
CUG 2007 Proceedings 1 of 9

The Cray XT Compilers

Geir Johansen, Cray Inc.

ABSTRACT: The Cray XT3 and Cray XT4 supports compilers from the Portland
Group, PathScale, and the GNU Compiler Collection. The goal of the paper is to provide
Cray XT users with an overview of the different compilers available in the Cray XT
Programming Environment. Discussion will highlight the feature and performance
differences between the compilers and provide guidelines in determining which compiler
to use.

KEYWORDS: Cray XT3, Cray XT4, Compilers

CUG 2007 Proceedings 2 of 9

1.0 Introduction

The goal of this paper is give an overview of the
compilers available for the Cray XT3 and Cray XT4
systems. The three different compilers available for
building code on the Cray XT are: The Portland Group
(PGI) compilers, the GNU compiler collection (GCC),
and the PathScale Compile Suite. The compiler
environments are similar in that they all provide:

• C/C++ compiler
• Fortran 90/95 compiler
• AMD64 code generation with SSE2 support
• OpenMP support

Cray Inc. is fortunate in that all three of the compilers

are being actively developed and supported. All three
compilers have had significant feature enhancements and
performance improvements over the life of the Cray XT
product. As a result of this dynamic environment, an
important caveat to this paper is that it represents a current
snapshot and the information provided is subject to
change.

2.0 Cray XT Programming Environment

The programming environment for Cray system is
essentially a cross compiler environment. The compiler
and linker are executed on Cray XT login service nodes,
while the resulting executables are invoked on Cray XT
compute nodes. The operating system running on the
compute nodes is either the Catamount microkernel or
Cray Compute-Node-Linux (CNL), so the executables
need to be linked with the appropriate system libraries for
execution on the compute nodes. The compilers also need
to include the communication and scientific libraries that
are built for each specific compiler. For example, there
are separate MPICH libraries built for each of the three
compilers supported on the Cray XT system. The Cray
XT Programming Environment uses the module utility and
compiler scripts to ensure the executable is built with the
correct compiler options, header files, and libraries
appropriate for the compiler.

2.1 Modules
Similar to other Cray Inc. systems, the Cray XT uses

the modules utility to initialize the programming
environment for the user. The modules utility will set the
appropriate environment variables so the compilers will
find the correct header files and libraries to create an
executable for the Cray XT compute nodes. The modules
PrgEnv-pgi, PrgEnv-gnu, and PrgEnv-pathscale are the
main module files for each of the three compilers. When

the main module file is loaded, it will proceed to load the
other programming environment modules that are needed
to build code for the Cray XT. The following table is a
list of the Cray XT programming environment module
files:

Module and

Package Name
Description

PrgEnv-pgi
PrgEnv-gcc
PrgEnv-pathscale

Main programming environment
module that loads other
programming environment
modules.

pgi PGI compilers
gcc GCC compilers
pathscale PathScale compilers
xt-pe Compiler driver scripts
xt-mpt MPICH2 Message Passing

Interface 2 (MPI-2) library and
SHMEM library

acml AMD Core Math Library
xt-libsci Cray XT3 LibSci scientific library

routines
iobuf Cray I/O buffering library for

Catamount [Not part of the PrgEnv
module.]

fftw Fast Fourier Transform routines
[Not part of the PrgEnv module.]

craypat Cray Performance Analysis Tool
[Not part of the PrgEnv module.]

totalview TotalView debugger
[Not part of the PrgEnv module.]

Table 1. Programming Environment modules files

2.2 Compiler Drivers

 The compiler commands (see Table 2) are shell
scripts that read in the environment variables that have
been initialized by modules files and proceed to call the
compiler executable with the appropriate arguments. Only
the listed compiler commands should be used to compile
code targeted for the compute nodes. Using another
compiler shell script (i.e. mpicc) or calling the compiler
directly could result in an important option being missed
that is essential for execution on the compute nodes. For
example, calling pgf90 to compile and link a code with the
PGI Fortran compiler will result in an executable that does
not have the appropriate libraries to run and communicate
on the Cray XT compute nodes.

