
A Comparison of Application Performance Using Open MPI and

Cray MPI

Richard L. Graham, Oak Ridge National Laboratory,
George Bosilca, The University of Tennessee, and

Jelena Pješivac-Grbović, The University of Tennessee

Abstract

Open MPI is the result of an active international
Open-Source collaboration of Industry, National
Laboratories, and Academia. This implementation
is becoming the production MPI implementation at
many sites, including some of DOE’s large Linux
production systems. This paper presents the results
of a study comparing the application performance of
VH-1, GTC, the Parallel Ocean Program, and S3D
on the Cray XT4 at Oak Ridge National Laboratory,
with data collected on up to 1024 process runs. The
results show that the application performance using
Open MPI is comparable to slightly better than that
obtained using Cray-MPI, even though no platform
specific optimizations, beyond a basic port, have yet
to be done in Open MPI.

1 Introduction

Since most High Performance Computing (HPC) ap-
plications use the Message Passing Interface (MPI)
for their inter-processor communications needs, scal-
ability and performance of MPI affect overall appli-
cation performance. As the number of processors
these applications use grows, application scalability
and absolute performance is often greatly impacted
by that of the underlying MPI implementation. As
the number of processors participating in MPI com-
munications increase, the characteristics of the im-
plementation that are most important for overall
performance change, and while at small processor
count quantities such as small message latency and
asymptotic point-to-point message bandwidth are
often used to characterize application performance,
other factors become more important for determin-
ing overall application performance. At large scale,
the scalability of the internal MPI message handling
infrastructure, as well as the performance of the

MPI collective communications operations are key
to overall application performance.

This paper present the first application study us-
ing Open MPI on the Cray XT4 at the National Cen-
ter for Computational Sciences (NCCS), Oak Ridge
National Laboratory. The applications used include
VH-1, GTC, and POP, codes of key importance
at NCCS. The performance of these applications is
studied using two different MPI implementations,
Open MPI and Cray-MPI, over a range of processor
counts. Because Cray-MPI is a closed source imple-
mentation, comparisons are limited to gross perfor-
mance data, such as overall timing data.

2 Background

2.1 Open MPI

Open MPI [12, 22] is a recent Open Source implemen-
tation of both the MPI-1 [20, 24] and MPI-2 [13, 16]
standards. Its origins are in LA-MPI [2, 14],
LAM/MPI [6, 26], FT-MPI [9, 11], and PACX-
MPI [18]. The original XT3 port is described in
Reference [3]. Open MPI is composed of three major
software pieces, the MPI layer (Open MPI), a run-
time layer, Open Run-Time Environment (Open-
RTE) [7], and the Open Portability Access Layer
(OPAL).

OPAL provides basic portability and building
block features useful for large scale application de-
velopment, serial or parallel. A number of useful
functions provided only on a handful of platforms
(such as asprintf, snprintf, and strncpy) are im-
plemented in a portable fashion, so that the rest
of the code can assume they are always available.
High resolution / low perturbation timers, atomic
memory operations, and memory barriers are im-
plemented for a large number of platforms. The
core support code for the component architecture,

1

which handles run-time component selection, is also
implemented within OPAL. If the loader supports
dynamic-shared-objects, components may be loaded
and then selected at run-time, otherwise they are
compiled into the binary, and selected at run-time.
OPAL also provides a reference counted object sys-
tem to simplify memory management, as well as
to implement a number of container classes, such
as doubly-linked lists, last-in-first-out queues, and
memory pool allocators.

A key design feature of this implementation is
the extensive use of a component architecture, the
Modular Component Architecture (MCA) [25], which
is used to achieve Open MPI’s poly-morphic behav-
ior. All three layers of the Open MPI implementation
make use of this feature.

OpenRTE provides access to the resource man-
ager (RMGR) for process control, a global data
store (known as the GPR), an out-of-band messag-
ing layer (the RML), and a peer discovery system
for parallel start-up (SDS). In addition, it provides
basic datatype support for heterogeneous network
support (separate than that provided at the MPI
layer), process naming, and standard I/O forward-
ing. Each subsystem is implemented through a
component framework, allowing whole-sale replace-
ment of a subsystem for a particular platform. On
most platforms, the components implementing each
subsystem utilize a number of underlying compo-
nent frameworks to customize OpenRTE for the
specific system configuration. For example, the
standard RMGR component utilizes additional com-
ponent frameworks for resource discovery, process
start-up and shutdown, and failure monitoring.

