is a new parallel programming language
being developed by Cray Inc. as part of its participation in
DARPA’s High Productivity Computing Systems program. In this
article, we describe Chapel implementations of the global HPC
Challenge (HPCC) benchmarks for the STREAM Triad, Random
Access, and FFT computations. The Chapel implementations use
5–13× fewer lines of code than the reference implementations
supplied by the HPCC team. All codes in this article compile and
run with the current version of the Chapel compiler. We provide
an introduction to Chapel, highlight key features used in our
HPCC implementations, and discuss our plans and challenges
for obtaining performance for these codes as our compiler
development progresses. The full codes are listed in appendices
to this article.

I. INTRODUCTION

Chapel is a new parallel programming language being
developed by Cray Inc. as part of its participation in DARPA’s
High Productivity Computing Systems program (HPCS). The
Chapel team is working to design, implement, and demonstrate
a language that improves parallel programmability, portability,
and code robustness as compared to current practice while
producing programs whose performance is comparable to or
better than MPI.

In this article, we present Chapel implementations of
three of the global HPC Challenge (HPCC) benchmarks—
STREAM Triad, Random Access (RA), and Fast Fourier
Transform (FFT). These benchmarks were developed as a
means of measuring sustained parallel performance by stress-
ing traditional system bottlenecks. We describe our Chapel
implementations of the benchmarks, highlighting key language
concepts used to implement them. We submitted an earlier
version of these codes to the second annual 2006 HPC
Challenge competition for “most productive” implementations,
judged 50% on elegance and 50% on performance. We were
selected as one of six finalists to present at the HPCC BOF at
SC06.

The codes presented in this article compile and execute with
our current Chapel compiler (version 0.4.550). To date, our
compiler development effort has focused on providing a single-
node prototype of Chapel’s features in order to support exper-
imentation with the language and generate feedback on its
specification. While our language specification and compiler
architecture have both been designed with distributed-memory
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execution and performance optimizations in mind, minimal
development effort has been invested toward these activities
to date. As a result, this article does not contain performance
results since they would not reflect our team’s emphasis.
Beginning in 2007, we have focused our implementation effort
on serial performance optimizations and distributed-memory
execution, and we expect to have publishable performance
results for our codes within the coming year.

Though this article does not report on performance, we
did write our benchmark implementations to be portable,
performance-minded parallel codes rather than simply op-
timizing for elegance, clarity, and size. Our goal was to
write versions of the benchmarks that would serve as clear
reference implementations for future HPCC competitors while
also producing codes that should result in good performance
as our compiler matures. In lieu of performance results, this
article contains a discussion of the top performance-related
issues for each benchmark and our strategies for achieving
good performance in the future.

The rest of this paper is organized as follows: In Section II
we give an overview of our results. In Section III we provide
an introduction to Chapel’s motivating themes. In Section IV
we describe the coding conventions that we adopted in writing
these benchmarks. Sections V, VI, and VII each describe
one of the three benchmarks, providing a high-level overview
of our approach in Chapel as well as performance-related
issues that highlight Chapel’s benefits and challenges. Finally
in Section VIII, we summarize and provide a brief status
report for the Chapel project. Our complete source listings
are provided in the appendices.

II. OVERVIEW OF RESULTS

Table I categorizes and counts the number of lines of code
utilized by our HPCC implementations. The line counts for
each benchmark are represented in a column of the table. The
fourth data column represents the common HPCCProblemSize
module that is shared by the benchmarks to compute and print
the problem size. For the Random Access benchmark, each
entry is expressed as a sum—the first value represents the
benchmark module itself, the second represents an additional
module used to generate the random number stream, and the
final value is the sum for both modules.

The rows of the table are used to group the lines of code
into various categories and running totals. The first two rows
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TABLE I
LINE COUNTS AND CLASSIFICATIONS FOR HPCC CODES IN CHAPEL

Benchmark Code
STREAM Random

line count type Triad Access FFT Common
Kernel computation 1 4 + 19 = 23 48 0
Kernel declarations 9 14 + 21 = 35 25 20
Total kernel 10 18 + 40 = 58 73 20
Initialization 9 1 + 0 = 1 21 0
Verification 6 15 + 0 = 15 13 0
Results and Output 29 18 + 0 = 18 16 12
Total Benchmark 54 52 + 40 = 92 123 32
Debug and Test 9 6 + 0 = 6 8 3
Blank 27 26 + 12 = 38 50 9
Total Program 90 84 + 52 = 136 181 44

indicate the number of lines required to express the kernel of
the computation and its supporting declarations, respectively.
For example, in the STREAM Triad benchmark, writing the
computation takes a single line of code, while its supporting
variable and subroutine declarations require 9 lines of code.
The next row presents the sum of these values to indicate
the total number of lines required to express the kernel
computation.

The next three rows of the table count lines of code related
to setup, verification, and tear-down for the benchmark. Initial-
ization indicates the number of lines devoted to initializing the
problem’s data set, Verification counts lines used to check that
the computed results are correct, and Results and Output gives
the number of lines for computing and outputting results for
timing and performance. These three rows are then combined
with the previous subtotal in the next row to indicate the
number of source lines used to implement the benchmark and
output its results. This subtotal should be interpreted as the
SLOC (Source Lines of Code) count for the benchmark as
specified.

The Debug and Test row indicates the number of lines
added to make the codes more useful in our nightly regression
testing system, while the Blank row indicates the number of
blank lines. These values are added to the previous subtotal
to give the total number of lines in each program, and they
are provided to serve as a checksum against the line number
labels that appear in the appendices.

Table II compares the total SLOC for our Chapel codes with
the standard HPCC reference implementations. The Chapel
result for each code is obtained by summing its Total Bench-
mark result from Table I with that of the common module. The
reference results are the sum of the Framework and Parallel
numbers reported in the table from the HPCC website’s FAQ.1

This table shows that our Chapel codes are approximately
5–13× smaller than the reference implementations. While
shorter codes are not necessarily better or easier to understand,
we believe that our Chapel implementations are not only
succinct, but also clear representations of the benchmarks that
will perform well as our compiler matures. The rest of this
paper examines the codes qualitatively to complement the
quantitative results in this section.

