

CUG 2007 Proceedings 1 of 7

Bringsel: A Tool for Measuring Storage System Reliability, Uni-
formity, Performance and Scalability

John Kaitschusk, Cray, Inc., and Matthew O’Keefe, Al-
varri, Inc.

ABSTRACT: Bringsel is a primary I/O testing program that enables the use of either
POSIX or MPIIO calls to perform benchmarking and evaluation to measure the reliability,
uniformity, performance and scalability of file systems and storage technologies. It en-
ables the creation of a large number of directories and files using both a threading model
(POSIX) and the MPI library for multiple nodes to coordinate testing activity. Bringsel
has run on a variety of large scale computing platforms, including Cray XTs, SGI Origin
systems, Sun enterprise-scale SMP systems and Linux clusters.

KEYWORDS: Storage Benchmarking, Reliability, Uniformity, Performance, Scalabil-
ity, Storage Evaluation

Introduction

In storage systems evaluation there has been a prolif-
eration of tools and applications to help access perform-
ance of various file systems, storage equipment and gen-
eralized configurations over the years. Examples of such
benchmarking software include IOzone1, IOR2, File-
Bench3, xdd4, and PRIOmark5. In the fall of 1998, one of
this papers’ authors, Kaitschuck, was evaluating storage
technologies as a researcher for a northern California
technical computing installation. At that time, a small
project was started to develop a benchmarking tool which
would allow for both reliability and performance testing

1 IOzone File System Benchmark: www.iozone.org

2 R. Hedges, B. Loewe, T. McLarty and C. Morrone. Par-
allel File System Testing for the Lunatic Fringe: the care
and feeding of restless I/O Power Users. Proceedings of
the 22nd IEEE/13th NASA Goddard Conference (MSST
2005).

3 Filebench File System Benchmark:
www.solarisinternals.com/si/tools/filebench/index.php

4 xdd File System Benchmark: www.ioperformance.com
5 M. Krietemeyer, D. Versick and D. Tavangarian. The
PRIOmark Parallel I/O¬Benchmark: www.ipacs-
benchmark.org/index.php?s=download&unterseite=priomark

in a controlled environment. It would evaluate various
vendor technologies under consideration. The character-
istics of storage at this California facility included a mix
of file sizes and access types within very large directory
structures. The tool that was developed, Bringsel, is an
I/O benchmark that accounts for all associated operational
constraints and generalized I/O workloads typical of a
large scale technical computing environment.

Since then Bringsel has undergone several enhance-
ments, including general modifications and extensions. It
has been used to test file systems and storage technologies
on a variety of operating systems including Irix, AIX,
Solaris, Unicos, Unicos/MK, Linux and BSD. It has run
on a variety of hardware architectures, including PVP
based systems, scalar SMPs, MPPs and large clusters. It
has been used at different sites to help understand per-
formance issues, and as a general-purpose diagnostic to
isolate faults on storage systems. Because of its exposure
to so many operating systems and platforms Bringsel has
evolved into a useful general purpose I/O benchmark for
technical computing.

CUG 2007 Proceedings 2 of 7

2. Testing Focus

The objective behind the use of any I/O benchmark is
important to consider before it should be used. The
Bringsel benchmark assesses the metrics that go to the
quality of I/O subsystems. These include:

• Service: Provide the required API into the storage
subsystem for the given application set, POSIX,
MPI-IO, and so on. Other service-related items
should be are to be considered, such as documenta-
tion, and manageability, but Bringsel can not test
these.

• Reliability: n bits of data and (and metadata) written
into a storage subsystem should return n bits on re-
trieval. Storage content should not be changed by
external load, access frequency (unless intended), or
over time. Sites often define reliability only in terms
of MTTI or MTBF, as these metrics quantify system
uptime. Reliability however must measure not only
uptime, but data access and data integrity (uncor-
rupted data).

• Uniformity: Given a general level of performance
under load x during period t, the subsystem should
provide an equivalent level of performance within a
given delta, at time t + 1. Equivalent performance
should vary by no more then 20% at t + 1, in consid-
eration of the underlying technology/architecture in
relationship to the work load. Uniformity can con-
sider factors based on time and/or capacity.