CUG 2007 Proceedings 3 of 9

 Table 2. Compiler commands

2.3 Example use of module and compiler
 The module environment allows the user to switch from
one compiler to another. The following example shows a
user changing a compiler, and then changing the release
version of the compiler:

$ module load PrgEnv-pathscale
$ ftn -version
/opt/xt-pe/2.0.03/bin/snos64/ftn: INFO: catamount target is
being used
PathScale EKOPath(TM) Compiler Suite: Version 2.5
Built on: 2006-08-22 21:02:46 -0700
Thread model: posix
GNU gcc version 3.3.1 (PathScale 2.5 driver)
Copyright 2000, 2001 Silicon Graphics, Inc. All Rights
Reserved.
Copyright 2002, 2003, 2004, 2005, 2006 PathScale, Inc. All
Rights Reserved
See complete copyright, patent and legal notices in the
/opt/pathscale/share/doc/pathscale-compilers-2.5/LEGAL.pdf
file.
$ module swap PrgEnv-pathscale PrgEnv-pgi
$ ftn -V
/opt/xt-pe/2.0.03/bin/snos64/ftn: INFO: catamount target is
being used
pgf90 7.0-2 64-bit target on x86-64 Linux
Copyright 1989-2000, The Portland Group, Inc. All Rights
Reserved.
Copyright 2000-2007, STMicroelectronics, Inc. All Rights
Reserved.
$ module swap pgi/7.0.2 pgi/7.0.3
$ ftn -V
/opt/xt-pe/2.0.03/bin/snos64/ftn: INFO: catamount target is
being used
pgf90 7.0-3 64-bit target on x86-64 Linux
Copyright 1989-2000, The Portland Group, Inc. All Rights
Reserved.
Copyright 2000-2007, STMicroelectronics, Inc. All Rights
Reserved.
$

2.4 Using Multiple Compilers for an Application

 Each of the programming environment libraries
(mpich, shmem, libsci, and acml) has a version that is
built using each of the compilers. A reason for this is
because of incompatibilities with Fortran modules
between the different compilers. As a result, it is not
recommended to use different Fortran compilers to build
the object files of an executable. Likewise,

incompatibilities in C++ name mangling and the C++
library makes it not possible to use different C++
compilers in building the same executable. There are no
issues with using different C compilers in building an
application.

2.5 Special Catamount Compiler Libraries
 The Catamount microkernel supports a subset of the
library routines that are supported by Linux. As a result,
there are cases where compiler libraries provided by the
compiler vendor has calls to routines that are not
supported by the Catamount microkernel. For example,
the PathScale Fortran library libpathfstart.a calls the
routine sigaltstack, which is not supported by the
Catamount microkernel. PGI and PathScale have
provided Cray with modified libraries that only call
routines that are supported by the Catamount microkernel.
The following is the list of compiler libraries that were
modified for the Catamount microkernel:

PGI

• libpgc.a
• libpgf90.a
• libpgftnrtl.a
• libC.a

PathScale

• libpathfstart.a
• libpathfortran.a
• libpathfortran_p.a

The compiler scripts will locate the Catamount

programming versions of these libraries. One area where
this may be a problem is when the libraries are explicitly
stated on the link command line. For example, a code
with both C and Fortran code that is being linked by the
PGI C compiler may contain the options ‘-lpgf90 -
lpgftnrtl’ on the command line to link in the PGI Fortran
libraries. In the current Cray XT 1.5 release, the user
would need to specify ’-lqk_pgf90 –lqk_pgftnrtl’ to link
the program with Catamount (qk) versions of the libraries.
Future versions of Cray XT will resolve this issue, so the
user will not have to change their build scripts to specify
the ‘qk’ library names.

2.6 Compiling Code for Service Nodes

In order to compile code, such as a utility program,
that is to be executed on a login/service node the
compilers should be called directly. For example, to
compiler a C code, the PGI C compiler pgcc, the GNU C
compiler gcc, or the PathScale C compiler pathcc can be
invoked to compile the code. These compilers will find
the appropriate header files and libraries in their normal
Linux locations.