1http://www.hpcchallenge.org/faq/index.html

TABLE II
SLOC COMPARISON BETWEEN REFERENCE AND CHAPEL HPCC CODES

Benchmark Code
STREAM Random

Triad Access FFT
SLOC for Reference Implementation 433 1668 1406
SLOC for Chapel Implementation 86 124 155
SLOC Ratio 5.03 13.45 9.07

III. CHAPEL’S MOTIVATING THEMES

One of Chapel’s primary themes is to support general par-
allel programming using high-level abstractions. Chapel does
this through its support for a global-view programming model
that raises the level of abstraction for both data structures
and control flow as compared to parallel programming models
currently used in production.

Global-view data structures are arrays and other data aggre-
gates whose size and indices are expressed globally in spite of
the fact that their implementations may be distributed across
the memories of multiple nodes or locales.2 This contrasts with
most parallel languages used in practice, which require users to
partition distributed data aggregates into per-processor chunks,
either manually or using language abstractions. HPF and ZPL
are two other recent parallel languages that support global-
view data structures [15], [6], though in a more restricted form
than Chapel.

A global view of control means that a user’s program
commences execution with a single logical thread of control
and that additional parallelism is introduced through the use
of specific language concepts. All parallelism in Chapel is
implemented via multithreading, though these threads are
created via high-level language concepts and managed by the
compiler and runtime, rather than through explicit fork/join-
style programming. An impact of this approach is that Chapel
can express parallelism that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most
common parallel programming approaches use as the basis for
their programming and execution models. Examples include
Co-Array Fortran, Unified Parallel C (UPC), Titanium, HPF,
ZPL, SHMEM, and typical uses of MPI [18], [11], [20],
[15], [6], [2], [19], [12]. Our multithreaded execution model
is perhaps most similar to that which is supported by the
Cilk language or the Cray MTA’s runtime libraries [13], [1].
Moreover, Chapel’s general support for parallelism does not
preclude the user from coding in an SPMD style if they wish.

Supporting general parallel programming also means target-
ing a broad range of parallel architectures. Chapel is designed
to target a wide spectrum of HPC hardware including clusters
of commodity processors and SMPs; vector, multithreading,
and multicore processors; distributed memory, shared address
space, and shared memory architectures; networks of any
topology; and custom vendor architectures. Our portability

2A locale in Chapel is a unit of the target architecture that supports
computation and data storage. Locales are defined for each architecture such
that a locale’s threads will all have similar access times to any specific memory
address. For commodity clusters, each of their (single-core) processors,
multicore processors, or SMP nodes would be considered a locale.
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goal is to have any legal Chapel program run correctly on
all of these architectures, and for Chapel programs that ex-
press parallelism in an architecturally-neutral way to perform
reasonably on all of them. Naturally, Chapel programmers can
tune their codes to more closely match a particular machine’s
characteristics, though doing so may cause the program to be
a poor match for other architectures. In this article we present
codes written in an architecturally-neutral manner and note
places where they could be tuned to better match specific
architectural characteristics, including memory models and
network capabilities.

A second theme in Chapel is to allow the user to optionally
and incrementally specify where data and computation should
be placed on the physical machine. We consider this control
over program locality to be essential for achieving scalable
performance on large machine sizes given current architectural
trends. Such control contrasts with shared-memory program-
ming models like OpenMP [7] which present the user with
a flat memory model. It also contrasts with SPMD-based
programming models in which such details are explicitly
specified by the programmer on a process-by-process basis
via the multiple cooperating program instances.

A third theme in Chapel is support for object-oriented
programming (OOP), which has been instrumental in rais-
ing productivity in the mainstream programming community.
Chapel supports traditional reference-based classes as well as
value classes. Programmers are not required to use an object-
oriented style in their code, so that traditional Fortran and C
programmers need not adopt a new programming paradigm in
order to use Chapel effectively.3

Chapel’s fourth theme is support for generic programming
and polymorphism, allowing code to be written in a style that
is generic across types and thereby applicable to variables
of various types, sizes, and precisions. The goal of these
features is to support exploratory programming as in popular
interpreted and scripting languages, and to support code reuse
by allowing algorithms to be expressed without explicitly
replicating them for each possible type. This flexibility at
the source level is implemented by having the compiler
create versions of the code for each required type signature
rather than by relying on dynamic typing which would incur
unacceptable runtime overheads.

Chapel’s first two themes are designed to provide sup-
port for general, performance-oriented parallel programming
through high-level abstractions. The second two themes are
supported to help narrow the gulf that exists between parallel
programming languages and popular mainstream program-
ming or scripting languages. The benchmarks in this paper
illustrate Chapel’s support for global-view programming, for
locality control, and for generic programming. Due to the rel-
atively straightforward style of parallel computation required
for these benchmarks, this article does not demonstrate many
of Chapel’s features for more general parallelism and locality
control. We also chose not to utilize OOP concepts in our

3Note that many of Chapel’s standard library capabilities are implemented
using objects, so these may require Fortran and C programmers to utilize a
method-invocation style of syntax when using them. However, such use does
not necessitate broader adoption of OOP methodologies.

benchmark codes since we do not believe that the introduction
of objects would greatly improve the benchmarks’ clarity,
generality, organization, or performance.

For a more complete introduction to Chapel, the reader is
referred to our project’s website4, overview publications, and
draft language specification [8], [5], [3].

IV. CODING CONVENTIONS

In writing these codes, we used the HPC Challenge Class 2
Official Specification as our primary guide for defining the
computations [10]. We studied and benefited from the HPCC
reference implementations as well as the 2005 finalist codes,
but typically chose to express the benchmarks in our own style
rather than trying to mimic pre-existing implementations.

In particular, we chose names for our variables and sub-
routines that we found descriptive and appealing rather than
trying to adhere to the naming conventions of previous imple-
mentations. The primary exception to this rule is for variables
named in the written specification, such as m, n, and NU . For
these variables, we adopted the specification’s names in order
to clarify the ties between our code and the official description.