The MPI layer implements the full standard, us-
ing the services provided by OPAL and OpenRTE.
Many component frameworks are implemented to
support this functionality. We will highlight the sup-
port for the Point-To-Point and collective communi-
cations, as these affect application performance in
the most visible manner.

2.1.1 Point-To-Point Architecture

We will provide only brief description of the Point-
To-Point architecture, as a detailed description is
given in Reference [15]. The Point-To-Point Man-
agement Layer (PML) implements all logic for point-
to-point MPI semantics such as standard, buffered,
ready, and synchronous communication modes, syn-
chronous and asynchronous communications, and
the like. MPI message transfers are scheduled by the

PML. Figure 1 provides a cartoon of the three PMLs
in active use in the Open MPI code base − OB1, DR,
and CM. These PMLs can be grouped into two cat-
egories based on the component architecture used to
implement these PMLs, with OB1 and DR forming one
group, and CM in a group by itself. The following sub-
sections describes these PMLs, as well as the lower
level abstractions developed to support these.

As Figure 1 shows, the OB1 and DR PML design
is based multiple MCA frameworks. These PMLs dif-
fer in the design features of the PML component it-
self, and share the lower level Byte Transfer Layer
(BTL), Byte Management Layer (BML), Memory Pool
(MPool), and the Registration Cache (Rcache) frame-
works. While these are illustrated and defined as lay-
ers, critical send/receive paths bypass the BML, as it is
used primarily during initialization and BTL selection.
These components are briefly described below.

MPI

PML - OB1/DR

BML - R2
BTL -
GM

MPool-

GM

Rcache

BTL -
OpenIB

MPool-

 OpenIB

Rcache

PML - CM

MTL- MX
(Myrinet)

MTL- PSM
(QLogic)

MTL-
Portals

Figure 1: Open MPI’s Layered Architecture

The policies these two PMLs implement incorporate
BTL specific attributes, such as message fragmentation
parameters and nominal network latency and band-
width parameters, for scheduling MPI messages. These
PMLs are designed to provide concurrent support for
efficient use of all the networking resources available
to a given application run. Short and long message
protocols are implemented within the PML, as well as
message fragmentation and re-assembly. All control
messages (ACK/NACK/MATCH) are also managed by
the PML. The DR PML differs from the OB1 PML
primarily in that DR is designed to provide high perfor-
mance scalable point-to-point communications in the
context of potential network failures. The benefit of
this structure is a separation of the high-level (e.g.,
MPI) transport protocol from the underlying transport
of data across a given interconnect. This significantly
reduces both code complexity and code redundancy
while enhancing maintainability, and provides a means
of building other communications protocols on top of
these components.

2

The common MCA frameworks used in support of
the OB1 and DR PMLs are described briefly below.

MPool The memory pool provides memory al-
location/deallocation and registration / de-
registration services. For example, InfiniBand re-
quires memory to be registered (physical pages
present and pinned) before send/receive or RDMA
operations can use the memory as a source or tar-
get. Separating this functionality from other com-
ponents allows the MPool to be shared among var-
ious layers. For example, MPI ALLOC MEM uses
these MPools to register memory with available
interconnects.

Rcache The registration cache allows memory pools
to cache registered memory for later operations.
When initialized, MPI message buffers are regis-
tered with the Mpool and cached via the Rcache.
For example, during an MPI SEND the source
buffer is registered with the memory pool and
this registration may be then be cached, de-
pending on the protocol in use. During subse-
quent MPI SEND operations the source buffer is
checked against the Rcache, and if the registra-
tion exists the PML may RDMA the entire buffer
in a single operation without incurring the high
cost of registration.

BTL The BTL modules expose the underlying seman-
tics of the network interconnect in a consistent
form. BTLs expose a set of communication primi-
tives appropriate for both send/receive and RDMA
interfaces. The BTL is not aware of any MPI
semantics; it simply moves a sequence of bytes
(potentially non-contiguous) across the underly-
ing transport. This simplicity enables early adop-
tion of novel network devices and encourages ven-
dor support. There are several BTL modules cur-
rently available; including TCP (IPv4 and IPv6),
Myrinet/GM, Myrinet/MX, Cray Portals, Shared
Memory (SM), Mellanox VAPI, and OpenIB VAPI.

