
 
CUG 2007 Proceedings 1 of 8 

 

Illuminating the Shadow Mesh 

Jon Goldman (jgoldma@sandia.gov) and 
Warren Hunt (wlhunt@sandia.gov), 

Sandia National Laboratories 

ABSTRACT: Sandia’s Red Storm is currently the largest XT3 installation in the 
world. The complexity of Red Storm, with its arrangement of 13,280 compute, 
service, and I/O nodes requires new analysis paradigms be developed to help 
better understand the state of the machine, especially when problems arise. Fully 
understanding issues that affect routing would require being able to picture on the 
order magnitude of 176,358,400

*
 potential routes in the system. To aid in this 

endeavor we have created a suite of three-dimensional visualization and 
database tools. 

KEYWORDS: Sandia, Cray, XT3, Red Storm, visualization, illumination, graphics, 
routing, shadow, mesh 

 

                                                 
*
 13,280

2 
= 176,358,400 

1. Introduction 

1.1 Sandia’s Red Storm 
Sandia National Laboratories architected the 

Red Storm design
1
. In 2002 Cray Inc. was named 

vendor partner for carrying out the design details, 
engineering, and building Red Storm. In 2004

2
 Cray 

Inc took the XT3 to market, and Sandia’s installation 
commenced in 2005. 

Red Storm’s sheer size in the number of nodes 
and requisite computing cabinets, wires, etc. makes 
it a daunting task to fully comprehend and 
understand. The authors, as part of the visualization 
team in the Scientific Applications and User Support 
department at Sandia, are working closely with the 
System Manager

3
 of Red Storm to create a visually-

based analytical tool. The project was begun in 2005. 
Initially the software was engineered to analyze Red 
Storm’s mesh from a logical and physical

4
 

perspective. Later it was adapted to support routing 
and to help visualize the Shadow Mesh, which is the 
focus of this paper. 

The following image gives an idea of the size of 
Red Storm. It shows the cabinet layout and 
distribution of dedicated red/black cabinets (the 

compute sections are switchable between classified 
and unclassified operating modes). Note that each 
compute cabinet houses 96 compute nodes: 

 

 

Figure 1: Cabinet Layout 
 

1.2 Visual Analysis Overview 

1.2.1 LuzRed 
Our software analysis tool, LuzRed, is actually a 

suite of programs written in C++, python, and Perl. 
The visualization part of LuzRed is written in C++ 
and uses the Visualization ToolKit (VTK)

5
 for 

scientific visualization, Qt
6
 for the graphical user 

interface, and CMake
7
 for cross platform builds on 

Windows and Linux. 



 
CUG 2007 Proceedings 2 of 8 

 

Some of the database processing and 
communications parts of LuzRed were written in 
Python and Perl. We use MySQL client/server API to 
build and access various databases. We mirror 
portions of the XTAdmin database that runs on Red 
Storm, and for routing analysis we create a new 
MySQL database. 

Ultimately we would like as many data sources 
to LuzRed be automatically or semi-automatically 
updated. For example determining when the 
XTAdmin mirror needs refreshing is an area of 
ongoing work. 

1.3 End User 
Although LuzRed is still in development, it is 

designed to serve the analysis needs of several 
categories of users. As a research tool, LuzRed 
allows better understanding of job allocation, 
distribution, routing, and other resource issues. As a 
management tool, LuzRed provides real-time status 
and assessments of the health of the system. 

A system manager should be able to leverage 
his or her knowledge of the machine and associated 
software systems and databases to perform 
sophisticated analysis and make correspondences 
between the various visual representations that our 
application presents. 

A system engineer can use LuzRed to locate 
failures on the machine. To be truly successful 
LuzRed would allow an administrator to distinguish 
between failure cases where Red Storm requires a 
reboot vs. deferring taking action

8
. There is no 

dynamic rerouting in the XT3, due to static route 
tables and hardware limitations, therefore a reboot 
will eventually be required. Rebooting is the only way 
to rebuild the route tables and resolve the Seastar 
failure. This issue relates to the concept of the 
shadow mesh, which is discussed in detail below in 
section 2.  The Shadow Mesh. 

