High Speed Asynchronous Data
Transfers on the Cray XT3

Ciprian Docan, Manish Parashar and Scott Klasky
The Applied Software System Laboratory
Rutgers, The State University of New Jersey

CUG 2007, Seattle, WA
May, 2007

Outline

* Data Streaming Requirements in the Fusion Simulation
Project
— Support for Code Coupling & Asynchronous Data Movement

* DART Overview
* DART Architecture and Description

* DART Evaluation
* (Conclusions and Future Work

Data Streaming Requirements in the Fusion
Simulation Project (FSP)

GTC Runs on
Teraflop/Petaflop
Supercomputers

Large data analysis

End-to-end system with
monitoring routines

Visualization

* Data Streaming Requirements

— Enable high-throughput, low latency data transfer to support near real-time
access to the data

— Minimize related overhead on the executing simulation
— Adapt to network conditions to maintain desired QoS
— Handle network failures while eliminating data loss

Support for Code Coupling & Asynchronous Data
Movement

* Seine: Dynamic, semantically-specialized shared-spaces for code
coupling
— High-level (shared-space) programming abstractions, efficient and scalable
runtime

* DART: Light-weight substrate for asynchronous, low-overhead/high-
throughput data IO on petascale system

— Based on Portals and RDMA

* ADAPT: Middleware for autonomic wide-area data streaming and

in-transit data processing

— Enable high-throughput, low latency data transfer to support near real-time
access to the data

— Effectively outsource processing to in-transit processing nodes
— Minimize related overhead on the simulation
— Adapt to network conditions to maintain desired QoS

DART: A Substrate for Asynchronous 10

Objectives: Alleviate impact of 10 on scientific simulations
— Minimize total IO time on compute nodes
— Maximize data throughput on compute nodes
— Minimize overhead on data transfers (packet header size)
— Minimize IO computational overhead on compute nodes

* Data transfer logic, data buffering

Key idea — Overlap transfers with computations

DART Client — Runs on compute nodes
— Lightweight & Simple!
* maintains buffers for data transfers
* notifies server when data is available
DART Server — Runs on service/IO nodes

— Contains logic and buffers
* pulls data from compute nodes on notification
* performs requested IO (i.e. file system, socket, etc.)

Data transfers are asynchronous and decoupled

DART: Architecture

Jaguar Ewok
M processors N processors P processors

(en) (en) (en)
Sl

DART Serwver Receiver
GTC Application

;

DART Layer

Portals

* Compute and Service nodes communicate using the Portals
library

* Service nodes and receivers on remote cluster (1.e. Ewok)
communicate using TCP sockets

The Portals Library

Initiator Target

* RDMA implementation with SLISS S Y
OS and Application bypass

Portals Table

* Put operation w

— Initiator pushes its MD content ® o

into the target's address space

®
({optianal) Ackrrnwiedgrent

— Events are recorded

Initiator Target

* Get operation o —_—
— Initiator fetches the target's MD g
content into its address space
— Events are recorded o
y

@ Data
<\|

DART: Server Operation

“empty” buffer “pending” buffer “full” buffer

10

header 5 7 8

\1 eq
2

TCP transfer.
data (Ewok) 11

12

Portals “getdat 6
) 4

A 4

©
v

13

DART Service
Node

DART: Time Sequence at the Client

DART asynchronous IO calls at the client

— Send calls return before data transfer completes

— Data transfers overlap with computations
— 10 calls can block if buffer is full or busy

Send call.

Data transfer

\ 4

Computations

A 4

A

Simulation time step

A 4

A

10 time ,

A

DART: Time Sequence at the Server

* Asynchronous data transfers
— teb — time spent in the “empty buffer” queue
— tpb — time spent in the “pending buffer” queue
— tfb — time spent in the “full buffer” queue

“empty” buffer i« — “pending” buffer | —— “full” buffer
teb] schedule tpb | schedule tfb

total time

DART Evaluation: Achieved Transfer Rates

Maximum transfer rate
achieved between CN and SN
on Jaguar

— One DART server and two
DART clients

— Message sizes varied from 1
MB to 100 MB using 4 MB
increments

— Data dropped at the service
node

transfer rate (MB/sec)

