

Engineering, Operations & Technology Information Technology

rmo

Shared Object-Based Storage and the HPC Data Center

Jim Glidewell High Performance Computing Enterprise Storage and Servers

BOEING is a trademark of Boeing Management Company Copyright © 2007 Boeing. All rights reserved.

Computing Environment

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

- Cray X1
 - 2 Chassis, 128 MSPs, 1TB memory
 - 46 TB storage managed by ADIC StorNext HSM (5.5 TB online)
 - 8 TB of direct-attached short-term storage

Linux Clusters

- Systems:
 - 2 128 node dual-Xeon (32 bit) clusters
 - 2 128 node dual-Opteron clusters
 - 3 256 node dual-Opteron clusters
 - More on the way...
- All Clusters share access to a second ADIC StorNext HSM

History and Current Issues

Engineering, Operations & Technology | Information Technology

- Used DMF (Data Migration Facility) since the early-90's to manage disk space
- With the Cray X1, DMF was not an option
- An HSM was deemed essential
- Selected ADIC StorNext based on Cray support and recommendation
 - Initially for the Cray X1 only
 - Soon after, chosen for Linux cluster as well
- The I/O demands of the cluster were severely underestimated, as was the cluster growth rate
- As our clusters have grown, StorNext has developed significant performance problems

Hierarchical Storage Management - Pros & Cons

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

• Pros

- Reduces storage costs
- Makes highly efficient use of disk space
- Allows users to view the storage available as "unlimited"
 - Eliminates need for user quotas
 - Reduces day to day storage maintenance issues
- Simplifies detailed storage capacity decisions
- Reduces backup requirements

Cons

- Administration is complex and time-consuming
- User delays waiting for file retrieval
- Data tends to build without bounds
- Serious cleanup only occurs when a system is retired
- Moving data from one HSM to a new one is very time consuming

Strategy for Shared Storage

Engineering, Operations & Technology | Information Technology

Situation

- HPC storage was tied to computing platform
- No common storage for all HPC systems
- Duplication of data as user processes use multiple platforms
- Current Cluster SAN unable to deal with increasing load
- Needed a storage system
 - To serve as a shared repository for HPC data
 - Preferred direct access from cluster, NFS option
 - High-performance NFS from Cray X1
 - To serve as a high-performance replacement for cluster SAN
- Wanted a solution to serve both functions
 - Shared HPC permanent directory
 - Cluster home directory
 - Shared HPC temporary storage (7 30 days)
 - Cluster temporary storage (7 30 days

Storage System Selection Criteria

Engineering, Operations & Technology | Information Technology

Accessibility from all HPC systems

- NFS from the Cray X1
- Direct client access from Linux clusters preferred
- Availability
 - 24 by 7 uptime
 - Concurrent storage system maintenance
 - Reliability, resiliency, and redundancy

Performance

- Ability to operate with a large number of clients
- High single-node performance
- High aggregate bandwidth
- Scalable performance
- Manageability
 - Ability to grow volumes seamlessly
 - No dump & reload
 - No performance penalty
 - Simple interface for management

Utilizing Panasas in Boeing HPC

Engineering, Operations & Technology | Information Technology

Used for multiple functions

- Linux user home directories
- Shared HPC user storage
- Linux high-speed temporary storage
- Shared temporary storage
- Panasas directory for each user
 - Linux home directory is a subdirectory
 - Cray home directory remains on X1
- Shared home directory between systems not desirable

- Different binaries, shell init scripts, etc.
- Common absolute path for permanent and temporary storage on all HPC systems
- DirectFlow access from Linux clusters, NFS from Cray X1

Panasas Access Methods

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

Copyright © 2007 Boeing. All rights reserved.

Temporary Directory Structure

What is "Shared Object-Based Storage" ?

Engineering, Operations & Technology | Information Technology

- ANSI Standard OSD-1 r10 defines the Object-based Storage Device (OSD) interface
- Multiple Vendors and Options
 - Lustre
 - Panasas
 - EMC
 - HP
- Files exist as one or more objects, rather than groups of blocks
- Storage is intelligent and can move these objects around for redundancy and/or performance
- Design goals are robustness, scalability, flexibility
- Storage interface is standardized, but metadata handling is proprietary

The Panasas Storage System

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

Realms, Bladesets, Volumes

- Logically, Panasas presents itself as:
 - a single realm, containing
 - one or more bladesets, each containing
 - one or more volumes

Shelves, Blades

- Panasas hardware is delivered in
 - shelves (rack-mounted), which each contain
 - 11 blades
- Blades come in two types:
 - Director blades manage metadata traffic, NFS access
 - Storage blades contain drives & intelligent controller

Access

- DirectFlow client on Linux
- NFS and SMB from other clients

Panasas Hardware

Engineering, Operations & Technology | Information Technology

Panasas Hardware (continued...)