Several concerns directed our coding design (in roughly this
order):
• faithfulness to the written specification
• ability to generate code with good performance
• clarity and elegance of the solution, emphasizing read-

ability over minimization of code size
• appropriate and demonstrative uses of Chapel features
• implementations that are generic with respect to types

and problem parameters
• support for execution-time control over key program

parameters like problem sizes
• ability to be tested in our nightly regression suite

Some of these motivations, particularly the last three, cause
our programs to be slightly more general than required by the
written specification. However, we believe that they also result
in more interesting and realistic application codes.

Structurally, we tried to keep the timed kernel of the com-
putation in the program’s main() procedure, moving other
functionality such as initialization, verification, and I/O into
separate routines. In the Random Access and FFT benchmarks,
we also abstracted kernels of the computation into helper
iterators and routines to improve abstraction and reuse.

Stylistically, we tend to use mixed-case names to express
multi-word identifiers, rather than underscores. We typically
use an initial lower-case letter when naming procedures and
non-distributed variables, while domains, distributed arrays,
and class instances start with an upper-case letter.

In our code listings, boldface text is used to indicate
Chapel’s reserved words and standard types, while “. . .”
represents code that is elided in an excerpt for brevity.

As mentioned previously, we approached these codes as we
would for a large-scale parallel machine—thus they contain
distributed data structures, parallel loops, and array-based par-
allelism. Since our current compiler only supports execution

4http://chapel.cs.washington.edu
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const ProblemSpace: domain(1) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

Fig. 1. STREAM Triad Kernel in Chapel

on a single locale, these constructs will necessarily fall into
the degenerate cases of allocating data structures on a single
locale and, for the single-core processors we use, executing
parallel loops and array statements using a single thread.

V. STREAM TRIAD

The STREAM Triad benchmark asks the programmer to
take two vectors of random 64-bit floating-point values, b and
c, and to use them to compute a = b + α · c for a given scalar
value α. As with all of the HPCC benchmarks, the problem
size for the vectors must be chosen such that they consume
1/4 – 1/2 of the system memory. STREAM Triad is designed
to stress local memory bandwidth since the vectors may be
allocated in an aligned manner such that no communication is
required to perform the computation.

A. Overview of STREAM Triad in Chapel

Our approach to the STREAM Triad benchmark is sum-
marized by the lines of code in Figure 1. This code excerpt
presupposes the definition of two named values, m defining
the problem size and alpha defining the scalar multiplication
value for the Triad computation (α). It also refers to a named
type, elemType, that represents the element type to be stored
in the vectors.

The first line declares a constant named ProblemSpace that
is defined to be a domain—a first-class representation of
an index set, potentially distributed across the memories of
multiple locales. In this instance, the index set is declared to
be 1-dimensional and to describe the indices {1, 2, . . . , m}.
ProblemSpace’s definition also specifies that it should be
distributed across the user’s locale set using the “Block”
distribution. Such distributions specify how a domain’s indices
should be mapped to a set of locales and how they should
be represented within each locale’s memory. In this case, the
Block distribution is a standard Chapel distribution that assigns
contiguous blocks of indices to each locale.

The next line uses the ProblemSpace domain to declare
three arrays—A, B, and C—used to represent the vectors, a, b,
and c from the written specification. The domain’s index set
defines the size and shape of these arrays, and its distribution
specifies the arrays’ distributed implementation across the lo-
cales and within their local memories. The identifier elemType
specifies the type of each array element (defined to be a 64-bit
floating-point value in our implementation).

The final line expresses the computation itself, using whole-
array syntax to specify the elementwise multiplications, ad-
ditions, and assignments needed to perform the Triad com-
putation. Whole-array operations like this one are implicitly
parallel and each locale will perform the operations for the
array elements that it owns, as defined by ProblemSpace’s

distribution (since that was the domain used to define all three
arrays).

B. STREAM Triad Performance Notes

Once we have a distributed-memory implementation of
Chapel and some additional scalar optimizations, we expect
our STREAM Triad implementation to perform as well as the
target architecture allows—constrained only by the rate of a
locale’s local memory accesses. The timed Triad computation
is embarrassingly parallel, and its expression in Chapel makes
this obvious through the use of whole-array operations on
arrays declared using a single domain. This demonstrates
one of the many advantages of domains, which is that they
often provide the compiler with valuable information about
the relative alignment of arrays in distributed memory [4].

Our main implementation challenge in obtaining good per-
formance relates to the definition of the Block distribution
itself. While our team has extensive experience implement-
ing block distributions whose performance competes with or
outperforms hand-coded benchmarks [4], [9], a major goal
for Chapel is to write all of its standard distributions using
the same mechanism that advanced Chapel users would use
to author their own distributions. This contrasts with prior
language work in which compilers typically have special
knowledge of standard distributions. Our challenge is to design
a distribution interface that allows the compiler to implement
computations using standard distributions without compromis-
ing performance. If we fail to meet this challenge, we can
always fall back on the approach of embedding knowledge of
standard distributions into the compiler; however, this would
be unfortunate because it suggests that users may face a
performance penalty if they need to use a distribution that
Chapel does not provide.

Our final performance-related note for STREAM Triad
relates to the fact that Chapel uses a multithreaded execution
model to implement its program semantics. Users who are
accustomed to an SPMD execution model may worry that
for embarrassingly parallel applications like STREAM Triad,
the overhead of supporting a general multithreaded execution
environment may be overkill since simpler SPMD execution
is sufficient. While we believe that multithreaded execution is
required in the next generation of parallel languages to support
general parallel programming, we also recognize the efficiency
advantages of the SPMD model due to its simplicity. For this
reason, we expect to optimize our implementation for phases
of computation in which statically scheduled threads suffice,
either in the compiler-generated code or in its runtime support
system.

