

Moab and Torque on Cray Architectures

Outline

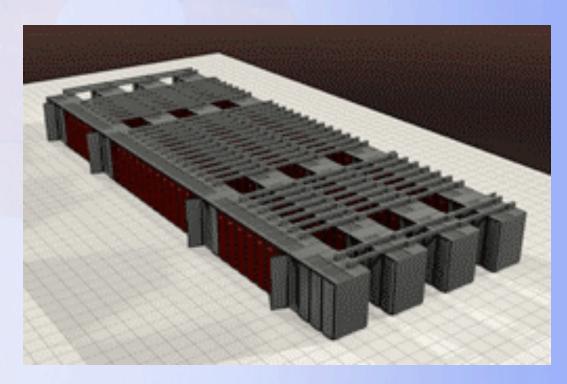
- The Motivation
- The Solution
 - Why Moab?
 - Why Torque?
- Model Comparison
- Conclusion

The Motivation

The Motivation

- You have invested in a large Cray system
 - -<u>XT3/XT4</u>, X1E, XD1...
- You want
 - High Utilization/ROI (happy investors)
 - Enforce Site Objectives (happy managers)
 - Manageability (happy admins)
 - Usability (happy users)

Let's look at some examples



Managing Leadership Systems w/ Moab

Sandia - Red Storm

Red Storm: Cray XT3 12,960 CPUs

- •124.42 teraOPS theoretical peak performance
- •135 racks
- •AMD Opteron™
- 40 terabytes of DDR memory
- •340 terabytes of disk storage
- Linux/Catamount OS
- •<2.5 megawatts power & cooling</p>

Managing Leadership Systems w/ Moab

ORNL

Jaguar: Cray XT3
~18,000 cores
moving to 1 Petaflop

Phoenix: Cray X1E 1,024 cores

RAM: SGI Altix 256 cpus

NATIONAL CENTER

Oak Ridge National Laboratory

®

© Cluster Resources, Inc.

Photo: ORNL

Managing Leadership Systems w/ Moab

Other Leading Government Site

Unannounced:
Cray XT3
Over 18,000 cores

•AMD Opteron™
•~100 racks

The Solution

Moab and Torque on Cray

Funding Managers

- High utilization / Return On Investment
- System cycles delivered to specific workload and groups according to commissioned objectives
- Statistics and reports provide evidence of delivered performance and utilization

Site Managers

- Service Level Enforcement/Guarantees
- Flexible policies to meet performance objectives
- Enforce political resource sharing
- Reports and simulations for capacity planning
- Graphical charting tools

Moab Workload Manager

TORQUE Resource Manager

System Administrators

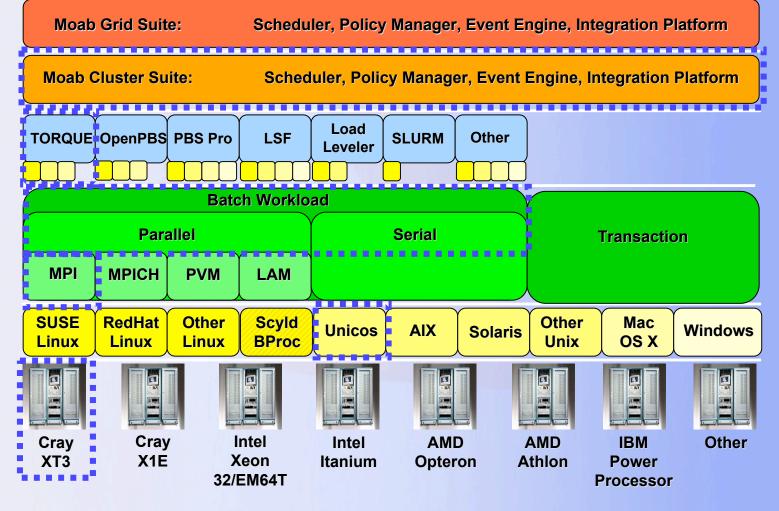
- · Unified batch management
- Task automation
- · Powerful diagnostics / monitoring
- Evaluate impact of new policies
- Self-help for users
- · Graphical Administrative Interface

