
CUG 2007 Proceedings 1 of 7

Python based applications on Red Storm

Porting a Python based application to the Lightweight Kernel

John Greenfield, SNLA and Daniel Sands, SNLA
ABSTRACT: It is desirable to be able to run analysis and validation applications as
pre and post-processing stages on large systems like Red Storm. Many analysis and
validation applications are based on Python and porting Python based applications to the
Lightweight Kernel presents some challenges. The example of porting the Data Services
Toolkit (DSTK) Python-based application to Red Storm is used to illustrate the
challenges and their solutions.
KEYWORDS: Python, Porting, Red Storm, XT3, Catamount

1. Introduction
It is desirable to be able to run analysis and validation

applications as pre and post-processing stages on large
systems like Red Storm. Often these applications are
specific to a given problem and it is therefore desirable to
be able to run these applications without imposing a great
deal of additional effort on the user. Many analysis and
validation applications are based on Python and porting
Python based applications to the Lightweight Kernel
presents some challenges.

The first motivation for porting Python to Red Storm
was the desire to be able to use the Data Services Toolkit
(DSTK) there. DSTK is a Sandia developed application
that uses a Python interface to provide access to a set of
post processing tools for the Exodus simulation file
format. Since the first porting, additional uses have arisen
for Python including the most recent requirement of
adding an externally developed Python-based simulation
code to the available tools on Red Storm.

The challenges of porting Python to the light weight
kernel include the lack of dynamic loading, cross-
compilation requirements, and a difference between
service and compute nodes. The limited kernel does not
allow dynamic loading, but the Python build process
assumes that it will always be available. Cross-
compilation requirements involve overriding the
assumption that the build process environment will match
the Python environment on the compute nodes.

This paper is based on work that was done to port
Python to lightweight kernels, Red Storm’s Catamount
nodes in this case. This is based on Python 2.5. The
example of porting the Data Services Toolkit (DSTK)
Python-based application to Red Storm is used to
illustrate the challenges and their solutions.

2. Difficulties and their solutions

Lack of dynamic loading.

Python is designed to load libraries and modules
dynamically. The limited kernel does not allow this,
therefore, Python must be modified to statically link
libraries and modules.

Issues with Cross Compiling.

The Python build system does not handle cross-
compiling well. For the limited kernel, not only is cross-
compiling required, but launching of tasks is done via
yod, which imposes further constraints on the way the
build works. Therefore the build system must be modified
and wrapper functions provided to handle return
conditions that the build system is expecting. Since the
build process for many third-party Python modules uses
Python as a driver for their build, it is necessary to build a
version of Python that runs on the service nodes but uses
the flags and methods necessary for the compute nodes.

CUG 2007 Proceedings 2 of 7

Other difficulties.

Some other adjustments need to be made to the
Python build system, such as setting certain system
variables, eliminating functions related to user and group
information gathering and disabling explicit large file
support (to avoid a bug in the 64-bit libraries).

There are some system variable settings on Red
Storm that do not fit well with what the Python build is
expecting them to be. In particular NGROUP_MAX and
TMP_MAX are set to 0, but the Python build is expecting
these to be non-zero. Since the Python code has built in
acceptable defaults that are used if these variables are
undefined, the simple solution is to add instructions to the
Python configuration header file that undefines these
variables before the build starts, so that the defaults will
be used. Functions related to user and group information
gathering such as getpwuid and getpwent require features
which are missing in the catamount environment, so these
functions are removed from the Python build. Finally, the
Python build is edited so that Large File system support is
explicitly disabled. If this is not done the Python build
will call the xxxx64 versions of file IO functions instead
of the standard versions. This should be avoided at this
time since the 64-bit versions contain bugs, and the
standard versions are bug-free and adequate for the
Python requirements.

Parallel Performance Enhancements.

Python is designed to load modules from disk at run
time. This presents a scalability issue for executing Python
on large numbers of nodes simultaneously. In this case all
the nodes would be requesting the same file transfer from
the service nodes. In order to avoid this, the Python
module loader is changed to allow only a single rank of
nodes to load the module from disk and then broadcast the
files to the other nodes via MPI. This does require that the
Python code to be executed has all nodes load the same
modules at the same time. This is generally not too much
of a restriction for parallel pre- or post-processing Python
codes.