BML The BML acts as a thin multiplexing layer, allow-
ing the BTLs to be shared among multiple upper
layers. Discovery of peer resources is coordinated
by the BML and cached for multiple consumers of
the BTLs. After resource discovery, the BML layer
may be safely bypassed by upper layers for perfor-
mance. The current BML component is named
R2.

The CM PML is designed to provide an MPI in-
terface directly utilizing APIs that expose matching

send/receive semantics capable of supporing MPI com-
munication protocols. As the matching logic is imple-
mented in the underlying network library, the CM com-
ponent is much smaller than the OB1 or DR compo-
nents. CM handles memory management for requests
and buffer management for MPI’s buffered sends. The
other aspects of MPI’s point-to-point semantics are
implemented by the Matching Transport Layer (MTL)
framework, which provides an interface between the
CM PML and underlying network library. Currently
there are three implementations of the MTL, for Myri-
com’s MX library, QLogic’s InfiniPath library, and the
Cray Portals communication stack.

In this paper we will collect application performance
data using both the Portals CM and OB1 PMLs.

2.1.2 Collectives Architecture

The MPI collective communicates in Open MPI are
also implemented using the MCA architecture. Of the
collective communications algorithm components im-
plemented in Open MPI, the component in broadest
use is the Tuned Collectives component [10]. This
component implements several versions of each collec-
tive operation, and currently all implementations are
based on PML level Point-To-Point communications,
with run-time selection logic used to pick which ver-
sion of the collective operations are selected for a given
instance of the operation. Selection logic can be de-
termined both at run-time, as well as at compile time.
The default algorithm selection is implemented using
compile-time decision functions, which select an algo-
rithm based on the communicator and message size
parameters of the collective. The run-time algorithm
selection is implemented via MCA parameters, and al-
lows user either to specify a particular algorithm for
the complete duration of the program run, or to spec-
ify a set of rules such that different algorithms can be
invoked based on the collective parameters. Figure 2
shows how the MPI collective components fits within
Open MPI’s component architecture.

2.2 Cray-MPI

Cray MPI is derived from MPICH-2 [21], and supports
the full MPI-2 standard, with the exception of MPI
process spawning. This is the MPI implementation
shipped with the Cray Message Passing Toolkit.

3

Figure 2: Open MPI’s Layered Architecture

2.3 VH-1

VH-1 is a multidimensional ideal compressible hydrody-
namics code written in FORTRAN. It is based on the
Lagrangian remap version of the Piecewise Parabolic
Method (PPM) developed by Paul Woodward and Phil
Collela [4].

2.4 GTC

The Gyrokinetic Toroidal Code [19] (GTC) uses first-
principles kinetic simulation of the electrostatic ion
temperature gradient (ITG) turbulence in a reactor-
scale fusion plasma to study turbulent transport in
burning plasmas. The simulations aim to improve the
understanding of, and to gain the knowledge of con-
trolling the turbulent transport in fusion plasmas for
the parameter regimes relevant to magnetic fusion ex-
periments such as the International Thermonuclear Ex-
perimental Reactor (ITER).

2.5 Parallel Ocean Program

The Parallel Ocean Program [8] (POP) is one of the
components of the Community Climate System Model
which is used to provide input to the Intergovernmen-
tal Panel on Climate Change assessment. POP is the
component which models ocean behavior.

2.6 S3D

S3D [17] is a state of the art code, developed at Com-
bustion Research Facility (CRF), Sandia National Lab-
oratory. It is used for Direct Numerical Simulations of
turbulent combustion by solving the reactive Navier-
Stokes equations on a rectilinear grid.

3 Results

In this section we compare the performance of two
MPI implementations on the Cray XT4, Open MPI and
Cray-MPI. We compare the results of simple latency
and bandwidth measurements, as well as the results of
full application runs. In addition, since the performance
of many scientific applications is sensitive to the per-
formance of MPI collectives, we also present applica-
tion performance data using several different collective
communication algorithms.

3.1 Experimental Setup

All calculations were run on NCCS’s Jaguar cluster.
This cluster is made up of a total of 11,508 dual socket
2.6 GHz dual-core AMD Opteron chips, and the net-
work is a 3-D torus with the Cray-designed SeaStar [1]
communication processor and network router is de-
signed to offload network communication from the
main processor. The compute nodes run the Cata-
mount lightweight micro-kernel, allowing for scalable,
low-perturbation operations. All communications use
the Portals 3.3 communications interface [5].