Using STREAM Triad as a specific example, when the
compiler analyzes the source code, it can trivially see that
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const TableSpace: domain(1, indexType) distributed(Block) = [0..m);
var T: [TableSpace] elemType;

const UpdateSpace: domain(1, indexType) distributed(Block) = [0..N_U);

[i in TableSpace] T(i) = i;

forall block in UpdateSpace.subBlocks do
for r in RAStream(block) do
T(r & indexMask) ˆ= r;

. . .

iterator RAStream(block) {
var val = getNthRandom(block.low);
for i in block {
getNextRandom(val);
yield val;

}
}

Fig. 2. Random Access Kernel and Stream Iterator in Chapel

there is neither task parallelism nor explicit parallelism spec-
ified in the code. All parallelism comes from performing
implicitly parallel operations on distributed arrays—whole-
array operations, pseudo-random fills, and reductions. Given
such information, the compiler may choose to generate code
that schedules a single thread per core across the distributed
machine, using them in an SPMD fashion. Recall that Chapel’s
global-view model of control specifies that the entry point
is executed by a single logical thread, allowing an SPMD
execution strategy to be used as long as the illusion of a single
startup thread is maintained and the program’s semantics
allow it. Similarly, the compiler may use an SPMD execution
strategy for a single phase of the user’s program and more
general techniques for other phases when it can prove such an
approach is legal.

Alternatively, Chapel’s runtime support for multithreading
may be tuned so that when a single thread is running per
core, the overheads required by more general multithreading
capabilities are minimized. In the limit, this may allow mul-
tithreaded Chapel codes executing in an SPMD style to be
competitive with explicit SPMD execution models. Even in
this scenario it should be expected that compiler-generated
information about the threading and communication require-
ments of a computation phase would help Chapel’s runtime
libraries shut down unnecessary sources of runtime overhead,
such as services for creating remote threads or servicing one-
sided communication requests on a commodity cluster.

VI. RANDOM ACCESS (RA)
The Random Access benchmark computes pseudo-random

updates to a large distributed table of 64-bit integer values,
T . Each table location Ti is initialized to store its index i in
order to support verification of the computation afterwards.
The pseudo-random values that are generated are used both
to specify the table location to be updated and the value to
use for the update. The updates themselves are performed
by xor-ing the random value into the table location. Because
multiple updates may attempt to modify the same table loca-
tion simultaneously, the benchmark permits a certain fraction

of such conflicting updates to be lost. Random Access is
designed to test a system’s ability to randomly access memory
at a fine granularity. The benchmark permits updates to be
performed in batches of a certain size as a concession to
architectures and programming models that do not support
fine-grain communication.

A. Overview of Random Access in Chapel
Figure 2 shows an excerpt from the Chapel implementation

of the Random Access benchmark that summarizes the com-
putation. It assumes the definition of three named values: m
which defines the problem size, N U which represents the
number of updates (NU ), and indexMask which stores the
bitmask used to create legal indices into the table. It also refers
to two named types, indexType and elemType, used to represent
the types that should be used to store the indices and elements
of table T , respectively.

The first two lines define a domain and array used to
represent the distributed table, T , that is randomly accessed
by the benchmark. The next line defines a second domain,
UpdateSpace that represents the distribution of the table up-
date work across the locale set. Note that UpdateSpace is not
used to allocate any arrays, only to distribute the computation
space.

Both of the domain declarations in this excerpt specify a
second domain argument in addition to the rank, indexType.
This indicates the integer type to be used for representing the
domain’s indices which defaults to int if left unspecified. In
this benchmark, we use a 64-bit unsigned integer as the index
type to support large tables and to simplify the indexing op-
erations using 64-bit pseudo-random values. Note furthermore
that the domain initializers use a slightly different domain
specifier than in the STREAM Triad benchmark: [lo..hi). This
domain syntax is meant to suggest open intervals in math, and
defines the index set {lo, lo + 1, . . . , hi− 1}.

The computation starts on the fourth line of code which
initializes the table using a forall expression, representing the
parallel loop: “for all indices i in TableSpace, assign Ti the
value i.”
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The main loop in the code computes the random accesses
using a nested loop which is defined by invoking two iterators.
In Chapel, an iterator is like a function, but rather than
creating a single result via a return, it generates a stream
of results via a yield keyword. Chapel’s yield statement is
like a traditional return except that the iterator’s execution
conceptually continues onwards from that point. Iterators are
typically used to specify loops, and can be viewed as a concept
for abstracting complex control flow away from loop headers
just as functions are used to abstract code away from an
invocation point. As an example, the complicated loop nest
used to implement a multidimensional tiled iteration can be
specified once using an iterator and then invoked multiple
times to tile many loops in a clean, modular manner.

The outer loop used to compute the random updates invokes
a standard iterator defined by the Block distribution to generate
sub-blocks of work that can be performed in parallel. The
number of sub-blocks created will be determined by the
degree of parallelism supported by the target architecture. For
example, on a machine with 16 locales of 4 cores each, 64 sub-
blocks would be generated by the iterator, one for each core.

The inner loop uses a user-defined iterator RAStream()
that is shown at the bottom of Figure 2. This iterator is
written to generate a stream of values corresponding to the
indices specified by its argument block. It is written using
two helper functions not shown here, getNthRandom()
and getNextRandom(). Upon computing each value, the
iterator yields it and then goes on to compute the next one.
After exiting the for loop, the end of the iterator is reached,
and it terminates.

The body of the loop uses the values yielded by the
iterator to update the table using Chapel’s xor operator (ˆ)
used in its read-modify-write form (ˆ=). Since multiple tasks
created by the outer loop may attempt to update a given table
position simultaneously, this code contains a race condition as
permitted by the benchmark specification. In order to avoid the
race condition (as we must during the benchmark’s verification
stage) the loop body can be prefixed by Chapel’s atomic
keyword to specify that the update must be computed as
though it was instantaneous from the point-of-view of other
threads. In such a case, the loop body would be written:

atomic T(r & indexMask) ˆ= r;

By implementing the random stream using an iterator,
our code allows different pseudo-random number generation
techniques to be swapped in and out without modifying
the computation itself. Moreover, the use of an iterator al-
lows additional parallelism to be introduced by rewriting the
RAStream() iterator to return multiple values rather than
singletons. Such an implementation would cause the table
update operation to be promoted (as in the STREAM Triad
benchmark) resulting in implicit parallelism and the potential
for batching communication.