• Performance: Provide high levels of performance to
meet or exceed latency and bandwidth requirements
for applications and access to storage. Many sites
consider some performance aspect in relationship to
system size, commonly raw I/O bandwidth.

• Scalability: Provide specifications for reliability,
uniformity and performance at the size required for
the system.

While these are categories and not specifics, they ap-
ply to most storage subsystems. Requirements may differ
for individual sites and applications, but principal quality
concerns remain. Requirements vary according to the
application(s) run, a site’s hardware and software con-
figuration, usage for production versus research and de-
velopment, and the user load. The Bringsel feature set
tries to test as many of these variables as possible, while
remaining portable and easy to implement yet with ad-
vanced features and optimization capabilities.

3. Bringsel Features

Bringsel is a C-based program that runs in user
space, unlike similar programs such as trace6, or explode7.
While user space does present some challenges, notably
with timing (see buttress8), multi-core CPUs have amelio-
rated these problems to a great extent. Bringsel provides
a wide range of features, including:

• symmetric directory tree creation, including both
serial and parallel mkdirs and stats to confirm suc-
cess in operations.

• a modified hash tree directory scan and integrity
check option.

• sequential and random directory tree walks, including
symbolic link, file and directory counts.

• multiple API support, including POSIX, file streams,
MMAP and MPI-IO.

• multi-node support, via MPI, for MPP and cluster
systems, with selectable node delays.

• POSIX thread support, with selectable inter-thread
delays, where applicable for operating environment
support.

• multiple operation type and block size selection on a
per-thread basis.

• a selectable file checksum option, via Haval.
• file attribute selection and checking; permissions and

ownership.
• iteration and looping support.
• file option support; append, truncate, fsyncs, etc.
• support for a configuration file parser and command

line options.
• performance measurements for open/close latency,

latency loops, data bandwidth and IOPs.
• performance measurements for directory traversal.
• selectable raw ASCII output, either directly to tty or

a logging file.

6 M. Mesnier, M Wachs, R. Sambasivan, J. Lopez, J.
Hendricks, G. Ganger and D. O’Hallaron //TRACE: Par-
allel trace replay with approximate causal events.
USENIX/FAST07, San Jose, CA. February 2007.

7 J. Yang, P. Twohey, B. Pfaff, C. Sar and D. Engler.
EXPLODE: A Lightweight, General Approach to Finding
Serious Errors in Storage Systems USENIX/FAST07, San
Jose, CA. February 2007.

8 E. Anderson, M. Kallahalla, M. Uysal and R. Swamina-
than. Buttress: A toolkit for flexible and high fidelity I/O
benchmarking. USENIX/FAST04, San Francisco, CA.
March 2004.

To explore details of some of these features, we shall
examine a subset related to both their implementation and
use within Bringsel.

3.1 Options and Configuration Files

Bringsel can take either single command line options
or multiple command line options in a configuration file
as input. Placing multiple command line options in a
configuration file allows multiple iterative passes with
standardized test configurations which specify activities
such as sequential or random access, directory structures,
file sizes and metadata activity.

The following example shows a very simple two-line
configuration file: sample.cnf

Comments start with ‘#’

-T 4 D /snarf/foo:1,2,2 M L c b 32 S 100M alpha
-T 4 a sx D /snarf/foo:1,2,2 L

CUG 2007 Proceedings 3 of 7

Example 1: Sample Bringsel Configuration File

Execution of Bringsel with the configuration file as
the primary input takes place via a simple invocation, in
this case: $ bringsel C sample.cnf

Use of a configuration file causes the file to be read
and any lines starting with ‘#’ to be ignored as general
comment lines. The line which starts with T 4 D
/snarf/foo:1,2,2 [....] will cause a series of opera-
tions to occur, starting with directory tree creation.

3.2 Symmetric Directory Tree Creation

A portion of the configuration line ‘T 4 D
/snarf/foo:1,2,2 [….] causes a small symmetric di-
rectory tree to be created using four POSIX threads.