The following image shows the latest incarnation 
of the visualization tool: 

 

 

Figure 2: LuzRed Main Panel 

 
We envision that the system manager might be 

interested in running the visualization program to 
examine and understand the job allocation 
mechanism; an administrator might sit with the 
manager and perform database queries to answer 
questions such as, “Did job X die as a result of a 
network routing problem?” A hardware technician 
might want to look at snapshots of routes, either 
real-time or for historical queries. 

1.4 2D or not 2D that is the 3D question 
Early in the development of LuzRed we cogitated 

over whether to provide 2D as well as 3D 
representations of the analysis. Colleagues 
suggested that a 2D view could provide as much 
information as 3D with less ‘clutter’. 

While the authors agree that 2D renderings can 
prove useful, and less disorienting, the inherent 3D 
coordinate system and layout of the XT3 mesh, and 
the complexity of Sandia’s machine, led us to focus 
on 3D visualization techniques. To date the only 2D 
representation we support is the job layout similar to 
what the xtshowmesh command displays: 

 

 

Figure 3: Job Display 
 
However, we have prototyped/explored 2D ideas 

of displaying job information in ways such as this: 
 

 

Figure 4: Prototype 2D  

2.  The Shadow Mesh 

The term shadow mesh is inspired by the idea of 
areas of the system that have become darkened, or 
not “visible” from one or more nodes. In the same 
sense that a camera can not see objects that are 



 
CUG 2007 Proceedings 3 of 8 

 

obscured by other opaque objects, nodes in the 
system that are unreachable, either because a 
Seastar or Seastar link failed or was disabled, are 
considered ‘in shadow.’ 

A precise definition of the shadow mesh is the 
aggregate set of nodes that are unreachable on 
routes from/to other nodes via a particular Seastar 
node or link. 

We can think of the shadow mesh as the sum of 
all nodes whose communication through the system 
has been reduced. However, the role of LuzRed is to 
utilize visualization to enable increased machine 
performance and better decision making by system 
administrators. By quantifying the uncertainty 
introduced by a Seastar failure, LuzRed allows the 
system administrator to respond to the failure in a 
more efficient manner. Perhaps the failure does 
have a catastrophic impact on the system, or maybe 
an important job can be allowed to complete before 
restoring the system. By computing shadows from 
different viewpoints, we can better understand a 
complex environment and make better decisions. 

2.1 Camera Nodes 
A camera node, or viewpoint, is defined as a 

node for which routes originate and terminate. In the 
context of this work we considered only a subset of 
camera viewpoints, only nodes in the service 
partition. 

The following image shows a shadow mesh 
visualization: 

 

 

Figure 5: Shadow Mesh 
 

The shadow mesh image depicts the camera 
(service) nodes as yellow cubes. The Seastar that is 
down is represented by the red sphere in the middle 
of the row of cyan and black striped spheres. The 
rest of the spheres in the image represent compute 
nodes, and are colored by job (Yod ID). The cyan 
spheres with stripes are the nodes that are in 
shadow of the down Seastar from the perspective of 

the camera nodes. We make transparent nodes that 
we want to see, but are of less interest in this 
particular analysis. 

The next image shows another view of the 
shadow, with the service nodes on the left, and the 
downed Seastar and resulting shadow on the right 
plane: 

 

 

Figure 6: Shadow Mesh Edge On 

2.2 Shadow Flavours 
The service shadow mesh is defined as the 

aggregate set of nodes that are unreachable from/to 
the PBS, Lustre service nodes, and sdb. 

The data path shadow mesh is defined as the 
aggregate set of nodes that are unreachable from/to 
the I/O nodes. 

To date we have focused on looking at the 
service shadow. In fact there are other classes of 
shadows that should be explored, for example the 
compute mesh has its own distinct shadow with 
respect to itself. The following image shows various 
service shadow viewpoints: 

 

 

Figure 7: Red Storm Service Shadow Viewpoints 

 

2.3 Islands of the Mesh 
 One interesting concept that arises when 

exploring the shadow mesh is the question of which 
parts of the machine are still usable after one or 
more Seastars or links go down. This is akin to the 
question of which future job submissions will run to 
completion. Asked another way: Is it possible, 
following a routing related failure, to identify a portion 



 
CUG 2007 Proceedings 4 of 8 

 

of the mesh for which a job can be submitted and 
executed and run to completion (i.e. capture the 
results of the job)? The answer to this question is 
non-trivial, to say the least. 