3. Step by step installation

3.1 Basic Steps

The basic steps:
 Build and install the Python module builder

(service node Python)
 Build and install basic Python itself
 Build the Third-party modules
 Add the modules to the Python static link list
 Rebuild Python with the final modules list.

3.2 Build and install the Python Module Builder

The Python module builder is a Python executable
that runs on the service nodes but uses the flags necessary
to build modules for inclusion in the Catamount Python.
It will be installed in the same directory space as the
Catamount version. Basically it’s just a native Python
implementation on the service node with adjusted flag
settings. Therefore the steps to build this are simple:

module unload PrgEnv-pgi
./configure –prefix=<install path>

MACHDEP=redstorm ac_sys_system=Linux
make
make install
cd <install path>/bin
mv python python.sn

This creates a standard Python environment which is
also the basis for the Catamount Python. Notice the
MACHDEP-redstorm line above. This overrides the
sys.platform variable, which would normally default to
“Linux”, setting it to “redstorm”. This enables codes that
use the variable to decide if or how to run, or what
features to make available.

3.3 Build and Install Basic Python

Restore Catamount environment

Building basic Python requires some changes. First,
restore the Catamount build environment and return to the
Python source:

module load PrgEnv-pgi
cd <python source path>

Address cross-compiling issues

Next, it is necessary to address the deficiencies in the
Python build system, which was not designed around
cross-compiling, and to work around the limitations of
Catamount. First the cross-compiling issue. In addition
to compiling on the service nodes for execution on the
compute nodes, the “yod” loader is used. Instead of
specifying a cross-compile environment, which the
configure script almost, but doesn’t quite, support and
which would not support the “yod” loader, some macros
are added to tell configure how to run its compiled code.
This is done by creating a file called aclocal.m4. The
contents of this file rewrite the macro for running
compiled programs. Once this file is in place, the
program “autoconfig” is run to transform “configure.in”
and “aclocal.m4” into a new “configure” script.

Contents of aclocal.m4:

CUG 2007 Proceedings 3 of 7

_AC_RUN_IFELSE(PROGRAM, [ACTION-IF-TRUE],
[ACTION-IF-FALSE])

Compile, link, and run.
This macro can be used during the
selection of a compiler.
We also remove conftest.o as if the
compilation fails, some
compilers don't remove it. We remove
gmon.out and bb.out, which may be created
during the run if the program is built
with profiling support.
m4_define([_AC_RUN_IFELSE],
[m4_ifvaln([$1],

[AC_LANG_CONFTEST([$1])])dnl
rm -f conftest$ac_exeext
AS_IF([AC_TRY_EVAL(ac_link writeresult.o)

&& AC_TRY_COMMAND(yod ./conftest$ac_exeext) &&
ac_status=`cat ./conftest$ac_exeext.result` &&
echo "Got result code "$ac_status && (exit
$ac_status)],

[$2],
[echo "$as_me: program exited with status

$ac_status" >&AS_MESSAGE_LOG_FD
_AC_MSG_LOG_CONFTEST
m4_ifvaln([$3],
 [(exit $ac_status)
$3])dnl])[]dnl
rm -f core *.core gmon.out bb.out

conftest$ac_exeext conftest.$ac_objext
m4_ifval([$1],

[conftest.$ac_ext])[]dnl
])# _AC_RUN_IFELSE

_AC_COMPILER_EXEEXT_WORKS

m4_define([_AC_COMPILER_EXEEXT_WORKS],
[# Check the compiler produces executables
we can run. If not,
either the compiler is broken, or we
cross compile.
AC_MSG_CHECKING([if the _AC_LANG compiler

works])
FIXME: These cross compiler hacks should
be removed for Autoconf 3.0
If not cross compiling, check that we can
run a simple program.

if test "$cross_compiling" != yes; then
if AC_TRY_COMMAND([yod ./$ac_file]); then
cross_compiling=no
else
if test "$cross_compiling" = maybe; then
 cross_compiling=yes
else
 AC_MSG_FAILURE([cannot run _AC_LANG

compiled programs. If you meant to cross
compile, use `--host'.])