Compiler
Command

Compiler

cc C compiler
CC C++ compiler
ftn Fortran 90/95 compiler
f77 Fortran 77 compiler (only valid

for PGI and GCC 3.x)

CUG 2007 Proceedings 4 of 9

3. The Portland Group Compilers

3.1 Cray XT3 Usage
The PGI compilers were the only supported

compilers for the Cray XT3 when the system was
originally released. The PGI compilers were chosen
because they provided a good combination of features and
performance for HPC programming. The initial release
for the Cray XT3, version 5.2, lacked C99 and C++98
standard features. These issues have all been resolved and
PGI produces good performing C and C++ code. The
current version of PGI that is supported on the Cray XT is
version 7.0-3.

The PGI compiler has been by far the most used
compiler for generating code for the Cray XT. This extra
exposure time has been helpful in resolving issues related
to libraries and tools used with the compiler. One notable
example of this is the ftn compiler script ‘-default64’
option, which is used to load libraries that were compiled
with the ‘-i8 –r8’ options. Currently, this option is only
supported for the PGI compiler. As a result of PGI being
the most used compiler, Cray Inc. software development
group has focused efforts on getting programming
environment software, such as IOBUF and CrayPat, to
work with PGI compiled code. Cray Inc. software
development group is working on getting the libraries and
tools to perform equally as well with the other compilers.

3.2 Compiler Options

The PGI compiler has many options to specify
features and optimization techniques to be performed by
the compiler. Chapter 2 of the PGI User’s Guide
provides a good overview of optimization options
available for the PGI compilers. The PGI web site
(www.pgoup.com) has a page that discusses the porting
and tuning of specific HPC applications, such as
GAMESS and WRF. Another good resource for suggested
PGI options is the SPEC CPU2006 Benchmark web page
(www.spec.org/cpu2006), which shows the options used
for each of the benchmark results that were submitted
using the PGI compiler. The following are frequently
used PGI options

• -fast This flag is a collection of optimization options.

In PGI 6.2 and earlier releases, the user should use
the option –fastsse. The specific optimization flags
that are specified by the –fast are: -O2 -Munroll=c:1
-Mnoframe –Mlre -Mvect=sse –Mscalarsse
-Mcache_align –Mflushz

• -fastsse In PGI 7.0 this option is identical to -fast
• -Mipa=fast,inline Invokes inter-procedural analysis.

The fast option is collection of IPA sub-options that
are generally optimal for the targeted machine.

• -O3, -O4 The -fast option contains ‘-O2’, so this
option must appear after the –fast option on the
command line

• -Minfo Outputs messages of the optimizations
performed by the compiler.

The following PGI options have also been observed

in compiling code for the Cray XT3:

• -Mnontemporal Informs compiler to force

generation of nontemporal move and prefetch
instructions.

• -Mprefetch=distance:8,nta distance option for the
prefetch flag sets the fetch-ahead distance to 8 cache
lines. The nta option instructs compiler to use the
prefetchnta instruction.

• -Msafeptr=all Optimization option that instructs the
compiler that pointers do not have data dependencies.

• -Munroll=n:X Instruct the compiler on the number
of times a loop should be unrolled

• -Minline=levels:X Informs the inliner to perform X
levels of inlining, where the default is 1. This is an
important option for C++ code. The PGI User Guide
suggests using –Minline-levels:10 for C++ code.

• -Kieee Floating-point operations are performed in
conformance with the IEEE 754 standard. This
option is useful for producing bit identical results.
The use of this option will likely result in less
performance.

• -Mneginfo Outputs messages on why certain
optimizations were not performed.

• -Mnodepchk The compiler assumes that potential
data dependencies do not conflict. Option can
produce incorrect code if there are data dependencies.
-help Displays useful information about the options
specified on the command line.

4. GNU Compiler Collection

4.1 Cray XT3 Usage
 The GNU compiler collection is the open source
compiler made available by the GNU project. The GCC
compiler is used to build the system software for the Cray
XT systems. The GCC compiler became available for
building compute node executables in Cray XT OS 1.2.
This version, GCC 3.2.3, did not support the compilation
of Fortran 90 code. The GCC compiler was used to
compile C and C++ code, as it was shown to have some
feature and performance advantages over earlier PGI
releases

The 4.1 release of GCC has Fortran 90/95 capability.
This release also contains a subset of the new Fortran
2003 features. Users have found the GCC 4.1 C compiler
enforces language syntax more strictly than the 3.x
versions. The current release of the GCC compiler is
4.1.2.