End Users

- · Information and control of jobs
- Simple and flexible job submission
- Translations to familiar batch environments
- Prediction of job start
- Reliable cycle delivery
- · Web-based Job Submission Portal

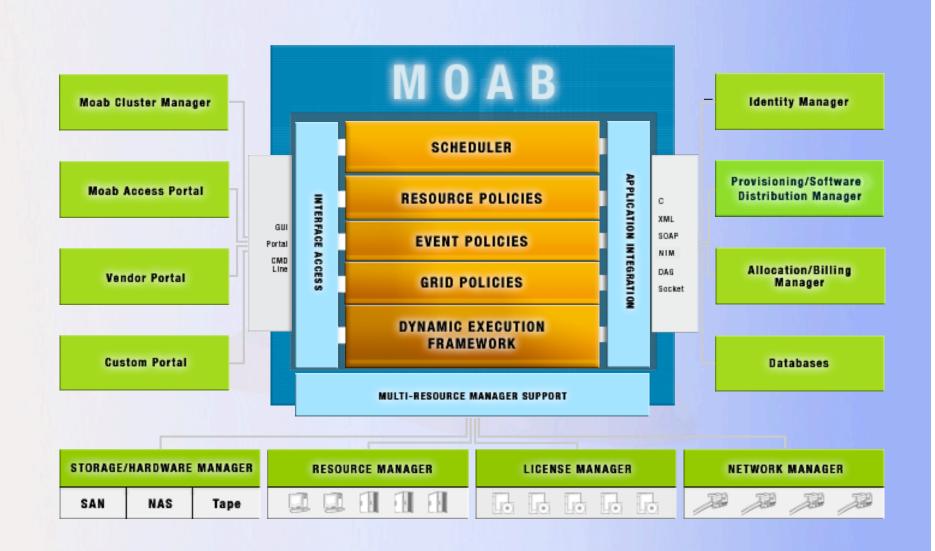
Solution Framework: Where Does It Fit?

Grid Workload Manager


Cluster Workload Manager

Compute Resource Manager

Workload Type &
Message Passing

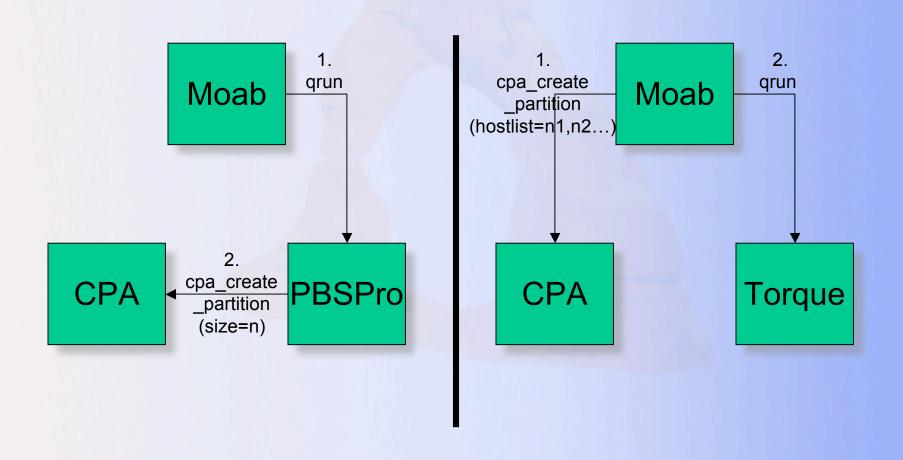

Operating System

Hardware/ CPU (Cluster or SMP)

© Cluster Resources, Inc.

Why Moab?

- Improved Utilization
- Reservations (Administrative, Standing)
- Service Level Guarantees (QOS, Priority, Fairshare, Usage Throttling)
- Resource Manager Translation
- Moab can create a Grid across all of your clusters – independent of RM/OS/Arch



Why Torque?