Most likely the answer is ‘no’ for any job that tries 
to write results data to a file and for which a Seastar 
goes down on a Lustre node in the service partition. 
For other areas of the mesh, it is not so clear. Timing 
is also an issue. Once a job is submitted via PBS, if 
the submitting PBS node’s Seastar or login node 
goes down, the job may very well still run to 
completion. We expect as this research continues, 
we will be able to answer this question for a subclass 
of queries for certain node types (PBS, login, 
compute, etc.) of the mesh. 

3. LuzRed Data Sources 

3.1 Data Sources in Red Storm  
 LuzRed employs several databases. MySQL 

is used extensively for analyzing jobs in historical 
and real-time contexts. The routes are also stored in 
MySQL (see Appendix A) — we have experimented 
with two variations to store the routes. 

 Other information is created and stored in 
flat files— a lookup table file is generated using the 
output from the “rtr –Ii” and the output from the 
“xtnidname” to easily convert between logical, 
physical, and NID node addresses. The address 
table lookup has this format: 

… 
c9-1c1s0s2,[9,5,23],4738 
c9-1c1s0s3,[9,4,23],4739 
c9-1c1s1s0,[9,7,22],4740 
… 

 

 For the shadow mesh we store the list of 
service nodes — PBS, lustre, login, sdb, 10GB 
network, in a file that has this format: 

 

… 
nid00076,c0-0c2s3n0,login 
nid00080,c0-0c2s4n0,lustre 
nid00087,c0-0c2s5n3,10GB 
nid00099,c0-1c0s0n3,unused 
nid00112,c0-1c0s4n0,pbs 
nid00192,c0-2c0s0n0,sdb 
… 

3.2 MySQL Issues 
 The Red Storm XTAdmin database is 

extensively used for our visual analysis. However, as 
we progressed with our work we found it necessary 
to mirror the MySQL database(s) on a separate 
machine. Although this requires extra software to be 
written, and work to monitor and maintain the mirror, 
it has the following advantages: 

1. We are not completely dependent upon the 
stability of Red Storm, i.e. booting due to 
maintenance and servicing; 

2. If the login or other service nodes are not 
accessible we can still perform our analysis; 

3. We are not dependent upon the machine 
configuration (classified vs. unclassified) 

4. We mirror the database(s) on a non- Red 
Storm node, away from the XT3 installation 
and building. This increases significantly the 
uptime and availability to the XTAdmin 
database. 

3.2.1 XTAdmin mirror 
As described above, we mirror portions of the 

XTAdmin on a system that is not co-located with Red 
Storm. We do not copy the entire database, mainly 
for speed of loading, and because our analysis to 
date did not require data from all of the tables. 

The XTAdmin mirror is updated either manually 
or in a semi-automated fashion. We implemented a 
python client server program, dbMonClient and 
dbMonServer, respectively using the python socket 
library. The role of dbMon {Client|Server} is to 
periodically monitor the XTAdmin database on Red 
Storm and look for changes to the database as a 
result of new jobs starting or old jobs ending. If the 
monitor detects a change the mirror XTAdmin 
database on our visualization machine is updated 
with a snapshot from the actual XTAdmin running on 
Red Storm. 

3.3 Building the Routes 
The routes flat-file database is generated 

whenever Red Storm is rebooted. A script is run that 
dumps a flat text file using the output from “rtr –
IR.”  These files can be quite large. In the small 
operating mode

9
 the file is 3.1Gigabytes. We can 

expect this file size to increase in proportion to the 
square of the mesh. Thus for jumbo mode

10
, which is 

approximately four times small mode, we should see 
a sixteen fold increase in the routes file, or about 48 
Gigabytes.  

A MySQL routes database is generated by 
processing this text file using a C++ program. We 
implemented two slightly different forms of the 
database, which provide trade-offs in speed of 
queries vs. time-to-build. One format, which we call, 
routes_hop_per_row Database schema:, has a 
simple organization to store each hop of the routes in 
its own row.