4.2 Compiler Options

CUG 2007 Proceedings 5 of 9

 The following GCC compiler options are essential in
producing optimize code with the GCC compiler:

• -O3 Turns on most of the useful optimization

features for GCC.
• -ffast-math An important optimization option that is

vital for optimization. It is not included in –O3
because it could result in math functions not
complying with IEEE or ISO standards.

The following GCC options have been used on the

Cray XT3 to improve performance:

• -fprefetch-loop-arrays Generate instructions to
prefetch memory to improve loop performance.

• -funroll-loops Enable loop unrolling optimization
• -ftree-vectorize Enable tree vectorization

5. PathScale Compiler Suite

5.1 Cray XT3 Usage
Qlogic PathScale Compiler Suite targets the high

performance computing market. The compiler has Cray
roots in that its Fortran front-end is based on the Cray
front-end that was made available by SGI. A benefit of
using the Cray front-end is that the PathScale Fortran
compiler supports the assign command, which is used to
customize Fortran I/O. The assign command has been
shown to improve the performance of Fortran file I/O
running on Catamount microkernel compute nodes. For C
and C++ code, PathScale uses the GNU front-end.

The PathScale compiler was not originally supported
in the Cray XT software. A main reason this was done
was to reduce complexity in early releases of the Cray
XT3 software, since a set of communication (MPICH,
SHMEM) and scientific (libsci, acml) libraries is needed
for each compiler, The PathScale compiler is now
supported on Cray XT systems and can be ordered and
licensed through PathScale. The current version
supported on the Cray XT is PathScale 3.0.

5.2 Compiler Options

The PathScale pathopt2 tool can be used to find the
optimal set of options for compiling a program. The tool
accomplishes this by iteratively testing different option
combinations using an adaptive process. This tool is
described in chapter 7 of the PathScale Compiler Suite
User Guide. This chapter provides detail information on
PathScale optimization features, while chapter 6 gives a
quick overview of optimization options. The eko (Every
Known Optimization) man page contains a description of
the optimization options for the PathScale compilers. A
source for suggestions on PathScale compiler optimization
options is the SPEC CPU2006 Benchmark web page
(www.spec.org/cpu2006), which provides information on

the options used for each of the benchmark results that
used the PathScale compiler.

The PathScale option –Ofast is a collection of the
optimization options. A user may want to first use a
subset of the –Ofast options to ensure correctness of
results. The option –Ofast specifies:

• –O3 Aggressive optimization
• -ipa Turns on inter-procedural analysis (IPA).
• –OPT:Ofast Specifies the optimization options
-OPT:ro=2:Olimit=0:div_split=ON:alias=typed
• –fno-math-errno ERRNO is not set after calling
math functions
• –ffast-math Improves performance of floating point
math. Math results may not conform to the IEEE
standard.

 The following options have been used on Cray XT3
systems to improve the performance of PathScale
executables:

• -CG:use_prefetchnta=ON Instruct the compiler to
use the prefetchnta instruction.
• -CG:movnti Perform non-temporal stores
• -O2 Default optimization level
• -LNO:fu=X:full_unroll_size=Y Parameters for loop
unrolling. Default values are trip count X is 5 and unroll
loop size Y is 2000.
• -LNO:simd=2 Aggressive vectorization option
• -LNO:vintr=2 Aggressive loop vectorization
• -OPT:alias=restrict Pointers are assumed to be non-
overlapping.
• -OPT:ro=3 Allow more optimizations that may
affect floating point results
• -OPT:unroll_size=256 Set the maximum number
instructions of an unrolled inner loop (default is 40)
• -OPT:recip=ON:fast_sqrt=ON Use reciprocals in
math calculations

6. Performance

Performance has improved with each new release of

the compilers. It is important when viewing published
performance results to note the version of the compiler
that was being used.

6.1 HPCC Challenge Benchmark
 The HPCC Challenge (HPCC) benchmark was used
to test the C compilers. The results (see Appendix A)
show that for most of the tests the results were very
similar. One exception is the STREAM benchmark,
where the GCC compiled did not perform as well as the
others. The GCC compiler does not have an option to
specify the use of the prefetchnta instruction.