B. Random Access Performance Notes

For most platforms, the limiting factor for Random Ac-
cess performance is the hardware rather than the software.
We anticipate this to be the case for our parallel Chapel

implementation as well. Without significant optimization, the
default implementation that we provide will utilize the full
parallelism of a machine’s processors, but will make updates
to the global table one element at a time, requiring a lot
of fine-grain communication. For architectures that are tuned
for message-passing workloads this is a worst-case scenario,
while for others, having many small messages in flight is
not an issue. As we noted in the previous section, the iter-
ators used to describe the computation can be modified to
create chunks of work of varying sizes to amortize these
communication overheads or to use vector scatter technologies
(if available on the architecture). In addition, a programmer
who is committed to tuning the computation for a specific
architecture could restructure the loops, add new levels of
parallelism, or batch updates manually in order to make
the computation match the architecture’s characteristics. For
example, on an architecture with single-threaded processors
and poor fine-grain communication, the programmer might
choose to rewrite the outer loop to oversubscribe each locale
since the communication overheads are likely to dominate the
costs of software multithreading.

Our second performance-related note for Random Access
relates to iterators. Iterators are one of several language
concepts in Chapel that define semantics without specifying
a specific implementation approach. This provides the user
with a nice abstraction while allowing the compiler to consider
a palette of implementation options and select one that is
well-suited for the specific case. In particular, an iterator’s
definition and uses can be analyzed to select an implementa-
tion technique that is appropriate for each invocation. While
iterator bodies can contain complicated control structures
and multiple yield statements in the general case, and while
they can be invoked in complicated ways such as zippered
iteration, many common cases simply use iterators as a clean
and modular way of expressing a loop. The RAStream()
iterator in our Random Access code is one such example,
defining a straightforward loop structure and invoking it in
a straightforward way. In such cases, the compiler can simply
inline the iterator’s definition in place of the loop statement and
then inline the loop’s body into the iterator’s yield statement.
This results in no runtime overhead compared to writing the
loop out explicitly, while supporting loop-level modularity and
the ability for the iterator to be invoked in more complicated
ways in other loops. For an overview of some of our early and
more general implementation approaches for iterators, please
refer to our previous work [14].

Another Chapel concept that defines semantics without
specifying an implementation mechanism is the atomic sec-
tion. Atomic sections that contain arbitrary code can be
implemented using a number of sophisticated techniques, in-
cluding the body of research known as Software and Hardware
Transactional Memory in which groups of memory operations
appear to execute atomically from the point of view of
other threads. Implementing Software Transactional Memory
effectively on a distributed memory machine remains an open
problem, and one that we are actively investigating. For simple
atomic statements like the one contained in this code, however,
simpler implementation techniques can be utilized. For exam-
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for i in [2..log2(numElements)) by 2 {
const m = radix*span,

m2 = 2*m;

forall (k,k1) in (ADom by m2, 0..) {
var wk2 = W(k1),

wk1 = W(2*k1),
wk3 = (wk1.re - 2 * wk2.im * wk1.im,

2 * wk2.im * wk1.re - wk1.im):elemType;

forall j in [k..k+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

wk1 = W(2*k1+1);
wk3 = (wk1.re - 2 * wk2.re * wk1.im,

2 * wk2.re * wk1.re - wk1.im):elemType;
wk2 *= 1.0i;

forall j in [k+m..k+m+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

}
span *= radix;

}

. . .

def butterfly(wk1, wk2, wk3, inout A:[1..radix]) { . . . }

Fig. 3. 1D Radix-4 FFT in Chapel

ple, by guarding the verification loop containing the atomic
updates with the proper synchronization, the compiler can use
locks to ensure that no two threads try to access the same table
element simultaneously. In the common case where there are
no conflicts, the overhead of these locks should be negligible
compared to the overhead of the fine-grain remote accesses.
Moreover, on architectures with support for atomic memory
operations (AMOs), extended memory semantics (EMS), or
compare-and-swap (CAS) instructions, the Chapel compiler
can utilize such capabilities to further reduce overheads.

VII. FAST FOURIER TRANSFORM (FFT)
The FFT benchmark requires the user to compute a 1D dis-

crete fourier transform on a vector of pseudo-random values.
The user is given a fair amount of latitude in choosing an FFT
algorithm and approach as long as the outcome is correct.
Depending on how it is written, the FFT benchmark could
stress a number of system parameters including floating point
operations, local memory bandwidth, cache size, and network.

A. Overview of FFT in Chapel

We chose to implement a radix-4 FFT in order to take
advantage of its improved Flops-to-MemOps ratio. Our main
loop for FFT is shown in Figure 3. The outer loop iterates over
the FFT phases using Chapel’s support for strided ranges of
integer values. The next loop uses zippered iteration to traverse
two iteration spaces simultaneously, the second of which is
defined using the indefinite range “0..” to indicate that it
should start counting at zero and iterate as many times as the
iterator with which it is zippered. The iterator indices, k and
k1 are defined using a tuple-style variable declaration.

The inner loops describe the parallelizable calls to the
butterfly() routine, which is written to take three twiddle

values of unspecified type that it uses to update values within
a 4-element array, A. The argument types are unspecified and
are typically represented using Chapel’s 128-bit complex type.
However, by omitting these argument types, programmers can
optimize calls that they know to use twiddle factors with
zero components by passing in values of Chapel’s real or
pure imaginary types. Such calls would cause the compiler
to instantiate the butterfly routine for these types, thereby
eliminating the extraneous floating point operations against
zero values that would be incurred by a routine written
specifically for complex values.

The calls to butterfly() are also of interest because
they pass a strided slice of A to the formal vector argument
that was defined using the anonymous domain “[1..radix]”.
This results in the creation of an array view, allowing the
original array elements to be accessed within the routine using
the local indices 1, 2, . . . radix.

B. FFT Performance Notes

It is generally known to be very challenging to express
a global 1D FFT that is clear while also being well-tuned
for general parallel architectures—there are simply too many
degrees of freedom and too many architectural characteris-
tics that can impact performance. In our approach, we have
implemented the computation cleanly and expressed both
outer- and inner-loop concurrency in order to maximize the
parallelism available to the compiler. An aggressive compiler
might recognize that the trip counts of these loops vary with
the FFT’s phases and create specialized versions of dfft()’s
loops to optimize for outer- and inner-loop parallelism, or a
blend of the two. However, even in such a case, the target
architecture’s memory model and network can still play a
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key role in how the performance-minded user might express
additional optimizations to maximize efficiency.