The default Cray-MPI installation, XT/MPT version
1.5.31, with default settings are used for the benchmark
runs. The trunk version of Open MPI (1.3 pre-release)
is used for these runs, with data collected using both
the Portal ports of the CM and OB1 PMLs. Open
MPI’s tuned collectives are used for collective opera-
tions. To minimize differences in timings due to pro-
cessor allocations, all runs for a given application and
processor count are sequentially run within a single re-
source allocation.

3.2 Latency and Bandwidth Data

Latency and bandwidth measurements are the mea-
surements often used to assess the quality of an MPI
implementation, and as such are included here.

The latency measurements are taken are measured
as the half round-trip latency of a zero-byte MPI ping-
pong measurement, with the data being sent as a con-
tiguous byte stream. The latency is measured between
process running on two different nodes, not between
different cores on the same node. As Table 1 shows
Cray-MPI’s latency is lower than that of Open MPI’s.
It is 0.13 micro-seconds, or 2.3%, lower than Open
MPI’s CM latency, and 1.38 micro-seconds, or 29%,
lower than Open MPI’s OB1 latency.

Bandwidth measurements are taken using the Net-
Pipe [23] benchmark, with the bandwidths measured

4

MPI Implementation Latency
Open MPI - CM 4.91
Open MPI - OB1 6.16
Cray MPI 4.78

Table 1: Zero Byte MPI Latency (usec)

between two processes running on different nodes. The
bandwidth profile in Figure 3 shows that past one-
hudred bytes or so, Open MPI’s CM bandwidth is a
little higher than that of Cray-MPI’s, asymptoting to
a similar bandwidth. However, Cray-MPI’s bandwidth
curve is consistently higher than that of Open MPI’s
OB1 protocol.Note also that Open MPI’s transition
from the short-message protocol to the long-message
protocol produces a much smoother bandwidth graph
than Cray-MPI’s.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

B
an

dW
id

th
 (

M
B

yt
e/

S
ec

)

Datasize (KBytes)

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 3: NetPipe Bandwidth Data (MB/sec)

3.3 Application performance Data

In this section we compare the performance of four of
the key-codes that use the Cray’s XT4 at the NCCS.
We study the performance of VH-1, GTC, POP, and
S3D, over a range of process counts.

The results of the VH-1 performance measurements
are presented in Figure 4, for runs in the range of 16
to 256 processors. Overall, Open MPI slightly outper-
forms Cray-MPI over this set of runs, with the OB1
implementation out-performing Cray-MPI by as much
as 4% at 16 processors, and as little as 0.5% at 256 pro-
cessors. For this particular set of runs, application per-
formance using Open MPI’s OB1 point-to-point com-
munications protocol is very similar to that using Open
MPI’s CM protocol.

 200

 210

 220

 230

 240

 250

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

V
H

-1
 W

al
l C

lo
ck

 T
im

e
(s

ec
)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 4: VH-1 Run-Time Data

The performance of the GTC code is presented in
Figure 5, for processor counts in the range of four to
1024 processes. In general, for this set of runs, GTC
runs faster using Open MPI’s OB1 protocol, than when
using Open MPI’s CM protocol, with a notable excep-
tion at 1024 processes, where the CM protocol gives
an application times about ten percent lower than us-
ing OB1. Over the range of processes, the application
runs using Open MPI’s CM are faster than the Cray-
MPI runs for all but at 128 and 1024 processes. At
four processors, the Open MPI OB1 run is about seven
percent faster than the Cray-MPI run, and about three
percent faster than the Open MPI CM run. At 1024
processes, the Cray-MPI run is about three percent
faster than the Open MPI CM run, and about 15%
faster than the Open MPI OB1 run.

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1 2 3 4 5 6 7 8 9 10 11

G
T

C
 W

al
l C

lo
ck

 T
im

e
(s

ec
)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 5: GTC Run-Time Data

Three quantities are used to measure the perfor-
mance of the POP code, overall time step data,
the time spent in the baroclinic phase, where near-
neighbor communications are the dominant communi-
cations pattern, and the baratropic phase, where an

5

MPI all-reduce is the dominant communications fea-
ture. One degree simulations were performed on the
range of sixteen to 1024 processes. Due to an Open
MPI problem, which is being resolved, we were not able
to carry out the Open MPI CM runs at 512 and 1024
process counts.