11
 The other database 

routes_hops_combined Database schema:, stores 
an entire route in a single row of the database by 
encoding the hops of the route in a text field. See 
Appendix A for database schemas. 

3.3.1 Performance Concerns 
As of this writing it takes approximately 1 hour to 

build the routes_hops_combined database, and 17 



 
CUG 2007 Proceedings 5 of 8 

 

hours
12
 to build the routes_hop_per_row database 

for Red Storm’s small size Operating Mode. 
While building the database is required only at 

boot-up, we would like to improve this turn-around 
time. Several ideas are being explored: 

• Parallel or cluster implementations of MySQL or 
other database technologies; 

• Reduce the number of MySQL INDEXes; 

• Move the MySQL server to a 64-bit platform
13
; 

• Store the entire routing table in virtual memory.
14
 

4. Core LuzRed Visualization 
Functionality 

This paper has focused to this point on the 
shadow mesh and database issues. At this point we 
would like to delve into some detail of the core 
features of the LuzRed visualization. The graphics 
application currently supports three main types of 
view: logical, physical, and routes

15
. 

4.1 Logical View 
The Logical View is essentially a graphical 

representation of the Red Storm logical coordinate 
system, with nodes represented by spheres, and 
colored by its Yod ID through a simple lookup table. 
The color in 3D space matches the color square next 
to each job, on the main GUI panel (see Figure 2: 
LuzRed Main Panel). 

The Logical View snapshot below shows 
how we can hone in on a specific job. It is selected 
and highlighted in the Yod table on the GUI, with the 
corresponding nodes for that job drawn opaque on 
the main 3D view window, and all other nodes draw 
transparently: 
 

 

Figure 8: Job highlighting 

4.2 Physical View 
The physical view attempts to depict a layout of 

the Red Storm nodes in a manner that approximates 
the real physical layout of the nodes, cabinets, and 
cages. 

Below we see a snapshot of jobs mapped to the 
physical view. Each “pizza box” represents a node in 
the mesh. 

 

 

Figure 9: Physical View 

 

4.3 Routes View 
The routes view in LuzRed is mapped to Red 

Storm’s logical coordinate system: 
 

 

Figure 10: Routes View 
 
In this view we depict the Seastars as a cluster 

of six spheres (one for each Seastar port). The links 
are represented by green lines. In the image above a 
route has been highlighted by coloring its links 
orange. 



 
CUG 2007 Proceedings 6 of 8 

 

 

4.4 Security 
The restrictive environment around Red 

Storm poses challenges to accessing system 
information and developing supporting applications. 
Because of the two classification levels available on 
the machine, the machine lives inside of a facility 
similar to a vault. All communications with the 
machine are well secured, which also implies that 
the firewall protecting the system makes it difficult for 
LuzRed to access the system management 
workstation for current information. As discussed 
earlier, and for ease of development, snapshots of 
the system data bases are mirrored on servers that 
provide more convenient access. LuzRed must also 
detect and adjust its visualization according to how 
Red Storm is switched or partitioned between the 
classified and unclassified ends. Developing LuzRed 
has been challenging because of the wide dispersal 
of hardware and software expertise, and the one-of-
a-kind nature that is Red Storm. 

5. Implementation 

5.1 VTK, Qt, and ParaView3 
A principle goal of LuzRed is to provide a robust 

and effective tool for the variety of prospective users. 
Our goals were to create a tool that could provide 
advanced visualization capabilities, user friendliness, 
and provide real-time performance. For performance 
consideration we chose to implement the application 
in C++. The user interface is built using Qt, a cross-
platform GUI toolkit. 

At the onset of development for LuzRed, 
development work had recently been underway on 
ParaView3

16
. If we were starting the project today, 

we would probably more seriously consider using 
ParaView3 as the basis for the visualization tool to 
LuzRed. 

6. Conclusion 

We feel that while significant progress has been 
made in using visualization to analyze aspects of 
Red Storm job and routing, much work remains to be 
done. The addition of certain graphics features to the 
logical and physical views of LuzRed, such as text 
annotation, hypercylinder

17
 representation, and 

multiple views, will make LuzRed a better tool and 
aid faster analysis. 