At one end of the spectrum, even on a parallel machine
with a flat shared memory like the Cray MTA, the clean
expression of the computation as given here is unlikely to
perform optimally. In our 2006 HPCC entry, we provided
an alternate Chapel implementation of FFT that is based
on the 2005 HPCC submission for the MTA2 [16]. In that
implementation, several specialized versions of the inner loops
were created in order to maximize outer-loop parallelism,
take advantage of twiddle values with zero components and
tune for the MTA’s characteristics. While we are optimistic
that our simpler implementation of the benchmark would
come close to achieving the performance of this specialized
version, it will always be the case that programmers willing to
expend additional effort to tune for a given platform are likely
to produce better performance. Optimizations such as those
expressed in this implementation would be likely to improve
performance for flat shared-memory contexts such as an SMP
node, multicore processor, or the MTA.

On the other end of the spectrum is the distributed-memory
case. Here, our implementation faces the problem that in later
phases of the computation, the array slices become increas-
ingly spread out, accessing values stored in the memories
of one or more remote locales. As in the Random Access
benchmark, with no optimization this is likely to result in
fine-grain messages that exercise the machine’s ability to
handle such communications efficiently. Recent work by John
Mellor-Crummey’s team on the Rice D-HPF compiler strives
to statically analyze loops similar to the ones in our solution
so that the programmer can express the computation naturally
while having the compiler generate an efficient FFT implemen-
tation [17]. In their work, they analyze loop bounds and array
access patterns in order to create specialized versions of the
loops for butterflies that are completely local or distributed. In
the latter case, communication is overlapped with computation
in order to bring remote values into a locale’s memory in a way
that hides the communication latency. We hope to duplicate
their success in the Chapel compiler and believe that Chapel’s
support for domains and index types should support such
analysis cleanly.

Alternatively, the Chapel programmer can explicitly manage
the array’s distribution in order to minimize communication.
For example, by redistributing the domain representing the
problem space from a Block to a Cyclic distribution at the
appropriate stage in the computation, accesses to values that
would have been remote in the later phases can be localized
(given an appropriate number of processors). This approach
effectively implements the common technique of computing
the 1D FFT using a 2D representation that is blocked in
one dimension, and then transposing it partway through the
computation to localize accesses.

Of course, the 2D approach to 1D FFTs can also be coded
directly in Chapel by declaring 2D domains and arrays that
are distributed in one dimension and local in the other. After
the local butterflies have been exhausted, the array can be
transposed or the domain can be redistributed in order to
localize the butterflies in the second dimension. We have coded

several of these variations in Chapel, but omit them from this
article due to space limitations—such an exploration merits a
paper of its own.

We conclude this discussion of FFT performance notes by
echoing our opening statement: The FFT is a rich computation
with many possible approaches that are sensitive to architec-
tural details. As we target large-scale machines, our hope is
that as we can achieve acceptable portable performance from
our baseline implementation without requiring the algorithm to
be cluttered beyond recognition. We also expect to demonstrate
the ability for a user to further optimize performance for
a particular architecture by performing the various rewrites
described in this section.

VIII. SUMMARY AND FUTURE WORK

In summary, we have created implementations of the HPCC
STREAM Triad, Random Access, and FFT benchmarks that
we believe represent the computations cleanly, succinctly,
and in a manner that will support good performance as
our compiler development effort proceeds. As stated in the
introduction, all codes listed in the appendices compile and
run with our current compiler. The Chapel compiler is written
in C++ and utilizes a Chapel-to-C compilation strategy for
portability, allowing us to target any UNIX-like environment
that supports a standard C compiler. Our compiler currently
builds, compiles, and generates executables for Linux, 64-bit
Linux, Cygwin, SunOS, and Mac OS X platforms. We run
a nightly regression test suite of over 1,685 tests to ensure
forward progress.

A limited initial release of the Chapel compiler was made
available to members of the government High Productivity
Language Systems (HPLS) team in December 2006. This
release was designed to demonstrate many of Chapel’s features
in a shared-memory context and will enable experimentation
with the Chapel language by Cray developers and external re-
viewers. Our implementation priorities for 2007 are to support
multi-locale execution for distributed memory machines and
to improve the performance of single-thread execution. We
plan to minimize hardware and software assumptions during
this phase in order to support portability of the implementation
(e.g., commodity Linux clusters are a primary target). We plan
to release updated versions of the compiler in 2007.

In concluding this article, it is worth noting that while
the HPCC benchmarks have demonstrated many of Chapel’s
productivity features for global-view programming and soft-
ware engineering, they remain rather restricted in terms of
the parallel concepts that they exercise. In particular, none
of these benchmarks required any significant task parallelism,
thread synchronization, or nested parallelism. Because the
computations were typically driven by a single distributed
problem vector, there was no need for Chapel’s features for
explicit locality control. And even within the data parallel
space, all of these benchmarks used only dense 1D vectors of
data, leaving Chapel’s support for multidimensional, strided,
and sparse arrays; associative and opaque arrays; and array
composition on the table. In future work, we intend to under-
take similar studies for computations that exercise a broader
range of Chapel’s features.
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APPENDIX A
STREAM TRIAD CHAPEL CODE

1 use Time;
2 use Types;
3 use Random;

5 use HPCCProblemSize;

8 param numVectors = 3;
9 type elemType = real(64);

11 config const m = computeProblemSize(elemType, numVectors),
12 alpha = 3.0;

14 config const numTrials = 10,
15 epsilon = 0.0;

17 config const useRandomSeed = true,
18 seed = if useRandomSeed then SeedGenerator.clockMS else 314159265;

20 config const printParams = true,
21 printArrays = false,
22 printStats = true;

25 def main() {
26 printConfiguration();

28 const ProblemSpace: domain(1) distributed(Block) = [1..m];
29 var A, B, C: [ProblemSpace] elemType;

31 initVectors(B, C);

33 var execTime: [1..numTrials] real;

35 for trial in 1..numTrials {
36 const startTime = getCurrentTime();
37 A = B + alpha * C;
38 execTime(trial) = getCurrentTime() - startTime;
39 }

41 const validAnswer = verifyResults(A, B, C);
42 printResults(validAnswer, execTime);
43 }