1152

1150

1148

1146

1144

1142

1140

1138

1136

1134

SeaStar Bandwidth Compute-Login Node

tranéfer bw I—

40 50 60
message size (MB)

DART Evaluation: Influence of Compute Time
on 10 Overhead

 Stream time on service node * Compute time 1 microsecond

— Data sends are sequential ~ 3.4 sec — No overlap — IO operation sequential
cumulative time over 100 iterations

Service Node Stream Time Compute Nodes IO Time
3.8 T T 3e+08
stream time
7T 2.50+08
3.6
m 2e+08 |
= 2
a Q
2 35¢f ! e
8 %)
8, g 1.5e+08 |-
o L o
g 3.4 3
= o
£ tes08 |

33

a2l 5e+07

3.1 1 L L L 0 I 1 | 1

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
compute node number compute node number

" Optimum compute time value: # CN * stream time

I:_aboratory

DART Evaluation: Influence of Compute Time
on 10 Overhead

 Stream time on service node * Compute time 4.3 sec
— Data sends are sequential ~ 3.4 sec — Maximum overlap — IO operations
cumulative time over 100 iterations parallel
Service Node Stream Time Compute Nodes IO Time
3.8 T T 80000 T T
stream time tOtsJ;ic; Hmz ,,,,,,,,
70000 | header time --------- i

T

60000
I\ /\ 50000

40000

time (seconds)

30000

—_—
time (micro-seconds)

20000

10000

. ; ; ; e it N . BERURI A
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

compute node number compute node number

" Need to balance compute time with IO time for maximum overlap

I:_aboratory

DART Evaluation: Tests Using the GTC
Application

Experiment using the GTC fusion application

— 128 compute nodes served by 1 service node

— A ~8.9 MB restart file/compute node written every ~4.5 sec
— 100 simulation steps

DART write time: ~0.12 sec
Effective transfer rate ~593Mbps / compute node

IO overhead on compute node 2.7%

DART Evaluation: Tests Using the GTC
Application

GTC IO Time Using Lustre GTC 10 Time Using Dart

1-4 T T T T T T 0'35 T T T T R R T
iotime + iotime +
1 o
12 1 0.3 i 5 + :
i f+ £ §+++
; T Pgirn
2 o5 4
0.25 - S LT M - ¥
1 / : : : i N : iy #§‘$+ i:t + %ﬂ $i
t**. +ii %’1‘* +: * ¥
iE#ﬁ_ + t%f#_ji : + ++*§+ i .
& 08 - = 0.2 |- YR :+* —*;ﬁ;f}% H ++4r g i% ; { ++%£++ i
g 3 + F+ *+++ s ETH ; : ot £+ +$+J‘r4r +
E/ E/ TE L #J} ++++ +=¢=t+ ! £ i £++ +
o F o+ +
= 0.6 : : = = 0.15 ++ ++ % ++ i $1-++ +#+ fi + ¥ ++ e T +++++¢ »Jq' i -
W +ﬂﬂi j%i 4T e ++Qt 1 i+"’+ 1 T oF
: é: Byt o bt PR Sg Al
04 F i 0.1 % ¢+I+ " % S TR ﬁ ¥ LA + i
FA N R i SRS S A A
Fppt E + +
0.2 ; ’3) ’ s, v 0.05 AN
W Al il dad dddd L % p :
0 L L 0
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

transfer samples, 128 nodes (25 sample/node) transfer samples, 128 nodes (25 sample/node)

Conclusions and Future Work

* High throughput, low latency data streaming is critical for
emerging scientific applications

* DART supports low overhead asynchronous IO on the Cray
XT3

* DART Performance

— Maximum achievable transfer rates using Portals

* Two clients and one server

— QOverhead of IO operations on GTC application
* Restart files ~ 8.9 MB/node

* Future work

— Extend DART to support large message sizes
* Integrate with GTC to enable ~160 MB/node restart files

— Enable N x M x P coupling on top of DART

Questions

Thank You !