For this set of runs, the data in Figure 6 shows
that for this application, the Open MPI CM point-to-
point communications algorithm usually outperforms
the Open MPI OB1 runs. At sixteen processor count,
both benchmark runs ran in about the same amount
of time, and at 256 processor count CM outperforms
OB1 by about 18%. The Cray-MPI runs slightly out-
perform the Open MPI CM implementation at smaller
process count, but at 128 process count the trend is
reversed, with Open MPI CM outperforming Cray-MPI
by about three percent at 256 processor count.

 128

 256

 512

 1024

 2048

 3 4 5 6 7 8 9 10 11P
O

P
 T

im
e

S
te

p
W

al
l C

lo
ck

 T
im

e
(lo

g(
se

c)
)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 6: POP Step Run-Time Data

The baroclinic phase timing information is given in
Figure 7. As mentioned above, this phase is domi-
nated by near neighbor communications. Similar to
the total step time timings, Open MPI CM generally
outperforms Open MPI OB1. However, Cray-MPI al-
ways slightly outperforms Open MPI CM over the en-
tire range of processes counts used in this experiment,
and by as much as two percent at the 256 processor
count.

The Baratropic phase is dominated by MPI all-
reduce operations, and does hamper scalability of the
POP application, as the number of processes used for
this phase increases. From Figure 8 we see that of the
three implementations used, the Open MPI CM scales
best. The time for the Cray-MPI series of runs starts to
increase in the range of 128 to 256 processor count, the
time for the Open MPI OB1 runs starts to go up in the
range of 64 to 128 processors. However, the Open MPI
CM runs start have reached their minimum around 256

 16

 32

 64

 128

 256

 512

 1024

 2048

 3 4 5 6 7 8 9 10 11P
O

P
 B

ar
oc

lin
ic

 W
al

l C
lo

ck
 T

im
e

(lo
g(

se
c)

)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 7: POP Baroclinic Phase Run-Time Data

processors, being about 10% faster than the Cray-MPI
run, and about 60% faster than the Open MPI OB1
run.

 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6 7 8 9 10 11

P
O

P
 B

ar
at

ro
pi

c
W

al
l C

lo
ck

 T
im

e
(s

ec
)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 8: POP Barotropic Phase Run-Time Data

Finally, Figure 9 presents the results of a series of
benchmark runs performed with the S3D code. For
these runs, the Open MPI CM runs are typically shorter
than the Open MPI OB1 runs. At lower process counts
- up to 128 - there is no particular performance trend
comparing the Open MPI CM timings and the Cray-
MPI timings. However, starting at 256 processes, Open
MPI CM is consistently performing better than Cray-
MPI, and outperforms it by about 12% at 1024 pro-
cesses.

3.4 Impact of All-Reduce collective
algorithms on Application Per-
formance

Given the importance of the performance of collec-
tive operations for overall application performance, we
used the four MPI all-reduce algorithms available in

6

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2 3 4 5 6 7 8 9 10 11

S
3D

 W
al

l C
lo

ck
 T

im
e

(s
ec

)

Log2 Processor Count

Open MPI - CM
Open MPI - OB1

Cray MPI

Figure 9: S3D Run-Time Data

Open MPI’s Tuned-Collective’s collective component
to study the performance impact of the particular col-
lective algorithm used on the overall application run-
time. Figure 10 presents overall Step time to run the
one degree resolution POP problem using 256 pro-
cesses with Open MPI’s CM point-to-point communi-
cations algorithm. for reference, the total time to run
the same simulation with Cray-MPI is also provided. In
the Open MPI runs, the best time is obtained using a
binary-tree fan-in reduction, followed by a binary-tree
fan-out broadcast, which is about twelve percent faster
than when using either a recursive-doubling or a ring
algorithm. As expected, the linear reduce, followed by
a linear broadcast performs very poorly. The simula-
tion time for the run using Cray-MPI is within less than
one percent of that with Open MPI CM.