46 def printConfiguration() {
47 if (printParams) {
48 printProblemSize(elemType, numVectors, m);
49 writeln("Number of trials = ", numTrials, "\n");
50 }
51 }

54 def initVectors(B, C) {
55 var randlist = RandomStream(seed);

57 randlist.fillRandom(B);
58 randlist.fillRandom(C);

60 if (printArrays) {
61 writeln("B is: ", B, "\n");
62 writeln("C is: ", C, "\n");
63 }
64 }

67 def verifyResults(A, B, C) {
68 if (printArrays) then writeln("A is: ", A, "\n");

70 const infNorm = max reduce [i in A.domain] abs(A(i) - (B(i) + alpha * C(i)));

72 return (infNorm <= epsilon);
73 }
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76 def printResults(successful, execTimes) {
77 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
78 if (printStats) {
79 const totalTime = + reduce execTimes,
80 avgTime = totalTime / numTrials,
81 minTime = min reduce execTimes;
82 writeln("Execution time:");
83 writeln(" tot = ", totalTime);
84 writeln(" avg = ", avgTime);
85 writeln(" min = ", minTime);

87 const GBPerSec = numVectors * numBytes(elemType) * (m/minTime) * 1.0e-9;
88 writeln("Performance (GB/s) = ", GBPerSec);
89 }
90 }
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APPENDIX B
RANDOM ACCESS CHAPEL CODE

A. Random Access Computation

1 use Time;

3 use HPCCProblemSize;
4 use RARandomStream;

7 param numTables = 1;
8 type elemType = randType,
9 indexType = randType;

11 config const n = computeProblemSize(elemType, numTables,
12 returnLog2=true): indexType,
13 N_U = 2**(n+2);

15 const m = 2**n,
16 indexMask = m-1;

18 config const sequentialVerify = (numLocales < log2(m)),
19 errorTolerance = 1.0e-2;

21 config const printParams = true,
22 printArrays = false,
23 printStats = true;

26 def main() {
27 printConfiguration();

29 const TableSpace: domain(1, indexType) distributed(Block) = [0..m);
30 var T: [TableSpace] elemType;

32 const UpdateSpace: domain(1, indexType) distributed(Block) = [0..N_U);

34 const startTime = getCurrentTime();

36 [i in TableSpace] T(i) = i;

38 forall block in UpdateSpace.subBlocks do
39 for r in RAStream(block) do
40 T(r & indexMask) ˆ= r;

42 const execTime = getCurrentTime() - startTime;

44 const validAnswer = verifyResults(T, UpdateSpace);
45 printResults(validAnswer, execTime);
46 }

49 def printConfiguration() {
50 if (printParams) {
51 printProblemSize(elemType, numTables, m);
52 writeln("Number of updates = ", N_U, "\n");
53 }
54 }

57 def verifyResults(T: [?TDom], UpdateSpace) {
58 if (printArrays) then writeln("After updates, T is: ", T, "\n");

60 if (sequentialVerify) then
61 for r in RAStream([0..N_U)) do
62 T(r & indexMask) ˆ= r;
63 else
64 forall i in UpdateSpace {
65 const r = getNthRandom(i+1);
66 atomic T(r & indexMask) ˆ= r;
67 }

69 if (printArrays) then writeln("After verification, T is: ", T, "\n");

71 const numErrors = + reduce [i in TDom] (T(i) != i);
72 if (printStats) then writeln("Number of errors is: ", numErrors, "\n");
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74 return numErrors <= (errorTolerance * N_U);
75 }

78 def printResults(successful, execTime) {
79 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
80 if (printStats) {
81 writeln("Execution time = ", execTime);
82 writeln("Performance (GUPS) = ", N_U / execTime * 1.0e-9);
83 }
84 }

B. Random Access: Random Value Generation Module

1 module RARandomStream {
2 param randWidth = 64;
3 type randType = uint(randWidth);

5 const bitDom = [0..randWidth),
6 m2: [bitDom] randType = computeM2Vals(randWidth);

9 iterator RAStream(block) {
10 var val = getNthRandom(block.low);
11 for i in block {
12 getNextRandom(val);
13 yield val;
14 }
15 }

18 def getNthRandom(in n) {
19 param period = 0x7fffffffffffffff/7;

21 n %= period;
22 if (n == 0) then return 0x1;

24 var ran: randType = 0x2;
25 for i in [0..log2(n)) by -1 {
26 var val: randType = 0;
27 for j in bitDom do
28 if ((ran >> j) & 1) then val ˆ= m2(j);
29 ran = val;
30 if ((n >> i) & 1) then getNextRandom(ran);
31 }
32 return ran;
33 }

36 def getNextRandom(inout x) {
37 param POLY:randType = 0x7;
38 param hiRandBit = 0x1:randType << (randWidth-1);

40 x = (x << 1) ˆ (if (x & hiRandBit) then POLY else 0);
41 }

44 iterator computeM2Vals(numVals) {
45 var nextVal = 0x1: randType;
46 for i in 1..numVals {
47 yield nextVal;
48 getNextRandom(nextVal);
49 getNextRandom(nextVal);
50 }
51 }
52 }
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APPENDIX C
FFT CHAPEL CODE (1D RADIX-4)

1 use BitOps;
2 use Random;
3 use Time;

5 use HPCCProblemSize;

8 param radix = 4;

10 param numVectors = 2;
11 type elemType = complex(128);

14 config const n = computeProblemSize(elemType, numVectors, returnLog2 = true);
15 const m = 2**n;

17 config const epsilon = 2.0 ** -51.0,
18 threshold = 16.0;

20 config const useRandomSeed = true,
21 seed = if useRandomSeed then SeedGenerator.clockMS else 314159265;

23 config const printParams = true,
24 printArrays = false,
25 printStats = true;

28 def main() {
29 printConfiguration();

31 const TwiddleDom: domain(1) distributed(Block) = [0..m/4);
32 var Twiddles: [TwiddleDom] elemType;

34 const ProblemDom: domain(1) distributed(Block) = [0..m);
35 var Z, z: [ProblemDom] elemType;

37 initVectors(Twiddles, z);

39 const startTime = getCurrentTime();

41 Z = conjg(z);
42 bitReverseShuffle(Z);
43 dfft(Z, Twiddles);

45 const execTime = getCurrentTime() - startTime;

