

Minimizing the I/O Cycle Time in Simulation Clusters Through the Use of High Performance Storage

Cray Users Group

Dave Fellinger, CTO dfellinger@datadirectnet.com

Joint DDN/Cray Installations

DataDirect

performance, capacity and innovation

	Customer	Rank	Computer
	NNSA / Sandia National Laboratories	2	Sandia/Cray Red Storm, Opteron 2.4 GHz dual core - 88 DDN Couplets
	Oak Ridge National Laboratory	10	Cray XT3, 2.6GHz dual core
	Atomic Weapons Establishment	15	Cray XT3, 2.6GHz dual core
	ERDC MSRC	26	Cray XT3, 2.6GHz
	Pittsburgh Supercomputing Center	85	Cray XT3, 2.4GHz
	Swiss Scientific Computing Center (CSCS)	94	Cray XT3, 2.6GHz
	UK Engineering and Physical Sciences Research Council (EPSRC)	TBD	Cray XT4 Opteron MPP / BlackWidow

Several Top 100 Computing sites use Cray and DataDirect S2A

Cluster Storage Requirements

Parallel Storage Architecture

S2A 9900

- Overview; 9500 vs. 9900 Comparison
- Performance Highlights
- Reliability, Serviceability & Availability

Cluster Storage Requirements

DataDirect

- "Scratch" storage on simulation clusters has specific requirements
- Write cycles must be fast and consistent
- Disk I/O errors and retries cannot affect the performance of writes to the system
- I/O rates must scale well across threads and transfer size
- Storage for visualization clusters has specific requirements
- Read cycles must be fast and consistant
- Disk I/O must be checked for errors if SATA is employed
- Disk I/O errors and retries cannot affect the performance of reads from the system

I/O and Storage Challenges

DataDirect

performance, capacity and innovation

Source: David Koester, Ph.D. and Henry Newman @ HPCS I/O Workshop, July 12, 2005

Drive Roadmap

Data Direct

performance, capacity and innovation

- Cluster Storage Requirements
 Parallel Storage Architecture
- S2A 9900
 - Overview; 9500 vs. 9900 Comparison
 - Performance Highlights
 - Reliability, Serviceability & Availability

Data Direct

performance, capacity and innovation

Low Latency High Performance Silicon Based Storage Controller with RDMA

- Parallel Access For Hosts
- Parallel Access To A Large Number Of Disk Drives
- True Performance Aggregation
- Reliability From A Parallel Pool
- Quality Of Service
- Scalability
- Drive Error Recovery In Real Time
- True State Machine Control
 - 10 Virtex 4 FPGAs, 16 Intel embedded processors, 8 Data FPGAs

RAID 6 Architecture

DataDirect

performance, capacity and innovation

- Singlet Failover Maintains Realtime Disk Access During Singlet Loss
- PowerLUNs can span arbitrary number of Tiers
- directRAID
 - Equivalent READ & WRITE performance
 - No performance degradation in crippled mode
 - Tremendous back-end performance for detection, very low-impact rebuild, disk scrubbing, etc.
- RAIDed Cache
- Parity Computed Writes
- Read Parity Checking for Each I/O Corrects Silent Data Corruption
- Double Disk Failure Protection Implemented in Hardware State Machine
- Multi-Tier Storage Support, SAS or SATA Disks
- Up to 1200 disks total
 - 960 Formattable Disks

Data Flow, To Disk

Data Direct

performance, capacity and innovation

Data Flow, From Disk

DataDirect

performance, capacity and innovation

DataDirect

performance, capacity and innovation

Implementation of RAID 6

- Added parity drives effect double redundancy
- Reed Solomon coding in Real Time
- Continuous parity checking in Reads and real time generation in Writes
- Bad block recovery in real time
- Drive error recovery in real time
- Partial rebuilds without affecting host side access

- Cluster Storage Requirements
- Parallel Storage Architecture

S2A 9900

- Overview; 9500 vs. 9900 Comparison
- Performance Highlights
- Reliability, Serviceability & Availability

Data Direct

performance, capacity and innovation

Specification	S2A9900 Couplet	S2A9550 Couplet	
Supported Disk Technology	SAS & SATA	Fibre Channel & SATA	
RAID Parity Protection	RAID6 8+2 Only	RAID3 (8+1+1), RAID6 8+2	
Sustained Throughput	5.6GB/s – 6.0GB/s	2.4 GB/s – 2.8GB/s	
Maximum Cache	5.0 GB ECC Protected	2.5GB RAID Protected	
Minimum Cache	2.5 GB ECC Protected	2.5GB RAID Protected	
Disk Side Ports	20 x SAS 4 Lane	20 x FC-2	
Host Side FC Ports	8 x IB 4x DDR or 8 x FC-8	8 x FC-4 or 8 x IB 4x	
Dimensions	7 x 19 x 2 <mark>8</mark> in. (4U)	7 x 19 x 25 in. (4U)	
Certifications	UL,CE,CUL,C-Tick,FCC	UL,CE,CUL,C-Tick,FCC	
Release Date	1Q/2008	September 2005	