fi
fi
fi
AC_MSG_RESULT([yes])
])# _AC_COMPILER_EXEEXT_WORKS

Address Yod return code issue

There is one more requirement to address. Several of
configure’s tests rely on a program’s return code. Yod,
which has multiple process launches in mind, only returns
whether it was successful in running the program on all of
the requested nodes, not the program result code itself.
The file “writeresult.c” works around this by providing an
exit hook that writes the return result to <program
name>.result upon exit. The macro in aclocal.m4 reads
the “.result” file and uses its content (a single number) as
the final result for a test.

writeresult.c:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
extern char* __progname_full;
extern char* __progname;

void myexit(int code, void *arg);

void __attribute((constructor))

writeexit(){
on_exit(myexit, NULL);
}

void myexit(int code, void *arg) {
int fd;
char ofile[2048];

printf("Exiting with code %d\n", code); /*

for debugging */
sprintf(ofile, "%s.result",

__progname_full);

fd = creat(ofile, 0700);
sprintf(ofile, "%d", code);
write(fd, ofile, strlen(ofile));
close(fd);
}

This program must be compiled with GCC since the
“constructor” attribute is a GCC extension to C:

gcc –c writeresult.c

Address dynamic loading issues

Compile the replacement dynamic loader.

dynload_redstorm.c
/* This module provides simulation of
 dynamic loading for statically linked
 modules on Red Storm */

#include "Python.h"
#include "importdl.h"

CUG 2007 Proceedings 4 of 7

const struct filedescr
_PyImport_DynLoadFiletab[] = {
 {".a", "rb", C_EXTENSION},
 {0, 0}
};

/* This table is defined in config.c:
*/ extern struct _inittab
_PyImport_Inittab[];

/* Basically, just search through the
list of compiled-in init functions */
dl_funcptr
_PyImport_GetDynLoadFunc(const char
*fqname, const char *shortname,
const char *pathname, FILE *fp)
{
 struct _inittab *tab =
 _PyImport_Inittab;
 while (tab->name && strcmp(
 shortname, tab->name))
 tab++;

 return tab->initfunc;
}

This does not actually implement dynamic loading
since all modules are statically linked into the final Python
executable. This is only here to aid in namespace
resolution of modules which appear in sub-packages.
When a package is imported within Python, say
foo.bar._mumble, Python will search for _mumble.py
within the foo/bar package space. Failing that, it will try
the chosen dynamic loader to find _mumble.so. If the
loader finds and loads the library, it will return the pointer
to the module’s init function. Dynload_redstorm applies
this behaviour to static libraries by looking for
_mumble.a, and if it finds this it will return _mumble’s
compiled-in init function.

Makefile changes

Finally, some simple modifications are made to
Makefile.pre.in. The first change is to put “yod” in front
of the line that runs $(PGEN). This change is not actually
necessary since the Python build will continue even if this
stage fails, but for completeness this change is made.
During the build process the Python build generates and
runs a grammar parser which (re)writes a part of Python’s
parsing code; this change allows that process to run
correctly. The second change is to remove the
“sharedmods” dependency from the “all” target. There
are no shared modules in this build, and the build fails
when it tries to build them. The third change is to add
“yod” to the install targets that run $(BUILDPYTHON):
scriptsinstall and libinstall. Finally, remove the
sharedinstall dependency from the altinstall target.

Now run the configure script.

setenv ac_cv_file__dev_ptmx no
Override detection to prevent getty build
./configure --without-gcc --prefix=<install

path> BASECFLAGS=-c9x
DYNLOADFILE=dynload_redstorm.o CXX=CC
MACHDEP=redstorm SO=.a

Address system variable problems

This should succeed in producing a makefile.
However there is now an issue with Catamount to work
around. Several key system-defined limits are supplied as
0. The two that are of concern here are
NGROUPS_MAX and TMP_MAX. NGROUPS_MAX
must be non-zero because the Python POSIX module
(presented to the end user as the “os” module, which
provides an OS independent interface to OS-dependent
functions) defines an array of NGROUPS_MAX size for
one of its functions. TMP_MAX must be non-zero
because Python’s home-rolled mkstemp function uses it as
the maximum number of iterations for randomly creating
unique temporary file names. Fortunately, Python uses
defaults for both if left undefined, so two lines are added
to the end of pyconfig.h, outside of the #ifdef / #endif
wrapper.

