
Python based applications on Red Storm

Porting a Python based application to thePorting a Python based application to the
Lightweight KernelLightweight Kernel

May 10, 2007

John Greenfield

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.



• Red Storm
• User needs - Why Python
• Difficulties

– No Dynamic Libraries
– Cross-Compiling Issues
– Other Difficulties
– Parallel Performance

• Conclusions
• Future Work

Agenda



Red Storm



• Post-processing applications
– Verification and Validation
– Scaling
– Quantification of Uncertainty
– Error checking
– Optimization and parameter studies

• Quick Easy transfer from other machines
– Have codes that work, need them on Red Storm
– Often these are in Python

User needs



• Our original motivating application
• Toolkit for post-processing Exodus files

– Subsetting and selection
– Algebra operations on data
– Parallel capability

• Python interface to a set of tools in C
• Uses pyMPI, numerics Python modules
• Written as Python module (dstk.py)

Data Services Toolkit (DSTK)



• No Dynamic Libraries
• Cross-Compiling Issues
• Other Difficulties
• Parallel Performance

Difficulties



• Compile Statically
• Replace Python loader

– Look for static libraries instead

• Modules and libraries used increase size
• For small calculations, size not an issue
• If most of module used, size penalty minimal
• Need to recompile if compilers or libraries

change.

No Dynamic Libraries



• Need to handle yod as well as compiling on
service nodes for compute nodes.

• Need to provide return codes that yod doesn’t
– Wrapper to pass result codes via file.

• Modify make to use yod as launcher.
• Need service node version of python to build

third-party modules.

Cross Compiling Issues



• Handle system variable settings
– NGROUP_MAX and TMP_MAX set to 0
– Used by Python for array size and loop settings
– Undef to get Python defaults

• Avoid explicit large file support
– Causes use of 64-bit file IO, which has bugs
– Disabling will use 32-bit IO functions

Other difficulties



• Python loads modules from disk at run time
• Loading from disk doesn’t scale for diskless

nodes.
• Revise python loader to load via MPI bcast

– Load single rank from disk
– Broadcast to rest of nodes
– Requires all nodes load same modules at start

Parallel Performance



• Build and install Python module builder
– Service node

• Build and install basic Python
– For compute node

• Build Third-party modules
• Add modules to Python static link list
• Rebuild Python with final module list

Step-by-step build



• Performance
– Speed as good as or better than dynamic linking
– Size not much bigger, especially for limited number

of modules.

• Extension to other codes
– Static linking and parallel efficiency easy to

translate
– Other difficulties more code specific

• Look out for system variable setting assumptions

Conclusion



• Porting Python-based simulation code
– Dynamically selects modules
– Size from excess modules a concern
– Working on automatic re-linking to add modules

dynamically

• Reimplementing DSTK functionality in ParaView
– Should be available late this year
– Need to port ParaView to Red Storm

• Planned project for next year

Future Work



• Thanks to colleagues
– Rena Haynes and Jim Holton for DSTK

development
– Sandia Visualization teams for advice and support
– Red Storm System teams for assistance

• Funding provided by ASC DVS program.

Acknowledgements