CUG 2007 Proceedings 6 of 9

 The HPCC benchmark showed an interesting case for
the PathScale compiler. The RandomAccess kernel
performed much better when it was compiled using the
‘-O2’ option rather than the ‘-O3’ option. Examining the
code that was generated showed the ‘-O3’ version had
loop scheduling code that did not add performance to the
loop.
 The results from the HPCC benchmark indicate that
each of the C compilers produce similarly performing
code.

6.2 Polyhedron 2005 Fortran Benchmark
 The Polyhedron 2005 Fortran Benchmark
(www.polyhedron.com) was used to test the Fortran
compilers. The results (see Appendix B) clearly show the
GCC Fortran compiler not performing as well as the PGI
and PathScale Fortran compilers. The geometric mean for
the GCC results showed 25% less performance than the
PathScale compiler. Two exceptions where GCC Fortran
clearly outperformed PGI and PathScale were the Channel
and Linpack benchmarks.
 The benchmark results showed the PathScale Fortran
compiler slightly outperforming the PGI compiler. The
difference in the geometric mean was less than 5%.

6.3 Stepanov Benchmark
 The Stepanov benchmark is used to measure the level
of abstraction that C++ constructs add to a code as
compared to a C code performing the same functionality.
The benchmark showed that the GCC C++ having the best
results with PathScale C++ compiler being a close second.
The PGI C++ compiler did not perform very well with this
benchmark.

6.4 Cray Inc. Application and Benchmark Groups
 Members of the Cray Inc. Application and
Benchmark groups were interviewed to gain their
perspective and experience of the three compilers. The
following is a consensus of what they reported:

1. PGI and PathScale are both used for Fortran

code: The GCC Fortran compiler is never used to
compile Fortran. The groups’ experience is that the
PGI compiler will perform better for some Fortran
codes, while the PathScale compiler performs better
for others. The performance difference is almost
always with 10% of each other. They reported little
difficulty with switching from one compiler to
another.

2. GCC is generally used for C and C++ code: The
experience is that code compiled with GCC C
compiler typically performs as well as the other
compilers, and sometimes much better. The GCC
C++ compiler is almost always used to compiler C++
code.

3. Better compiler directives are needed for PGI and
PathScale: The programmers have had mixed results

in using the PGI and PathScale compiler directives to
optimize specific sections of code. They felt that
both PGI and PathScale could greatly improve the
effectiveness of their compiler directives.

7. Guidelines in Choosing a Compiler

7.1 Fortran Performance
 The PGI and PathScale compilers both produce
consistently better performing Fortran code than the GCC
Fortran compiler. For most case the PGI and/or PathScale
compilers should be used for Fortran programs.

7.2 C and C++ Performance

All three compilers have been used to compile C code
with good results. The GCC compiler is used to build
operating systems and system utilities, and generates
highly optimized code for this type of software. A Fortran
program that has some C routines to interface with the
operating system, may want to use the PGI or PathScale
compiler for the Fortran code and the GCC compiler for
the C code.

The experience of the Cray Inc. Applications and
Benchmark groups is that GCC C++ produces the best
performing C++ code. The Stepanov benchmark supports
this assertion.

7.3 Cray XT Exposure Time for PGI
 The PGI compiler was the first officially supported
compiler for the Cray XT3 and has had much more
exposure in compiling codes for the Cray XT. A reason
this is an advantage is because of the greater experience of
using the PGI code with the Cray XT3 libraries and tools.
The scientific and communication libraries are all
compiled using each of the compilers, so the PGI
compiled versions of these libraries have had more
exposure. Currently, PGI is the only compiler with Cray
programming libraries that support the ftn ‘-default64’
option.
 Programming environment tools, such a CrayPat and
TotalView, is another area where more collective
experience in using PGI compiled code is an advantage
for using the PGI compiler. Compiler related issues that
cause problems with tools are more likely to have been
addressed for PGI compiled code. For example, at the
current moment there is a significant problem in using
CrayPat to analyse C++ code compiled with GCC.

7.4 ISV Application Recommendations
 All three compilers are widely used on other HPC
machines using the AMD Opteron, so when porting a
HPC code to the Cray XT machine it is very likely to have
been built on another platform that uses the AMD
Opteron. The ISV application developers may have
recommendations on which compiler and compiler
options to use to get the best performance from the

CUG 2007 Proceedings 7 of 9

application. The PGI website has a page with porting and
tuning suggestions for common HPC applications.