#undef NGROUPS_MAX
#undef TMP_MAX

Address large file support issues

In addition, it is necessary to override the Python
build’s attempts at large file support. Certain file
functions, most notably readdir, do not work correctly
when the 64-bit version is called. Since file sizes are
already 64 bits, the *64 versions are not needed. These
defines should be undefined:

#undef _LARGEFILE_SOURCE
#undef _FILE_OFFSET_BITS

Parallel performance

Another change, while not technically necessary,
should help to ease the load on the service node. Python
loads external .py modules from disk while running. If
over a thousand nodes were to read the same .py file at
once, as is likely for a large MPI job, this could strain the
system. Fortunately, all external module loading is
handled by a single Python module, called the data
marshal. So Modules/marshal.c is modified so that only
one rank will actually load the data and communicate it to
the other ranks through MPI_Bcast calls. The one caveat
here is that all Python scripts must import the same
modules at the same times, or hangs and possibly
confusion will abound. Note that this change is

CUG 2007 Proceedings 5 of 7

independent of, and does not require, the pyMPI module
discussed later.

Distutils modifications

The Python distutils package is used by many Python
modules as a build framework. Since shared objects are
not available, the module must be customized to handle
static libraries. The following function is added to the
unixccompiler class in Lib/distutils/unixccompiler.py:

def link_shared_object (self,
objects,
output_filename,
output_dir=None,
libraries=None,
library_dirs=None,

runtime_library_dirs=None,
export_symbols=None,
debug=0,
extra_preargs=None,
extra_postargs=None,
build_temp=None,
target_lang=None):

 if output_dir is None:
 (output_dir, output_filename) =

os.path.split(output_filename)

 linkline = "%s %s" % (output_filename[:-

2], output_filename)

 for l in library_dirs:
 linkline = linkline + " -L" + l

 for l in libraries:
 linkline = linkline + " -l" + l

 old_fmt = self.static_lib_format
 self.static_lib_format = "%s%.0s"
 self.create_static_lib(objects,

output_filename,
output_dir, debug,
target_lang)

 self.static_lib_format = old_fmt

 print "Append to Setup: ", linkline

This causes a module build to create <module>.a, and
also to print a line that is suitable to be included in
Modules/Setup. Then simply add that line to
Modules/Setup.

Add to static modules list

The last change for basic Python is to add a list of
Python native modules to the list of static inclusion. This
is done in the file Modules/Setup. It has a simple format
for each line: <module name> <list of included files
defines and link flags>. Some modules are already
statically bound, but many more need to be added. These
are already listed, so it is necessary only to uncomment
them. The current list of static Python modules includes:

 array
o # array objects

 cmath
o # complex math library functions

 math
o # math library functions, e.g. sin()

 _struct
o # binary structure

packing/unpacking
 time timemodule.c

o # time operations and variables
 operator

o # operator.add() and similar
goodies

 _weakref
o # basic weak reference support

 _random
o # Random number generator

 collections
o # Container types

 itertools
o # Functions creating iterators for

efficient looping
 Strop

o # String manipulations
 unicodedata

o # static Unicode character database
 binascii

o # Helper module for various
ASCII-encoders

 cStringIO
o # C implementation of string-based

IO emulation
 cPickle

o # C implementation of object
pickling

Now complete the build

make
make install

3.5 Build the Third-Party Modules

The next step is to build any desired third-party
modules. This can be done easily for modules which use
the distutils framework, which is typically run through
setup.py.

cd <module source path>
<install path>/python.sn setup.py build
<install path>/python.sn setup.py install

This of course assumes you have write privileges to
the installed Python directory, which you will need
anyway to link Python. In fact, the next step is to add the

CUG 2007 Proceedings 6 of 7

built modules to the statically-linked list in <python
source>/Modules/Setup:

mymodule <install path>/lib/python2.5/site-
packages/mymodule.a

3.6 Add Modules to the Python Static Link List

One third-party module that is often needed is
PyMPI, with some customization to build mpi as a module
instead of building a new executable. Prior to running
“configure”, add pyMPI_softload.c to the list of objects in
Makefile.in, and remove the redefinition of
Py_GetVersion in pyMPI_sysmods.c since it conflicts
with Python main’s definition.