- Industry Standard Batch System
- Provides underlying support for Moab's advanced features
- Permits Moab to handle the CPA partition creation which permits
 - Better Failure Recovery
 - Reservations (Admin, Standing, ...)
 - Heterogeneous Resources
 - Node Features
- It is free, open source and commercially supported

CPA Allocation Model Comparison

Prior Model

- PBSPro pbs_mom handles cpa partition creation and management
- Processors could not be selected PBS asks cpa to allocate a partition of size=n processors
- Very difficult to enforce reservations
- Could not select nodes (processors) for placement so there was no support for heterogeneous resources or node policies of any type
- Poor failure handling. When Moab told PBSPro to start a job – qrun would succeed, but if the cpa allocation failed (such as a lustre recovery issue), the job would just drop back into idle and you would need to examine mom logs to find the cause.

Improved Model

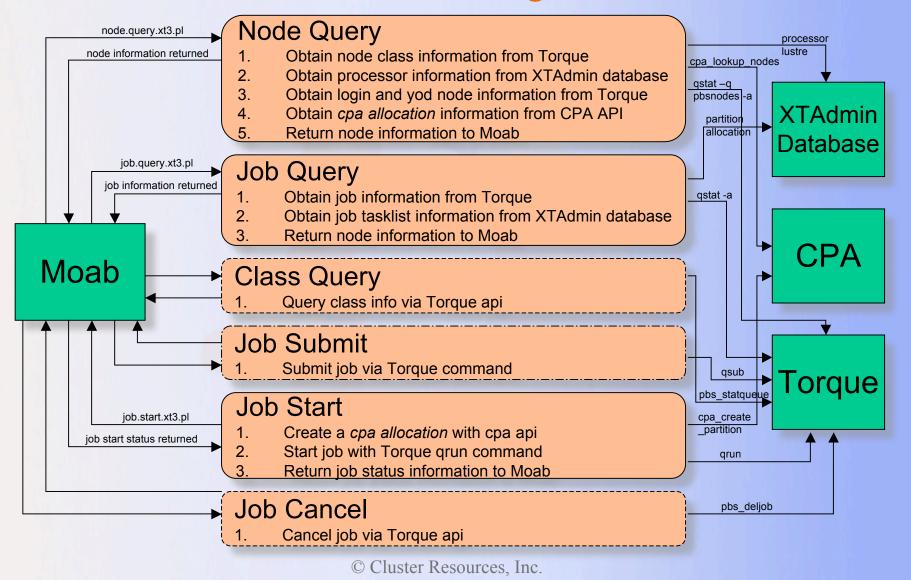
- Moab handles cpa partition creation and management before telling Torque to start the job
- Moab can allocate a list of processors of its choice – i.e. asks cpa to allocate a partition across selected processors (3, 5, 7-10, ...)
- Moab's scheduling optimizations can now be honored (node availability policies such as minResource, lastAvailable).
- Node (processor) sharing is possible
- Reservations work (admin reservations, job reservations, standing reservations, user reservations)

Improved Model continued

- Support for heterogeneous resources
 - Nodes configured with different disk, memory, swap, architecture, opsys
 - Node features (assigning different labels to nodes to be requested in jobs)
 - Generic resources
 - You can steer jobs to specific nodes or sets of nodes (hostlist, nodesets)
 - Per node limits, different policies, rules and constraints per node
 - Track node and avert node issues (load, failures, blocked resources)

Improved Model continued

- Allocation (e.g. lustre) failures are detected by Moab before the job starts
 - This allows intelligent handling and rerouting of jobs to available nodes
 - Failure causes can be caught by Moab, intelligently responded to, and reported to admins



Implementation Details

- Hybrid Model (Torque, Native RM Interface)
- Some actions are passed through to torque directly (e.g. Queue Query, Job Submit, Job Cancel)
- Other actions use scripts to aggregate information from multiple sources – Torque, CPA, XTAdmin database (e.g. Node Query, Job Query, Job Start)

Moab - XT3 Integration

Conclusion

- Moab and Torque can be used on Cray systems to:
 - Improve utilization
 - Enforce site policies
- Managing XT3 CPA allocation via Moab allows better support for:
 - Optimized scheduling
 - Advance reservations
 - Heterogeneous resources
 - Node sharing
 - Improved node allocation failure handling

For more information

Contact: Scott Jackson

Cluster Resources, Inc.

scott@clusterresources.com

(801) 717-3708

http://www.clusterresources.com