7.5 IOBUF vs. Assign
 The Cray I/O Buffering library can greatly improve
I/O performance of codes running on Catamount
microkernel compute nodes. PathScale uses system calls
rather than libraries routine to implement Fortran I/O to
files, so IOBUF is less effective in improving the Fortran
file I/O performance of PathScale compiled code.
PathScale Fortran I/O to standard input/output does not
have this issue, so IOBUF can be used to improve this
type of I/O.
 The PathScale Fortran front-end is based on the Cray
Fortran front-end, so it supports the assign command. The
assign command allows the customization of Fortran I/O.
The use of the assign ‘-b’ option has been shown to
improved Fortran file I/O performance of PathScale
compiled codes.

7.6 Performance Support
 The two commercial compiler vendors PGI and
PathScale compete mainly on performance. They have a
vested interest in improving the performance of their
compiled code, so a good part of their development focus
is on performance issues. If there is a performance issue
with a HPC program running on a Cray XT system, both
PGI and PathScale are more likely to be responsive than
the GCC open source community in resolving the issue

7.7 Portability of GCC C and C++
 The GNU C and C++ compiler are de facto standards
for C and C++ code. Some C and C++ codes may expect
GCC features and behavior, such as gnu attributes
directives that are not supported by the other C and C++
compilers. In this situation, the GCC compilers may need
to be used.

7.8 Fortran 2003 Standard
 The GCC Fortran compiler gfortran has implemented
more of the new Fortran 2003 features than either PGI or
PathScale. Codes that take advantage of new Fortran
2003 features may need to use the GCC Fortran compiler.
PGI and PathScale are both working on implementing the
new Fortran 2003 features.

Conclusion

Cray XT provides a programming environment that
supports multiple compilers and provides a method to
easily switch between the compilers. The PGI or
PathScale compiler should be used for Fortran, while all
three compilers can be used for C code. Unless there is an
explicit reason to choose a specific compiler, a user may
want to start with the PGI compiler to take advantage of
its Cray XT experience. Once the code is successfully
executing on the Cray XT using the PGI compiler, the

other compilers can be used to check for any difference in
performance.

Since the initial product release of the Cray XT3,
there have been significant improvements to each of the
compilers available for the Cray XT systems. While all
the compilers work well, there are opportunities for
improvement for each of the compilers in there ability to
build HPC code. The current competitive environment
among the compilers bodes well for future performance
and feature enhancements to the compilers supported on
Cray XT systems

About the Author

Geir Johansen works in Software Product Support,
Cray Inc. He is responsible for support of C, C++, libc,
MPI, SHMEM, TotalView and other debuggers, and
performance tools for the Cray X1 and Cray XT
platforms. He can be reached at Cray Inc., 1340 Mendota
Heights Road, Mendota Heights, MN 55120, USA; Email:
geir@cray.com

CUG 2007 Proceedings 8 of 9

 Appendix A

 HPC Challenge Benchmark Results

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 2 3 4 5 6 7 8

PGI GCC PathScale

The percentage value is the percentage that compiler performed in comparison to the best
performing compiler for that test.

1) PTRANS
2) HPL
3) DGEMM
4) STREAM Triad
5) Random Access
6) FFTE
7) RandomRing Latency
8) RandomRing Bandwidth

CUG 2007 Proceedings 9 of 9

 Appendix B

 Polyhedron 2005 Fortran Benchmark Results

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 3 5 7 9 11 13 15 GM

PGI GCC PathScale

The percentage value is the percentage that compiler performed in comparison to the best
performing compiler for that test.

1) ac
2) aermod
3) air
4) capacita
5) channel
6) doduc
7) fatigue
8) gas_dyn

9) induct
10) linpk
11) mdbx
12) nf
13) protein
14) rnflow
15) test_fpu
16) tfft

GM is the Geometric Mean

Benchmark originated from www.polyhedron.com
Benchmark was run on a Cray XT3 system with 2.4 MHz processor. Date of runs: 4/28/07.
GCC version 4.1.2; PathScale version 3.0; PGI version 7.0-3