[skip unchanged parts]
pyMPI_user_startup.$(OBJEXT)

pyMPI_util.$(OBJEXT) \
pyMPI_softload.$(OBJEXT)

Once these changes are made, run the build and then
manually install.

cd pyMPI-2.4b4
./configure --with-python=<python install

path>/bin/python.sn
make
cp libpyMPI.a <python install path>

/lib/python2.5/site-packages/mpi.a

This will also build a pyMPI executable, but since
Python will need to be recompiled whenever one or more
modules are added, we only use the module.

Now add pyMPI to the Setup file as discussed above.

mpi <python install
path>/lib/python2.5/site-packages/mpi.a

Other third-party modules, such as the module for the
Data Services Toolkit, can be added in a similar fashion.

3.7 Rebuild Python with the final modules list

Once all modules have been built and added, rerun
make:

cd <python source path>
make
make install

The final result is a Catamount runnable Python

yod –sz 4 <install path>/bin/python
HelloWorld.py

4. Conclusion

4.1 Performance

Performance seems to be mostly identical to Python
running on a standard linux system. This makes sense
since the code itself is the same. Dynamic loading of
modules is the only significant difference between the
architectures. The code is not sharing any CPU time with
other processes. Only if it’s small I/O intensive would
there be a noticeable drop in performance. The memory
footprint may be larger than for a dynamic executable, for
code that only uses a small set of the Python functionality.
But it may be comparable or even smaller for codes that
use more of the Python system, since there are not only
the modules loaded, but the dynamic library and structures
related to handling that part also.

4.2 Extension to other codes

What works for porting Python should work for other
scripting systems in a similar fashion. The solutions for
lack of dynamic loading and parallel efficiency should be
relatively easy to translate to other scripting systems and
applications. The particular system variables that were a
problem for Python may not be a problem in other
applications, but looking for use of parameters related to
number of processes, swap size, or resource limits may
prove helpful in getting other applications to build.

For a Python-based simulation code that is being
ported to Red Storm now, there is an additional
requirement. The executable itself must be re-linked prior
to each execution since the code has many modules and it
is up to the user to decide which modules are necessary
for a given run. So a build system is being developed to
modify the Modules/Setup file, probably using a
dependency analyser; re-run make; and then run the
executable. This will likely be done through a Python
script which the native Python will execute. Much of this
is already present, but more details will become available
when the port is finished.

4.3 Future Work

The functionality of DSTK is being reimplemented in
the ParaView scientific visualization application. The next
task will be to attempt to port all or part of ParaView to
Red Storm. The plan is to start work on this porting
process next year.

CUG 2007 Proceedings 7 of 7

Acknowledgments
The authors would like to thank Rena Haynes and Jim

Holten for the development of DSTK, without which we
would never have gotten involved in this area. We would
also like to thank all of the Red Storm system staff for
their assistance in this project. Finally we would like to
thank our colleagues in the visualization support teams for
their helpful advice and support.

Funding was provided by the Advanced Simulation
and Computing (ASC) program’s Data Visualization
Science (DVS) Program. The work was performed at
Sandia National Laboratories. Sandia is a multi-program
laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000.

About the Authors
John Greenfield, PhD is a post-processing and

visualization support software engineer for ASAP under
contract to Sandia National Laboratories in Albuquerque.
He can be reached at Sandia National Laboratories, P.O.
Box 5800, MS 0822, Albuquerque, NM, 87185-0822,
USA E-Mail: jagreen@sandia.gov. Daniel Sands is a
Software Developer for SAIC under contract to Sandia
National Laboratories in Albuquerque. Daniel can be
reached at Sandia National Laboratories, P.O. Box 5800,
MS 0822, Albuquerque, NM, 87185-0822, USA E-mail:
dnsands@sandia.gov.

