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Data Streaming Requirements in the Fusion
Simulation Project (FSP)

GTC Runs on
Teraflop/Petaflop
Supercomputers

Large data analysis

End-to-end system with
monitoring routines

Visualization

* Data Streaming Requirements

— Enable high-throughput, low latency data transfer to support near real-time
access to the data

— Minimize related overhead on the executing simulation
— Adapt to network conditions to maintain desired QoS
— Handle network failures while eliminating data loss




Support for Code Coupling & Asynchronous Data
Movement

* Seine: Dynamic, semantically-specialized shared-spaces for code
coupling
— High-level (shared-space) programming abstractions, efficient and scalable
runtime

* DART: Light-weight substrate for asynchronous, low-overhead/high-
throughput data IO on petascale system

— Based on Portals and RDMA

* ADAPT: Middleware for autonomic wide-area data streaming and

in-transit data processing

— Enable high-throughput, low latency data transfer to support near real-time
access to the data

— Effectively outsource processing to in-transit processing nodes
— Minimize related overhead on the simulation
— Adapt to network conditions to maintain desired QoS




DART: A Substrate for Asynchronous 10

Objectives: Alleviate impact of 10 on scientific simulations
— Minimize total IO time on compute nodes
— Maximize data throughput on compute nodes
— Minimize overhead on data transfers (packet header size)
— Minimize IO computational overhead on compute nodes

* Data transfer logic, data buffering

Key idea — Overlap transfers with computations

DART Client — Runs on compute nodes
— Lightweight & Simple!
* maintains buffers for data transfers
* notifies server when data is available
DART Server — Runs on service/IO nodes

— Contains logic and buffers
* pulls data from compute nodes on notification
* performs requested IO (i.e. file system, socket, etc.)

Data transfers are asynchronous and decoupled




DART: Architecture
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Portals

* Compute and Service nodes communicate using the Portals
library

* Service nodes and receivers on remote cluster (1.e. Ewok)
communicate using TCP sockets




The Portals Library
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DART: Server Operation
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DART: Time Sequence at the Client

DART asynchronous IO calls at the client

— Send calls return before data transfer completes

— Data transfers overlap with computations
— 10 calls can block if buffer is full or busy
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DART: Time Sequence at the Server

* Asynchronous data transfers
— teb — time spent in the “empty buffer” queue
— tpb — time spent in the “pending buffer” queue
— tfb — time spent in the “full buffer” queue

“empty” buffer i« — “pending” buffer | —— “full” buffer
teb] schedule tpb | schedule tfb

total time




DART Evaluation: Achieved Transfer Rates

Maximum transfer rate
achieved between CN and SN
on Jaguar

— One DART server and two
DART clients

— Message sizes varied from 1
MB to 100 MB using 4 MB
increments

— Data dropped at the service
node
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DART Evaluation: Influence of Compute Time
on 10 Overhead

 Stream time on service node * Compute time 1 microsecond

— Data sends are sequential ~ 3.4 sec — No overlap — IO operation sequential
cumulative time over 100 iterations
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DART Evaluation: Influence of Compute Time
on 10 Overhead

 Stream time on service node * Compute time 4.3 sec
— Data sends are sequential ~ 3.4 sec — Maximum overlap — IO operations
cumulative time over 100 iterations parallel
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DART Evaluation: Tests Using the GTC
Application

Experiment using the GTC fusion application

— 128 compute nodes served by 1 service node

— A ~8.9 MB restart file/compute node written every ~4.5 sec
— 100 simulation steps

DART write time: ~0.12 sec
Effective transfer rate ~593Mbps / compute node

IO overhead on compute node 2.7%




DART Evaluation: Tests Using the GTC
Application

GTC IO Time Using Lustre GTC 10 Time Using Dart
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Conclusions and Future Work

* High throughput, low latency data streaming is critical for
emerging scientific applications

* DART supports low overhead asynchronous IO on the Cray
XT3

* DART Performance

— Maximum achievable transfer rates using Portals

* Two clients and one server

— QOverhead of IO operations on GTC application
* Restart files ~ 8.9 MB/node

*  Future work

— Extend DART to support large message sizes
* Integrate with GTC to enable ~160 MB/node restart files

— Enable N x M x P coupling on top of DART




Questions

Thank You !