Other areas of the LuzRed system that need 
improvement are MySQL performance issues, as 
mentioned earlier, and automation of certain data 
streams. 

There is much interesting work to continue in the 
shadows realm:  exploring other shadow types, and 
refining our algorithms for quicker reporting. 

Dynamic rerouting is another interesting 
research topic. XT3 hardware limitations preclude 
the ability at this point to consider dynamic re-routing 
of the mesh when nodes are down. However it is 
useful to contemplate this ability/feature, for some 
future design architecture. 

Acknowledgments 

The authors would like to thank Sandia folks— 
Bob Balance for stimulating this work and providing 
technical guidance at many levels, Dr. John 
Greenfield for encouraging us to submit to CUG2007 
in the first place, Jon Stearley and Vitus Leung for 
discussions about routing and the shadow mesh. 
We’d also like to thank Cray people that helped us 
understand Red Storm better: Victor Kuhns, Bob 
Purdy, and Barry Oliphant. 

About the Authors 

Jon Goldman works on Scientific Visualization at 
Sandia, and enjoys good coffee. Jon has an 
undergraduate degree in Electrical Engineering and 
a Masters degree in Computer Science.  

Warren Hunt received a BS degree in computer 
science from the University of New Mexico, and will 
complete the MS degree in computer science in July 
2007, also from the University of New Mexico. His 
research interests are in scientific visualization and 
scientific computing. He is a member of IEEE and 
ACM. 

 



 
CUG 2007 Proceedings 7 of 8 

 

Appendix A: MySQL databases 

routes_hop_per_row Database schema: 
+---------------------+-------------+------+-----+---------+-------+ 
| Field               | Type        | Null | Key | Default | Extra | 
+---------------------+-------------+------+-----+---------+-------+ 
| beg                 | smallint(6) | YES  | MUL | NULL    |       | 
| end                 | smallint(6) | YES  |     | NULL    |       | 
| hop_src             | smallint(6) | YES  | MUL | NULL    |       | 
| hop_dst             | smallint(6) | YES  | MUL | NULL    |       | 
| hop_src_output_port | tinyint(4)  | YES  |     | NULL    |       | 
| hop_dst_input_port  | tinyint(4)  | YES  |     | NULL    |       | 
+---------------------+-------------+------+-----+---------+-------+ 

 

Sample route: 
mysql> select * from route where beg=1200 and end=1103; 
+------+------+---------+---------+---------------------+--------------------+ 
| beg  | end  | hop_src | hop_dst | hop_src_output_port | hop_dst_input_port | 
+------+------+---------+---------+---------------------+--------------------+ 
| 1200 | 1103 |    1200 |    1201 |                   0 |                  5 | 
| 1200 | 1103 |    1201 |    1202 |                   0 |                  5 | 
| 1200 | 1103 |    1202 |    1203 |                   0 |                  5 | 
| 1200 | 1103 |    1203 |    1040 |                   0 |                  5 | 
| 1200 | 1103 |    1040 |    1041 |                   0 |                  5 | 
| 1200 | 1103 |    1041 |    1042 |                   0 |                  5 | 
| 1200 | 1103 |    1042 |    1043 |                   0 |                  5 | 
| 1200 | 1103 |    1043 |    1039 |                   3 |                  2 | 
| 1200 | 1103 |    1039 |    1035 |                   3 |                  2 | 
| 1200 | 1103 |    1035 |    1031 |                   3 |                  2 | 
| 1200 | 1103 |    1031 |    1027 |                   3 |                  2 | 
| 1200 | 1103 |    1027 |    1119 |                   3 |                  2 | 
| 1200 | 1103 |    1119 |    1115 |                   3 |                  2 | 
| 1200 | 1103 |    1115 |    1111 |                   3 |                  2 | 
| 1200 | 1103 |    1111 |    1107 |                   3 |                  2 | 
| 1200 | 1103 |    1107 |    1103 |                   3 |                  2 | 
+------+------+---------+---------+---------------------+--------------------+ 