 0

 100

 200

 300

 400

 500

 600

 700

 800

P
O

P
 2

56
 P

ro
ce

ss
or

S
te

p
T

im
e

(s
ec

)

Cray MPI
Open MPI, Linar:Reduce+BCast

Open MPI, BTree:Reduce+BCast
Open MPI, Recursive Doubling

Open MPI, Ring

Figure 10: POP 256 Processor Run-Time Data: Im-
pact of All-Reduce Algorithm Employed

4 Discussion

Section 3 presents a large amount of comparative data
comparing the performance of Open MPI and Cray-
MPI. A detailed analysis of these results is difficult at
best, as we don’t have access to the Cray-MPI source
code, and can only infer from performance character-
istics what algorithms might be used. Timing data is
the only data on which we can base these comparisons.

Open MPI uses two different point-to-point commu-
nications schemes, CM and OB1 described in section 2.
Aside from some extra latency added by the broad set
of communication features that OB1 adds to the cost
of point-to-point communications, OB1 and CM have
a fundamental difference in how they handle the long
message protocol.

The OB1 protocol uses a rendezvous protocol with
an eager limit of 32K bytes. On the receive side the
memory descriptors are configured to buffer this data if
messages are unexpected. For large messages, the OB1
protocol attempts to keep network congestion down, so
sends only a header used for matching purposes. Once
the match is made, the Portals get method is used
to deliver the users data in a zero copy mode, if the
MPI data type is contiguous, directly to the destina-
tion. This mode of point-to-point communications is
very useful when an application run uses a lot of large
unexpected messages, i.e. when the message is sent
to the destination, before the receive side has posted a
matching receive.

The CM protocol is very aggressive on sending data,
and for both the short and the long protocol, sends all
user data at once. If there is a matching receive posted,
the data is delivered directly to the user destination. In
the absence of such a posted receive, short messages,
i.e. messages shorter than 32K bytes, are buffered by
the receive Portals memory descriptor. However, all
he data associated with long messages is dropped, and
a Portals get request is performed after the match is
made to obtain the data, if the data is coutiguous. This
protocol is aimed at providing the highest bandwidth
possible for the application.

Analyzing the simple ping-pong bandwidth curve is
figure 3 could lead one to the wrong assumption that
when using Open MPI one should always use the CM
protocol. The results in section 3 indicate this is not
the case, and as the discussion above shows, the best
protocol to use really depends on the particular appli-
cation being run. For POP and S3D, the CM proto-
col seems to be the better method, but for VH-1 and
GTC, OB1 seems to produce lower run-times, at least
at lower process counts.

7

Also, for applications that make use of collective
communications, the algorithm of choice can have a
large impact on overall performance. As Figure 10
shows, POP performance at 256 processes is very sen-
sitive to the algorithm being used, with the binary-tree
based reduction followed by broadcast giving much bet-
ter performance than the three other algorithms avail-
able. The actual algorithm used in Open MPI runs
was changed to this one, based on early POP bench-
mark runs. Open MPI’s Tuned-Collectives are such
that they provide the flexibility of providing fine grain
control over the collectives algorithms being used, with
system wide defaults, as well as with run-time defaults.
Further work is being done to improve this support.

Application performance of Open MPI, on average,
seems to be comparable to slight better than the same
benchmarks run with Cray-MPI. As mentioned above,
a discussion of the root causes can not be provided.
The advantage of using Open MPI in this context is
that as an active Open Source project, with both re-
search and production code development going on, the
performance over Portals improves over time with out
any direct work on the Portals specific code, as devel-
opers continue to contribute code that improves both
point-to-point and collective algorithm performance, as
well as other aspects of the code.

5 Conclusions

This paper details a study of the Application perfor-
mance of several of the key simulation codes that run
on the Cray-XT4 system at NCCS in Oak Ridge. The
performance of these applications is studied using Open
MPI and Cray-MPI, showing that, on average, the the
performance using Open MPI is comparable to slightly
better than the performance obtained using Cray-MPI,
even when the simple latency and bandwidth measure-
ments seem to favor Cray-MPI in the small message
size regime. Open MPI also has the advantage of hav-
ing quite a few algorithmic options for point-to-point
communications, as well as for collective operations, al-
lowing user, if they so desire, to fine tune the methods
used to the needs of their long-time running applica-
tions.