47 const validAnswer = verifyResults(z, Z, Twiddles);
48 printResults(validAnswer, execTime);
49 }

52 def printConfiguration() {
53 if (printParams) then printProblemSize(elemType, numVectors, m);
54 }

57 def initVectors(Twiddles, z) {
58 computeTwiddles(Twiddles);
59 bitReverseShuffle(Twiddles);

61 fillRandom(z, seed);

63 if (printArrays) {
64 writeln("After initialization, Twiddles is: ", Twiddles, "\n");
65 writeln("z is: ", z, "\n");
66 }
67 }

70 def computeTwiddles(Twiddles) {
71 const numTwdls = Twiddles.numElements,
72 delta = 2.0 * atan(1.0) / numTwdls;
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74 Twiddles(0) = 1.0;
75 Twiddles(numTwdls/2) = let x = cos(delta * numTwdls/2)
76 in (x, x):elemType;
77 forall i in [1..numTwdls/2) {
78 const x = cos(delta*i),
79 y = sin(delta*i);
80 Twiddles(i) = (x, y):elemType;
81 Twiddles(numTwdls - i) = (y, x):elemType;
82 }
83 }

86 def bitReverseShuffle(Vect: [?Dom]) {
87 const numBits = log2(Vect.numElements),
88 Perm: [i in Dom] Vect.eltType = Vect(bitReverse(i, revBits=numBits));
89 Vect = Perm;
90 }

93 def bitReverse(val: ?valType, revBits = 64) {
94 param mask = 0x0102040810204080;
95 const valReverse64 = bitMatMultOr(mask, bitMatMultOr(val:uint(64), mask)),
96 valReverse = bitRotLeft(valReverse64, revBits);
97 return valReverse: valType;
98 }

101 def dfft(A: [?ADom], W) {
102 const numElements = A.numElements;
103 var span = 1;

105 for i in [2..log2(numElements)) by 2 {
106 const m = radix*span,
107 m2 = 2*m;

109 forall (k,k1) in (ADom by m2, 0..) {
110 var wk2 = W(k1),
111 wk1 = W(2*k1),
112 wk3 = (wk1.re - 2 * wk2.im * wk1.im,
113 2 * wk2.im * wk1.re - wk1.im):elemType;

115 forall j in [k..k+span) do
116 butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

118 wk1 = W(2*k1+1);
119 wk3 = (wk1.re - 2 * wk2.re * wk1.im,
120 2 * wk2.re * wk1.re - wk1.im):elemType;
121 wk2 *= 1.0i;

123 forall j in [k+m..k+m+span) do
124 butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);
125 }
126 span *= radix;
127 }

129 if ((span*radix) == numElements) then
130 forall j in [0..span) do
131 butterfly(1.0, 1.0, 1.0, A[j..j+3*span by span]);
132 else
133 forall j in [0..span) {
134 const a = A(j),
135 b = A(j+span);
136 A(j) = a + b;
137 A(j+span) = a - b;
138 }
139 }

142 def butterfly(wk1, wk2, wk3, inout A:[1..radix]) {
143 var x0 = A(1) + A(2),
144 x1 = A(1) - A(2),
145 x2 = A(3) + A(4),
146 x3rot = (A(3) - A(4))*1.0i;

148 A(1) = x0 + x2;
149 x0 -= x2;
150 A(3) = wk2 * x0;
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151 x0 = x1 + x3rot;
152 A(2) = wk1 * x0;
153 x0 = x1 - x3rot;
154 A(4) = wk3 * x0;
155 }

158 def verifyResults(z, Z, Twiddles) {
159 if (printArrays) then writeln("After FFT, Z is: ", Z, "\n");

161 Z = conjg(Z) / m;
162 bitReverseShuffle(Z);
163 dfft(Z, Twiddles);

165 if (printArrays) then writeln("After inverse FFT, Z is: ", Z, "\n");

167 var maxerr = max reduce sqrt((z.re - Z.re)**2 + (z.im - Z.im)**2);
168 maxerr /= (epsilon * n);
169 if (printStats) then writeln("error = ", maxerr);

171 return (maxerr < threshold);
172 }

175 def printResults(successful, execTime) {
176 writeln("Validation: ", if successful then "SUCCESS" else "FAILURE");
177 if (printStats) {
178 writeln("Execution time = ", execTime);
179 writeln("Performance (Gflop/s) = ", 5.0 * (m * n) / execTime / 1.0e-9);
180 }
181 }
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APPENDIX D
HPCC PROBLEM SIZE COMPUTATION CODE

1 module HPCCProblemSize {
2 use Memory;
3 use Types;

5 config const memRatio = 4;

7 def computeProblemSize(type elemType, numArrays, returnLog2 = false) {
8 const totalMem = + reduce Locale.physicalMemory(unit = Bytes),
9 memoryTarget = totalMem / memRatio,

10 bytesPerIndex = numArrays * numBytes(elemType);

12 var numIndices = (memoryTarget / bytesPerIndex): int;

14 var lgProblemSize = log2(numIndices);
15 if (returnLog2) {
16 numIndices = 2**lgProblemSize;
17 if (numIndices * bytesPerIndex <= memoryTarget) {
18 numIndices *= 2;
19 lgProblemSize += 1;
20 }
21 }

23 const smallestMem = min reduce Locale.physicalMemory(unit = Bytes);
24 if ((numIndices * bytesPerIndex)/numLocales > smallestMem) then
25 halt("System is too heterogeneous: blocked data won’t fit into memory");

27 return if returnLog2 then lgProblemSize else numIndices;
28 }

31 def printProblemSize(type elemType, numArrays, problemSize: ?psType) {
32 const bytesPerArray = problemSize * numBytes(elemType),
33 totalMemInGB = (numArrays * bytesPerArray:real) / (1024**3),
34 lgProbSize = log2(problemSize):psType;

36 write("Problem size = ", problemSize);
37 if (2**lgProbSize == problemSize) {
38 write(" (2**", lgProbSize, ")");
39 }
40 writeln();
41 writeln("Bytes per array = ", bytesPerArray);
42 writeln("Total memory required (GB) = ", totalMemInGB);
43 }
44 }