 

routes_hops_combined Database schema: 
+-------+-------------+------+-----+---------+-------+ 
| Field | Type        | Null | Key | Default | Extra | 
+-------+-------------+------+-----+---------+-------+ 
| beg   | smallint(6) | YES  | MUL | NULL    |       | 
| end   | smallint(6) | YES  |     | NULL    |       | 
| hops  | text        | YES  |     | NULL    |       | 
+-------+-------------+------+-----+---------+-------+ 

 
Sample route: 
mysql> select * from route where beg=1200 and end=1103;  
----------------------------------------------------------+ 
|beg | end | hops                                                                                                                                                                                                                     
----------------------------------------------------------+ 
| 1200 | 1103 | c2-1c2s4s0l0v1;c2-1c2s4s1l0v1;c2-1c2s4s2l0v1;c2-1c2s4s3l0v1;c2-0c0s4s0l0v1;c2-
0c0s4s1l0v1;c2-0c0s4s2l0v1;c2-0c0s4s3l3v1;c2-0c0s3s3l3v1;c2-0c0s2s3l3v1;c2-0c0s1s3l3v1;c2-0c0s0s3l3v1;c2-
0c2s7s3l3v1;c2-0c2s6s3l3v1;c2-0c2s5s3l3v1;c2-0c2s4s3l3v1;c2-0c2s3s3; | 
+------+------+------------------------------------------------------------------------------------------  

 

Mirror of XTAdmin used in LuzRed: 
+----------------------+ 
| Tables_in_XTAdmin    | 
+----------------------+ 
| partition            | 
| partition_allocation | 
| processor            | 
| service_processor    | 
| yod                  | 
| yod_allocation       | 
| ---------------------| 



 
CUG 2007 Proceedings 8 of 8 

 

References and Endnotes 

                                                 
1
 http://www.sandia.gov/news-center/news-releases/2002/comp-soft-math/redstorm.html 

2
 http://en.wikipedia.org/wiki/Cray_XT3 

3
 Bob Ballance, Scientific Computing Systems department, Sandia National Laboratories 

4
 Red Storm’s nodes are logically laid out in a regular 3D volumetric grid. The “physical” layout corresponds more 
closely to actual cabinets, rows of cabinets, module boards, etc. of the actual system as it resides on site at 
Sandia. 
5
 Visualization ToolKit— See: http://www.vtk.org 

6
 See www.trolltech.com 

7
 http://www.cmake.org/HTML/Index.html 

8
 Error or malfunctioning cases and determining situations when Red Storm does not need to be rebooted is a 
fairly large and open topic. If the work described in this paper influences the uptime of the machine, we will have 
considered LuzRed largely successful. 
9
 Small mode = 3360 compute nodes, 320 service and I/O nodes 

10
 Jumbo mode = 12960 compute nodes, 320 service and I/O nodes 

11
 See Appendix. 

12
 Queries are reasonably fast, in the range of seconds or less. To query and generate an entire shadow mesh 

takes approximately two minutes, quite acceptable for our needs. 
13
 The shadow mesh was generated from a MySQL database installed on a dual-processor Intel Xeon 3.2GHz 

machine running Red Hat Enterprise Release 3 
14
 For small mode system, using STL map container as the storage semantics, we estimate the entire route table 

can be stored in about 5GB of RAM. 
15 The alert reader may notice some similarities to the work found in CrayViz, a Tool for Visualizing Job Status 
and Routing in 3D on the Cray XT3, John Biddiscombe, and Neil Stringfellow, Swiss National Supercomputing 
Centre, and XT3 Operational Enhancements Chad Vizino, Nathan Stone, J. Ray Scott 
{vizino,nstone,scott}@psc.edu Pittsburgh Supercomputing Center, both papers presented at Cray User Group 
Conference 2006, Lugano, Switzerland, May 8-11, 2006. We used some of the ideas from the Graphical Monitor 
listed in the Vizino et al. al. paper. We did not use ideas directly from Biddiscombe et al but other Sandians with 
whom we work did see the Biddiscombe presentation at CUG 2006, and discussions over 2006 did influence our 
work. 
16
 http://www.paraview.org/Wiki/ParaView_III 

17
 Sandia’s Red Storm topology is not the general torus of other installations, but rather a hypercylinder, where 

only the Z-axis wraps. 