As an active Open Source development project, work
is currently going on improving the point-to-point per-
formance of Open MPI, as well as that of the MPI
collective operations. In particular several efforts are
being looked at as to how to implement support for
hierarchical collectives, and, specifically, support for
shared memory optimizations, with work from LA-MPI,

PACX-MPI, and Sun-MPI ?? being brought to bear on
this.

Thanks

This work was supported by a grant from

References

[1] Robert Alverson. Red storm. In Invited Talk, Hot
Chips 15, 2003.

[2] Rob T. Aulwes, David J. Daniel, Nehal N.
Desai, Richard L. Graham, L. Dean Risinger,
Mitchel W. Sukalski, Mark A. Taylor, and Tim-
othy S. Woodall. Architecture of LA-MPI, a
network-fault-tolerant mpi. In Los Alamos report
LA-UR-03-0939, Proceedings of IPDPS, 2004.

[3] Brian W. Barrett, Ron Brightwell, Jeffrey M.
Squyres, and Andrew Lumsdaine. Implementa-
tion of open mpi on the cray xt3. In 46th CUG
Conference, CUG Summit 2006, 2006.

[4] J. M. Blondin and E. A. Lufkin. The piecewise-
parabolic method in curvilinear coordinates. The
Astorphysical Journal, 88:589–594, October 1993.

[5] Ron Brightwell, Tramm Hudson, Arthur B. Mac-
cabe, and Rolf Riesen. The portals 3.0 message
passing interface. Technical Report SAND99-
2959, Sandia National Laboratories, 1999.

[6] G. Burns, R. Daoud, and J. Vaigl. LAM: An
Open Cluster Environment for MPI. In Proceed-
ings of Supercomputing Symposium, pages 379–
386, 1994.

[7] R. H. Castain, T. S. Woodall, D. J. Daniel,
J. M. Squyres, B. Barrett, and G .E. Fagg.
The open run-time environment (openrte): A
transparent multi-cluster environment for high-
performance computing. In Proceedings, 12th
European PVM/MPI Users’ Group Meeting, Sor-
rento, Italy, September 2005.

[8] J. K. Dukowicz, R.D. Smith, and R.C. Malone. A
reformulation and implementation of the bryan-
cox-semter ocean model on the connection ma-
chine. J. Atmospheric and Oceanic Tech., 10:195–
208, 1993.

8

[9] G. E. Fagg, A. Bukovsky, and J. J. Dongarra.
HARNESS and fault tolerant MPI. Parallel Com-
puting, 27:1479–1496, 2001.

[10] Graham Fagg, George Bosilca, Jelena Pješivac-
Grbović, Thara Angskun, and Jack Dongarra.
Tuned: A flexible high performance collective
communication component developed for open
mpi. In Proceedings of 6th Austrian-Hungarian
workshop on distributed and parallel systems
(DAPSYS), Innsbruck, Austria, September 2006.
Springer-Verlag.

[11] Graham E. Fagg, Edgar Gabriel, Zizhong
Chen, Thara Angskun, George Bosilca, Antonin
Bukovski, and Jack J. Dongarra. Fault tolerant
communication library and applications for high
perofrmance. In Los Alamos Computer Science
Institute Symposium, Santa Fe, NM, October 27-
29 2003.

[12] E. Garbriel et al. Open MPI: Goals, concept, and
design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’
Group Meeting, 2004.

[13] A. Geist, W. Gropp, S. Huss-Lederman, A. Lums-
daine, E. Lusk, W. Saphir, T. Skjellum, and
M. Snir. MPI-2: Extending the Message-Passing
Interface. In Euro-Par ’96 Parallel Processing,
pages 128–135. Springer Verlag, 1996.

[14] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N.
Desai, R. G. Minnich, C. E. Rasmussen, L. D.
Risinger, and M. W. Sukalksi. A network-
failure-tolerant message-passing system for teras-
cale clusters. International Journal of Parallel Pro-
gramming, 31(4), August 2003.

[15] Richard L. Graham, Brian W. Barrett, Galen M.
Shipman, Timothy S. Woodall, and George
Bosilca. Open mpi: A high performance, flexible
implementation of mpi point-to-point communi-
cations. Parallel Processing Letters, 17(1):79–88,
March 2007.

[16] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir. MPI — The Complete
Reference: Volume 2, the MPI-2 Extensions. MIT
Press, 1998.