Performance & Capacity Scalability

Data Direct

performance, capacity and innovation

S2A9900 Capacity

DataDirect

performance, capacity and innovation

Improvements

DataDirect

- Faster Intel Main CPU
- Faster Interface
 - SDR IB -> DDR IB
 - FC4 -> FC8
- PCI Express Bus Architecture
- Faster Intel Host Processors
- Doubled Cache Size & Cache Rate
- Faster Backend
 - FC2 -> SAS
- Optimized Drive Health Management
- Increased Component Reliability
 - Cooling
 - Connection

- Expanded log capability
- Rebuild write journaling
- Power Down Archiving of writeback data (coupled with UPS)
- Power Consumption Reduction
 - Sleep Mode Drives (SATA)
 - DC Power

- Cluster Storage Requirements
- Parallel Storage Architecture

S2A9900

- Overview; 9500 vs. 9900 Comparison
- Performance Highlights
- Reliability, Serviceability & Availability

- 12GB/s potential backend bandwidth
- 10 x 4-lane SAS Channels per Singlet
- Disk Channel Controller
 - Provides Cache to SAS Connectivity
 - Provides 2.5GB/5GB Cache Memory Segment via DCC FPGA
 - Cache Controller Interface
 - Interfaces to Main CPU via Dual Port SRAM

- Maximum 4GB/s Singlet Front-end Bandwidth
- 4 x 8-lane PCI Express Ports per Singlet
- Host Interface
 - Dual Protocol
 - Fibre Channel (FC8 when available)
 - Infiniband (DDR x4 IB SRP target (iSER tbd))
 - DMA Capable
 - Enables Zero-Copy Interfacing

Target: 2-3X 9550 Performance

Robust Processors:

■ Intel Chevelon Host CPU

■ Intel Sunrise Lake Main CPU

Faster Cache Controller/Stage Buffer FPGA

- Faster processor DRAM: 512Mb DDR2
 - 3.2GBytes/sec processor to memory bandwidth & reduced latencies

- Cluster Storage Requirements
- Parallel Storage Architecture

S2A9900

- Overview; 9500 vs. 9900 Comparison
- Performance Highlights
- Reliability, Serviceability & Availability

- SATA technology has enabled great cost economies but can significantly jeopardize data integrity without proper controls
 - DDN has the experience (<u>a recognized leader in SATA</u>)
 - DDN has the understanding (multi-faceted SATA protections)
- The Challenge: to maintain QOS regardless of drive retry, reset, and internal recovery issues.

The Solution: All devices will be constantly monitored through HW and SW for excessive errors or defect growth and system software can begin rebuilds to spares before a failure occurs.

The Hardware Solution

- Check parity for every read and correct it in real time.
- Use RAID 6 to identify individual drives that have read corrupt data through Reed-Solomon data recovery algorithms.
- Exercise total control over the array including the ability to power cycle each drive.

Data Direct

performance, capacity and innovation

The Software Solution

- Take a questionable drive offline immediately.
- Begin a journal of all writes that have been made to the array since the moment that a specific element was taken offline.
- Utilize a series of recovery techniques including command retries, drive resets, and finally power cycling to confirm the status of the specific device.
- If the device cannot be revived it can be replaced.
- If the device can be revived it can be rebuilt from the journal in a short time.

PCI-E Serial Bus Structure Enable Significant Connection Reduction

- 10x-100x Reduction in Component Connections
 - Less Controller Failures/Errors
- All while increasing performance by 2x!
- By-Products:
 - Flip-Chip BGAs for all High I/O FPGAs
 - PCI Express has less connector pins and BGA pins
 - DDR2 DRAM eliminates termination requirements

Improved Power Management

- Enhanced Power Supplies
 - Higher Reliability Technology
 - Increased Supportability
 - Better Power Supply Fault Isolation & Monitoring
- Use Two Supplies instead of Four

Increased Cooling

Moving to 2 power supplies allows full width cooling in 1U

■ Increase potential airflow from: 50CFM to: 75CFM

Newer ICs deliver enhanced thermal monitoring

Cray Users Group

Dave Fellinger, CTO dfellinger@datadirectnet.com