Figure 1 Directory Tree Structure

The directory structure shown in Figure 1 starts with
a single top level node under the mount point
/snarf/foo. Additional lower-level nodes are created
in parallel, on each respective level. Barriers exist be-
tween levels to allow for top level directories to be com-
pleted before the next level is started. The basic opera-
tional pass is a mkdir followed by a stat call to allow
for an immediate degree of integrity checking. It is also
possible to create the directory structure with a serial-only
pass via a d directive instead of a D. Maximum directory
depth for Bringsel is currently 20 levels, while the maxi-
mum single level width is 100 nodes. Once the directory
structure is created, the next step is to perform a latency
loop measurement pass within the structure.

3.3 Latency Loop Measurements

Bringsel can perform two latency measurements.
The first measurement is the selectable latency loop. This
measurement is enabled by passing in an M through either
a direct command line option or configuration file op-
tions. Within the targeted directory structure each active
thread creates a number of temporary files that undergo a
series of system calls. These include stat, mkdir,
chmod, and utime.

The loop is iterated across to run a series of these
calls against the generated temporary names.

Figure 2: Loop Return Time Measurements

As each system call is made within the loop, return
values are checked to flag error conditions. Once each
loop is completed, the temporary files and directories are
removed from the directory structure. The time measure-
ments for each pass of these latency loops are collected
into the respective thread data structures. Each directory
within the structure is opened by each thread and the se-
quence is re-executed in a top / breadth-first order.

Bringsel will then create the permanent files within the
directory structure.

3.4 File Creation

Bringsel, as has been mentioned, supports multiple
API’s for file operations. The default operation uses stan-
dard POSIX libc calls for file support. In the case of our
example configuration file (Section 3.1), the file opera-
tions will use the default API to access the file system.
As each thread will create an individual file, this is a non-
parallel access case.

Figure 3: Separate Files Created per Thread

As shown here, each thread creates a separate file
named alpha_nnnn, where nnnn is a thread-level desig-
nator. Each thread writes 32 KB blocks to create files
that are 100 MBs in size. Once the file has been written
out to the storage subsystem it is closed. Then an op-
tional checksum is performed on each file to verify the
contents of the storage subsystem. The checksum option
uses the Haval9 algorithm. Here all files are, by default,
zero-filled, but other fill patterns can be selected by the
user. Timing information and general performance data
is stored in the associated thread level data structure, once
full operations are completed.

CUG 2007 Proceedings 4 of 7

9 Y. Zheng, J. Pieprzyk and J. Seberry. HAVAL – A
OneWay Hashing Algorithm with Variable Length of
Output. Advances in Cryptology – Auscrypt’92 Lecture
Notes in Computer Science, Vol. 718 SpringerVerlag,
1993. pp. 83–104.

Figure 4: Directory Traversal

File creation in this case progresses much as it did for
the latency loop measurement – top / breadth-first. As the
results are produced across the structure of larger direc-
tory structures, the performance data allows for a better
understanding of uniformity as related to decreasing spa-
tial capacity.

At the end of this process we end up with 7 directo-
ries. Each contains 4 x 100 MB files for a total of 28
files, consuming approximately 2.8 Gigabytes of space.
Obviously this is only a small example of the size and
scope of the directory structure and file contents that can
be created using Bringsel. It would also be possible to
use Bringsel to set some of the file attributes during crea-
tion via an m directive. A simple example would be
-m +:USER:GROUP:0755 as an addition to what has been
shown as the first configuration file entry.

In general-purpose file systems, the ability to stat file
system contents, directories and files is a well known is-
sue10Since Bringsel is intended to test a wide range of
storage subsystems technology, directory walks are essen-
tial to the overall functionality of the program. The sec-
ond active line of the configuration file demonstrates the
ability to perform sequential directory walks across the
structure we have created. These operations, file crea-
tions and directory walks can be combined in more com-
plex operational cases to explore the storage subsystem
under examination.