Engineering, Operations & Technology | Information Technology

Our Panasas Installation

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

- Production 52 Shelves of Panasas 3000 Storage
 - Each shelf contains 2 director blades and 9 storage blades (2+9)
 - 500 gigabytes per storage blade
 - 4.5 terabytes per shelf raw capacity
 - Seven racks, total of 234 terabytes raw capacity

Evaluation System

- 3 1+10 shelves, 800 GB blades
- Used for initial evaluation
 - Administrator training and familiarization
 - Validated bladeset expansion process
 - Very rigorous testing
- Retained to test Panasas 3.x software

HPC Panasas Storage

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

Copyright © 2007 Boeing. All rights reserved.

Panasas Performance

Engineering, Operations & Technology | Information Technology

Performance is a function of multiple factors

- Network speed
- Concurrent usage
- Number of shelves in bladeset
- Access method
 - DirectFlow for Linux clients
 - NFS/CIFS for other clients
- NFS speed from Cray X1
 - 35 Mbytes/second
- Single Stream from dual-Opteron node (gigabit link)
 - Up to 85 MBytes/second
- Single shelf bandwidth
 - ~ 300MBytes/second
- 20 clients, 4 shelves
 - 1.2 GBytes/second (60 MBytes/sec. average per client)
- Total aggregate bandwidth
 - Over 10GBytes/second limited by network bandwidth

Engineering, Operations & Technology | Information Technology

Bugs reported and resolved

- Evaluation system was extensively tested
- A large number of support cases were opened
 - Gathering needed debug data was time-consuming
 - The vast majority of these cases were closed quickly

System limitations

- Needed to split realm too many director blades
- Unable to mix blade disk sizes within a bladeset
- Scaling issues regarding administration
 - Time to reboot realm with new software
- Outstanding enhancement requests
 - Management of multiple realms by a single GUI
 - Site-defined metadata
 - Tool to get stat() data in bulk (similar to SGI_FS_BULKSTAT)
 - ACLs

Engineering, Operations & Technology | Information Technology

- **Enterprise Storage and Servers**
- Storage growth is having a big effect on backup
- Disk and RAID systems capacity growth exceeds that of tape
- Traditional "Base + incrementals" backup strategy is becoming impractical
- Evaluated using the enterprise backup service
 - Adding our storage would double weekly backup
 - Required significant upgrade to their hardware
 - Weekly base dumps were not practical
 - "Synthetic base dumps" were an untried option
 - Analysis showed that after 12 months, >75% of all data being written to tape was data that had already been backed up
- HSM as a backup server...

HSM as a Backup Server

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

Basic Backup Strategy

- User storage is not managed by HSM
- HSM contains volumes and directories that match that of user storage
- One-way file synchronization is done nightly
 - From user storage to HSM
 - Can be done on a volume or directory basis
 - Disk to disk copy
 - Uses "rsync" command
- HSM migrates data to tape over time
- HSM-aware backup facility
 - xfsdump -a ...
 - Backs up inode information only
 - Data is on HSM-managed tapes
- HSM is not directly user accessible

The Boeing HPC HSM Backup System - Specs

Engineering, Operations & Technology | Information Technology

Enterprise Storage and Servers

- Hardware
 - SGI Altix 450
 - 16 cores
 - 48 gigabytes memory
 - 24 fibre channel ports
 - 40 Terabytes of DDN-based storage (InfiniteStorage 6700)
 - SUN/STK SL8500 Automated Tape Library
 - 1500 tape slots
 - 6 T10000 Drives

• Software

- SLES 9 + SGI ProPack 4
- DMF 3.6
- TMF

The Boeing HPC HSM Backup System - Hardware

Engineering, Operations & Technology | Information Technology

The Boeing HPC HSM Backup System

Engineering, Operations & Technology | Information Technology

HSM as a Backup Server - Benefits

Engineering, Operations & Technology | Information Technology

HSMs have proven functionality

- Mature and robust products
- HPC group has years of experience with DMF
- Data is written *once* to tape
- Optimized usage of tape media, drives
- HSM manages tape merges and "soft-deleted" data
- Fast recovery option in case of catastrophic failure of primary storage
 - Suspend all work
 - Mount HSM system in place of production storage
 - Resume production
- Option to use (part of) the backup server as a true HSM

Engineering, Operations & Technology | Information Technology

- Panasas has met our needs for a central HPC storage facility
- Performance via DirectFlow client is very good, NFS access from the Cray is more than adequate
- Panasas has provided very good support, and was very responsive to bug reports
- Evaluation system was very helpful tool for familiarization and testing
- The use of an HSM as a backup server has been a great success for us
- Users have been very happy with performance