[17] E.R. Hawkes, R. Sankaran, J.C Sutherland, and
J.H. Chen. Direct numerical simulation of turbu-
lent combustion: Fundamental insights towards

predictive models. Journal of Physics: Conference
Series, 16:65–79, June 2005.

[18] Rainer Keller, Edgar Gabriel, Bettina Krammer,
Matthias S. Mueller, and Michael M. Resch. To-
wards efficient execution of parallel applications
on the grid: porting and optimization issues. In-
ternational Journal of Grid Computing, 1(2):133–
149, 2003.

[19] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang,
and R. B. White. Turbulent transport reduction
by zonal flows: Massively parallel simulations. Sci-
ence, 281:1835, 1998.

[20] Message Passing Interface Forum. MPI: A Mes-
sage Passing Interface. In Proc. of Supercomput-
ing ’93, pages 878–883. IEEE Computer Society
Press, November 1993.

[21] Mpich2, argonne. http://www-unix.mcs.anl.
gov/mpi/mpich2/.

[22] Open mpi. http://www.open-mpi.org.

[23] Q.O. Snell, A.R. Mikler, and J.L. Gustafson.
In IASTED International Conference on Intelli-
gent Information Management and Systems, June
1996.

[24] Marc Snir, Steve W. Otto, Steve Huss-Lederman,
David W. Walker, and Jack Dongarra. MPI: The
Complete Reference. MIT Press, Cambridge, MA,
1996.

[25] Jeffrey M. Squyres and Andrew Lumsdaine. The
component architecture of open MPI: Enabling
third-party collective algorithms. In Vladimir
Getov and Thilo Kielmann, editors, Proceedings,
18th ACM International Conference on Supercom-
puting, Workshop on Component Models and Sys-
tems for Grid Applications, pages 167–185, St.
Malo, France, July 2004. Springer.

[26] J.M. Squyres and A. Lumsdaine. A Component
Architecture for LAM/MPI. In Proceedings, 10th
European PVM/MPI Users’ Group Meeting, Lec-
ture Notes in Computer Science, Venice, Italy,
September 2003. Springer-Verlag.

About the Authors

Richard L. Graham is a staff member at the the Na-
tional Center for Computational Sciences at Oak Ridge

9

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www.open-mpi.org

National Laboratory. He received his PhD in Theoret-
ical Chemistry from Texas A&M University. He is an
MPI and Tools software lead in the Technology Inte-
gration Group, and one of originators of the Open MPI
collaboration. He can be reached at Oak Ridge Na-
tional Laboratory, P.O. Box 2008, Mail Stop 6008, Oak
Ridge, TN, 37831-6008. Email: rlgraham@ornl.gov.

Jelena Pjesivac-Grbovic is a Graduate Research As-
sistant at the Innovative Computing Laboratory at Uni-
versity of Tennessee, working toward a Ph.D. degree in
Computer Science. She received a M.S. in Computer
Science from University of Tennessee, Knoxville and
B.S. degrees in Computer Science and Physics from
Ramapo College of New Jersey. Her research inter-
ests are collective communication, parallel communica-
tion libraries and computer architectures, scientific and
grid computing, and modeling of biophysical systems.
She is an active developer on Open MPI project. Ad-
dress: ICL, Computer Science Department, 1122 Vol-
unteer Blvd. St. 413, Knoxville, TN 37996. Email:
pjesa@cs.utk.edu

George Bosilca is a Research Scientist at the In-
novative Computing Laboratory at University of Ten-
nessee. He received his Ph.D. degree from Laboratoire
de Recherche en Informatique Orsay, Universite Paris
XI. His research topics cover High Performance and
Distributed Computing. He lead the research and de-
velopment around several fault tolerant software frame-
works and their integration into todays parallel envi-
ronments and programming paradigms. He was one
of the originators of the Open MPI community ef-
fort and continue to be one of the active developers.
He can be reached at 1122 Volunteer Blvd. Clax-
ton Bldg. Suite 413, Knoxville, TN, 37996. Email:
bosilca@cs.utk.edu.

10

	Introduction
	Background
	Open MPI
	Point-To-Point Architecture
	Collectives Architecture

	Cray-MPI
	VH-1
	GTC
	Parallel Ocean Program
	S3D

	Results
	Experimental Setup
	Latency and Bandwidth Data
	Application performance Data
	Impact of All-Reduce collective algorithms on Application Performance

	Discussion
	Conclusions