3.5 Directory Walks

The second active line from the configuration file es-
tablishes a sequential tree walk by all four threads. The

10 D. Roselli, J. Lorch and T. Anderson. A Compari-
son of File System Workloads. Proceedings of the 2000
USENIX Annual Technical Conference San Diego, Cali-
fornia, USA June 1823, 2000.

threads start at the very top of the generated directory
structure and stat the contents of each directory. As each
thread walks down the directory tree it keeps a count of
directories, files and any symbolic links encountered in
each respective directory.

Bringsel can also perform random walks: a rx.
Here the starting node is randomly selected from the indi-
cated directory structure and varied with each thread.

Figure 5: Random Directory Walk

The total time to stat the directory structure is re-
corded and saved in the thread level data structure. Given
an existing directory structure and the associated file con-
tents, Bringsel can perform a series of intermixed opera-
tions, for example random writes and sequential walks, at
any time. Intermixed operations can span different block
issue sizes, from under 1 KB up to 128 MB. A simple
example would be a variation of the first line from our
configuration file:
T 4 a rw,sx D /snarf/foo:1,2,2 L c b 32 S
100M alpha

This dispatches two threads to perform random
writes on their designated files within the created direc-
tory structure, while the remaining two threads perform a
sequential walk of the existing tree. The subdivision of
thread-level activity in all of these examples has been
within a single system. In the case of an MPP or cluster
system, Bringsel tracks the Global Thread Number
(GTN) of each thread as it relates to the node it is running
on. Work is then allocated across this global collection of
threads for dispatch from the various nodes. Despite
these features, there is still a challenge to maintain state
across any structure created, along with the associated
contents. In the case of really large structures with differ-

ent file contents and sizes, we need to be certain of stor-
age subsystem integrity when performing any testing.

3.6 Hash Trees and Directories

In order to verify the integrity of large directory
structures and their file contents, we must confirm the
generalized structure over time. This provides a reliable
way to verify storage subsystem functions such as
backup, replication and snapshots. Using hash trees, or
modified Merkle trees11,12, Bringsel can scan and check
the created data structures. This option, combined with
the Haval checksum to verify file contents, allows for full
scale integrity checking.

Figure 6: Hash Tree Formulation

Figure 6 shows a portion of the directory structure
created earlier. Tree scanning to create the required state
information on the structure starts at the bottom and
works in a breadth-first manner. Individual directories
are scanned for all included files and subdirectories. The
basic formulation of this activity takes the form:
V = H(f1 → fn,D1 → Dn)

Where the function H() is the SHA256 checksum13. The
values for f files in the directory, take on the value of the
fully qualified name, excluding the user-specified mount
point, UID/GID, and file permissions. Any subdirectories
have their associated V value from their storage file
.bringsel sd01 included in this transformation. The
value V is then stored in a file .bringsel sd01 within
the current directory. Directory checking following a
snapshot, restore or migration can then compare com-

11 R. Merkle Secrecy Authentication and Public Key Sys-
tems. UMI Research Press, 1982. Also appears as a
Stanford Ph.D. thesis in 1979
12 M. Jakobsson, T. Leighton, S. Micali and M. Szydlo.
Fractal Merkle Tree Representation and Traversal. RSA
Cryptographers Track, 2003.

CUG 2007 Proceedings 5 of 7

13 Secure Hash Standard (SHS). Technical Report
FIPS PUB 1802, Information Technology Laboratory,
National Institute of Standards and Technology, Gaithers-
burg, MD 208998900, August 2002.

puted hash values to stored values in each respective file
at a directory level. Directory checking, like the scanning
operation, takes place in a bottom-up, breadth-first fash-
ion. The time required to complete a directory scan var-
ies with the number of files and the size of the directory
tree. The use of SHA256, while more computationally
intensive then other checksum methods, provides a mini-
mum probability of nonviable collisions within the struc-
ture.

3.7 Log Output

ASCII log output from Bringsel can be sent to a log
file or directly to the screen. Bringsel’s primary output is
composed of two field types associated with each active
thread for a given command sequence.

Figure 7: ASCII Log Output

The first field type, shown above, is the active opera-
tion type. This includes file creations, sequential writes,
sequential reads, random writes and random reads. Here
all operations are file creations CR. Further columns in-
clude:

• block size
• date and time of thread execution
• thread and iteration number
• metadata loop performance measurement
• general open latency measurement
• total elapse time
• IOPs
• MBps
• a general error checksum.

The second field type for directory walks (in this
case, random walks RX), include:

• date and time of thread execution
• thread and iteration number

CUG 2007 Proceedings 6 of 7

• metadata loop performance measurement
• symbolic link count
• file count
• directory count

• elapse time
• general error checksum.

Part of the general output (not shown in Figure 7) is a
generalized header which includes version number and
selected options for the given run. In addition, log output
can include a Hash IDentifier (HID) for the individual
directories and files. Since the volume of output can be
substantial with large directory structures and file counts,
we have created a series of short awk scripts that aid in
data post-processing to an external graphing package.
This allows for the production of 2D and 3D graphs using
a commercial based package like Excel or DeltaGraph.
While such commercial packages are adequate for general
use, larger scale structures and files will require a more
substantial data handling and visualization capability.

4.0 Sample Results

Bringsel has most recently been used in the evalua-
tion of NAS based storage within Cray.14, see [14]. Some
examples of processed results include a uniformity run
across various block sizes with 20 nodes:

Figure 8: Uniformity Run Across 20 Nodes

14 J. Kaitschuck, J. Reaney, C. Hertel and M. O’Keefe
Performance, Reliability, and Operational Issues for High
Performance NAS Storage on Cray Platforms. CUG Pro-
ceedings 2007. Seattle WA

An aggregate bandwidth run using 24 nodes and two
FC RAID array controllers on the back end storage:

Figure 9: Aggregate BW Run - 24 nodes, 2 FC RAID

Array Controllers

5.0 Future Work

Bringsel has some unique features. Possible future
additions to this feature set include:

• UPC support for larger shared memory systems and
going beyond the current MPI-only multi-node sys-
tem support.

• Directory tree limits. Currently Bringsel uses full
syntax directory support, as shown earlier. Directory
tree limits would allow selection of individual subdi-
rectories within large trees for given operations.

• Adding and pruning directories in compact form.
This would provide the capability to add and remove
directories subsets of entire directory trees.

• Modules to support tracing input/output. Numerous
technologies have been developed to provide applica-
tion-level file traces. Bringsel could be extended to
support some of these tracing tools/libraries.

• Better visualization methods via an external applica-
tion. In order to handle very large directory struc-
tures, it would be useful to provide a way to support
interactive 2D and 3D exploration of the large data
sets that Bringsel can generate.

• External automated test driver. This is to help accel-
erate testing, via configuration file generation based
on output logs from initial Bringsel runs.

6.0 Conclusion

Bringsel provides a diverse and flexible tool for
benchmarking file systems and storage subsystems. It
allows data gathering for the evaluation of service-
specific APIs, reliability, uniformity, performance and
scalability. It can create a range from a single file to large
directory structures populated by files of differing sizes.
It provides the most common APIs and access types for
file access and metadata manipulation. These various
access types can be intermixed using a POSIX threading
model, and multi-node support to provide a useful, mixed
I/O benchmark, which also provides advanced integrity
checking methods.

About the Authors

John Kaitschuck is currently a Senior Systems Engi-
neer with Cray Federal. He has previously served in a
variety of technical and consulting positions in industry
and government as both analyst and developer. He has
worked with a wide range of HPC issues around systems
and system software. He can be reached at
jkaitsch@cray.com.

Matthew O’Keefe is a founder and Vice-President of
Engineering at Alvarri Inc., a start-up focusing on storage
management software. Previously, Matthew founded
Sistina Software, sold to Red hat in late 2003; he spent 10
years as a tenured Professor at the University of Minne-
sota, where he is currently a Research Associate Profes-
sor. He can be reached at okeefe@alvarri.com.

CUG 2007 Proceedings 7 of 7

